Scope and Application of Hot Melt Extrusion in the Development of Controlled and Sustained Release Drug Delivery Systems


如何引用文章

全文:

详细


Controlled-release drug delivery systems (CRDDS) are more beneficial than conventional immediate release (IRDDS) for reduced intake, prolonged duration of action, lesser adverse effects, higher bioavailability, etc. The preparation of CRDDS is more complex than IRDDS. The hot melt extrusion (HME) technique is used for developing amorphous solid dispersion of poorly water soluble drugs to improve their dissolution rate and oral bioavailability. HME can be employed to develop CRDDS. Sustained release delivery systems (SRDDS), usually given orally, can also be developed using HME. This technique has the advantages of using no organic solvent, converting crystalline drugs to amorphous, improving bioavailability, etc. However, the heat sensitivity of drugs, miscibility between drug-polymer, and the availability of a few polymers are some of the challenges HME faces in developing CRDDS and SRDDS. The selection of a suitable polymer and the optimization of the process with the help of the QbD principle are two important aspects of the successful application of HME. In this review, strategies to prepare SRDDS and CRDDS using HME are discussed with its applications in research.

作者简介

Parth Joshi

Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management,, SVKM's NMIMS,

Email: info@benthamscience.net

G.S.N. Rao

Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS

Email: info@benthamscience.net

Bappaditya Chatterjee

School of Pharmacy, GITAM (Deemed to be University)

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today 2007; 12(23-24): 1068-75. doi: 10.1016/j.drudis.2007.09.005 PMID: 18061887
  2. Tekade AR, Yadav JN. A review on solid dispersion and carriers used therein for solubility enhancement of poorly water soluble drugs. Adv Pharm Bull 2020; 10(3): 359-69. doi: 10.34172/apb.2020.044 PMID: 32665894
  3. Schittny A, Huwyler J, Puchkov M. Mechanisms of increased bioavailability through amorphous solid dispersions: A review. Drug Deliv 2020; 27(1): 110-27. doi: 10.1080/10717544.2019.1704940 PMID: 31885288
  4. Nikam VK, Shete SK, Khapare JP. Most promising solid dispersion technique of oral dispersible tablet. Beni Suef Univ J Basic Appl Sci 2020; 9(1): 62. doi: 10.1186/s43088-020-00086-4
  5. Malkawi R, Malkawi WI, Al-Mahmoud Y, Tawalbeh J. Current trends on solid dispersions: Past, present, and future. Adv Pharmacol Pharm Sci 2022; 2022: 5916013.
  6. Ziaee A, O’Dea S, Howard-Hildige A, et al. Amorphous solid dispersion of ibuprofen: A comparative study on the effect of solution based techniques. Int J Pharm 2019; 572