Role of Natural Products against the Spread of SARS-CoV-2 by Inhibition of ACE-2 Receptor: A Review


Дәйексөз келтіру

Толық мәтін

Аннотация


A unique extreme acute breathing syndrome emerged in China and spread rapidly globally due to a newly diagnosed human coronavirus and declared a pandemic. COVID-19 was formally named by WHO, and the Global Committee on Taxonomy referred to it as extreme Acute respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Currently there is no efficient method to control the extent of SARS-CoV-2 other than social distancing and hygiene activities. This study aims to present a simple medicinal strategy for combating fatal viral diseases like COVID-19 with minimum effort and intervention. Different Ayurveda medicines (Curcuma longa, green tea, and Piper nigrum) inhibit virus entrance and pathogen transmission while also enhancing immunity. Piperine (1-piperoylpiperidine), as well as curcumin, combine to create an intermolecular complex (π- π) that improves curcumin bioavailability by inhibiting glucuronidation of curcumin in the liver. The receptor- binding domains of the S-protein and also the angiotensin-converting enzyme 2 receptor of the recipient organism are directly occupied by curcumin and catechin, respectively, thereby preventing viruses from entering the cell. As a result, the infection will be tolerated by the animal host.

Авторлар туралы

Krishana Sharma

Teerthanker Mahaveer College of Pharmacy, TeerthaTeerthanker Mahaveer University

Email: info@benthamscience.net

Shoma Devi

Department of Zoology, Krishna College of Science & Information Technology

Email: info@benthamscience.net

Dharmendra Kumar

Science Branch, Deendayal Upadhyay Institute of Archaeology, Archaeological Survey of India

Email: info@benthamscience.net

Zeeshan Ali

Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University

Email: info@benthamscience.net

Nishat Fatma

Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University

Email: info@benthamscience.net

Raghvendra Misra

Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University

Email: info@benthamscience.net

Gajendra Kumar

Department of Chemistry, Constituent Government College, MJP Rohilkhand University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Cyranoski D. Profile of a scientists are quickly piecing together how the new coronavirus operates, where it came from and what it might do next-but pressing questions remain. Nature 2020; 581: 22-6. doi: 10.1038/d41586-020-01315-7 PMID: 32367025
  2. Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther 2020; 14(1): 58-60. doi: 10.5582/ddt.2020.01012 PMID: 32147628
  3. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3. doi: 10.1038/s41586-020-2012-7 PMID: 32015507
  4. World Health Organization. Coronavirus disease (COVID-19) epidemiological updates and monthly operational updates. Available from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
  5. Pengfei S, Xiaosheng L, Chao X, Wenjuan SBP. Understanding of COVID-19 based on current evidence. Jou Med Virol 2020; 92(6): 548-51. doi: 10.1002/jmv.25722
  6. Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol 2011; 85(2): 873-82. doi: 10.1128/JVI.02062-10 PMID: 21068237
  7. Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: Celebrating the 20th anniversary of the discovery of ACE2. Circ Res 2020; 126(10): 1456-74. doi: 10.1161/CIRCRESAHA.120.317015 PMID: 32264791
  8. Wang JJ, Edin ML, Zeldin DC, Li C, Wang DW, Chen C. Good or bad: Application of RAAS inhibitors in COVID-19 patients with cardiovascular comorbidities. Pharmacol Ther 2020; 215: 107628. doi: 10.1016/j.pharmthera.2020.107628 PMID: 32653530
  9. Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: Are they closely related? Clin Microbiol Infect 2020; 26(6): 729-34. doi: 10.1016/j.cmi.2020.03.026 PMID: 32234451
  10. Chan JFW, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 2020; 9(1): 221-36. doi: 10.1080/22221751.2020.1719902 PMID: 31987001
  11. Wu A, Peng Y, Huang B, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 2020; 27(3): 325-8. doi: 10.1016/j.chom.2020.02.001 PMID: 32035028
  12. Al-Tawfiq JA, Hinedi K, Ghandour J, et al. Middle East respiratory syndrome coronavirus: A case-control study of hospitalized patients. Clin Infect Dis 2014; 59(2): 160-5. doi: 10.1093/cid/ciu226 PMID: 24723278
  13. Arabi YM, Arifi AA, Balkhy HH, et al. Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann Intern Med 2014; 160(6): 389-397. doi: 10.7326/M13-2486 PMID: 24474051
  14. Chafekar A, Fielding B. MERS-CoV: Understanding the latest human coronavirus threat. Viruses 2018; 10(2): 93. doi: 10.3390/v10020093 PMID: 29495250
  15. Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med 2005; 202(3): 415-24. doi: 10.1084/jem.20050828 PMID: 16043521
  16. Zhang P, Zhu L, Cai J, et al. Association of inpatient use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ Res 2020; 126(12): 1671-81. doi: 10.1161/CIRCRESAHA.120.317134 PMID: 32302265
  17. Barbosa-Filho JM, Martins VKM, Rabelo LA, et al. Natural products inhibitors of the angiotensin converting enzyme (ACE): A review between 1980-2000. Rev Bras Farmacogn 2006; 16(3): 421-46. doi: 10.1590/S0102-695X2006000300021
  18. Patten GS, Abeywardena MY, Bennett LE. Inhibition of angiotensin converting enzyme, angiotensin II receptor blocking, and blood pressure lowering bioactivity across plant families. Crit Rev Food Sci Nutr 2016; 56(2): 181-214. doi: 10.1080/10408398.2011.651176 PMID: 24915402
  19. Joshi T, Joshi T, Sharma P, et al. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. Eur Rev Med Pharmacol Sci 2020; 24(8): 4529-36. PMID: 32373991
  20. da Antonio A. S, Wiedemann MLS, Veiga-Junior, VF. Natural products’ role against COVID-19. RSC Advance 2020; 10: 23379-93.
  21. Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J 2004; 383(1): 45-51. doi: 10.1042/BJ20040634 PMID: 15283675
  22. Daskaya-Dikmen C, Yucetepe A, Karbancioglu-Guler F, Daskaya H, Ozcelik B. Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from plants. Nutrients 2017; 9(4): 316. doi: 10.3390/nu9040316 PMID: 28333109
  23. Pandit M, Latha N. In silico studies reveal potential antiviral activity of phytochemicals from medicinal plants for the treatment of COVID-19 infection. 2020. doi: 10.21203/rs.3.rs-22687/v1
  24. Zakaryan H, Arabyan E, Oo A, Zandi K. Flavonoids: Promising natural compounds against viral infections. Arch Virol 2017; 162(9): 2539-51. doi: 10.1007/s00705-017-3417-y PMID: 28547385
  25. Meneguzzo F, Ciriminna R, Zabini F, Pagliaro M. Review of evidence available on hesperidin-rich products as potential tools against COVID-19 and hydrodynamic cavitation-based extraction as a method of increasing their production. Processes (Basel) 2020; 8(5): 549. doi: 10.3390/pr8050549
  26. Chen CN, Lin CPC, Huang KK, et al. Inhibition of SARS-CoV 3C-like protease activity by Theaflavin-3,3′-digallate (TF3). Evid Based Complement Alternat Med 2005; 2(2): 209-15. doi: 10.1093/ecam/neh081 PMID: 15937562
  27. Chenh J, Tang Y, Bao B, Zhang P. Exploring the active compounds of traditional Mongolian medicine agsirga in intervention of novel coronavirus ChemRxiv 2019; 11955273. doi: 10.26434/chemrxiv.11955273.v2
  28. Joshi R, Jagdale S, Bansode S, et al. Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. Biomol, J Struct Dyn 2020; 39(9): 3099-119. doi: 10.1080/07391102.2020.1760137
  29. Alisha K, Tripti S. Computational screening of phytochemicals from medicinal plants as COVID-19 inhibitors. ChemRxiv 2020; 12320273. doi: 10.26434/chemrxiv.12320273.v1
  30. Oo A, Teoh BT, Sam SS, Bakar SA, Zandi K. Baicalein and baicalin as Zika virus inhibitors. Arch Virol 2019; 164(2): 585-93. doi: 10.1007/s00705-018-4083-4 PMID: 30392049
  31. Rahman N, Basharat Z, Yousuf M, Castaldo G, Rastrelli L, Khan H. Virtual screening of natural products against type II transmembrane serine protease (TMPRSS2), the priming agent of coronavirus 2 (SARS-CoV-2). Molecules 2020; 25(10): 2271. doi: 10.3390/molecules25102271 PMID: 32408547
  32. Alok A, Indra DS, Shivani S, Mallika K, Prakash CJ. Curcumin - pharmacological actions and its role in oral submucous fibrosis: A review. J Clin Diagn Res 2015; 9(10): ZE01. doi: 10.7860/JCDR/2015/13857.6552
  33. Yadav SK, Khar RK, Mujeeb M, Akhtar M, Yadav D. Turmeric (Curcuma longa L.): A promising spice for phytochemical and pharmacological activities. Int J Green Pharm 2013; 7(2): 85. doi: 10.4103/0973-8258.116375
  34. Priya NC, Kumar PS. Antiviral activities and cytotoxicaty assay of seed extracts of Piper longum and Piper nigrum on human cell lines. Int J Pharm Sci Rev Res 2017; 44: 197-202.
  35. Bukhari IA, Pivac N, Alhumayyd MS, Mahesar AL, Gilani AH. The analgesic and anticonvulsant effects of piperine in mice. J Physiol Pharmacol 2013; 64(6): 789-94. PMID: 24388894
  36. Joshi DR, Shrestha AC, Adhikari N. A review on diversified use of the king of spices: Piper nigrum (black paper). Int J Pharm Sci Res 2018; 9(10): 4089-101. doi: 10.13040/IJPSR.0975-8232.9(10).4089-01
  37. Bashir T. Chemistry, pharmacology and ethnomedicinal uses of Helianthus annuus (sunflower): A review. Pure Appl Biol 2015; 4(2): 226-35. doi: 10.19045/bspab.2015.42011
  38. Pal D. Sunflower (Helianthus annuus L.) seeds in health and nutrition. Nuts Seeds Health Dis Preven 2011; 2011: 1097-105. doi: 10.1016/B978-0-12-375688-6.10130-6
  39. Long YQ, Lee SL, Lin CY, et al. Synthesis and evaluation of the sunflower derived trypsin inhibitor as a potent inhibitor of the type II transmembrane serine protease, matriptase. Bioorg Med Chem Lett 2001; 11(18): 2515-9. doi: 10.1016/S0960-894X(01)00493-0 PMID: 11549459
  40. Jena AB, Kanungo N, Nayak V, Chainy GBN. Catechin, and curcumin interact with corona (2019-nCoV/SARS-CoV2) viral S protein and ACE2 of human cell membrane: Insights from computational study and implication for intervention. Sci Rep 2021; 11(1): 2043. doi: 10.21203/rs.3.rs-22057/v1
  41. Liu C, Zhou Q, Li Y, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci 2020; 6(3): 315-31. doi: 10.1021/acscentsci.0c00272 PMID: 32226821
  42. Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020; 17(5): 259-60. doi: 10.1038/s41569-020-0360-5 PMID: 32139904
  43. Shim JS, Kim JH, Cho HY, et al. Irreversible inhibition of CD13/aminopeptidase N by the antiangiogenic agent curcumin. Chem Biol 2003; 10(8): 695-704. doi: 10.1016/S1074-5521(03)00169-8 PMID: 12954328
  44. Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM, Al-Nasser AD, Amjad D. SARS-CoV-2 and coronavirus disease 2019: What We know so far. Pathogens 2020; 9(3): 231. doi: 10.3390/pathogens9030231
  45. Reguera J, Santiago C, Mudgal G, Ordoño D, Enjuanes L, Casasnovas JM. Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies. PLoS Pathog 2012; 8(8): e1002859. doi: 10.1371/journal.ppat.1002859 PMID: 22876187
  46. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016; 3(1): 237-61. doi: 10.1146/annurev-virology-110615-042301 PMID: 27578435
  47. Šedo A, Vlašicová K, Barták P, et al. Quaternary benzocphenanthridine alkaloids as inhibitors of aminopeptidase N and dipeptidyl peptidase IV. Phytother Res 2002; 16(1): 84-7. doi: 10.1002/ptr.969 PMID: 11807974
  48. Gallagher TM, Buchmeier MJ. Coronavirus spike proteins in viral entry and pathogenesis. Virology 2001; 279(2): 371-4. doi: 10.1006/viro.2000.0757 PMID: 11162792
  49. Wang L, Shi W, Joyce MG, et al. Evaluation of candidate vaccine approaches for MERS-CoV. Nat Commun 2015; 6(1): 7712. doi: 10.1038/ncomms8712 PMID: 26218507
  50. Bernstein KE, Khan Z, Giani JF, Cao DY, Bernstein EA, Shen XZ. Angiotensin-converting enzyme in innate and adaptive immunity. Nat Rev Nephrol 2018; 14(5): 325-36. doi: 10.1038/nrneph.2018.15 PMID: 29578208
  51. Tan ELC, Ooi EE, Lin CY, et al. Inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs. Emerg Infect Dis 2004; 10(4): 581-6. doi: 10.3201/eid1004.030458 PMID: 15200845
  52. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 1998; 64(4): 353-6. doi: 10.1055/s-2006-957450 PMID: 9619120
  53. Kumar G, Kumar D, Singh NP, Therapeutic approach against 2019-nCoV by inhibition of ACE-2 receptor. Drug Res 2021; 71: 213-17. doi: 10.1055/a-1275-0228 PMID: 33184809
  54. Song JM. Anti-infective potential of catechins and their derivatives against viral hepatitis. Clin Exp Vaccine Res 2018; 7(1): 37-42. doi: 10.7774/cevr.2018.7.1.37 PMID: 29399578
  55. Shinojima N, Yokoyama T, Kondo Y, Kondo S. Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy 2007; 3(6): 635-7. doi: 10.4161/auto.4916 PMID: 17786026
  56. Patil VM, Das S, Balasubramanian K. Quantum chemical and docking insights into bioavailability enhancement of curcumin by piperine in pepper. J Phys Chem A 2016; 120(20): 3643-53. doi: 10.1021/acs.jpca.6b01434 PMID: 27111639

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024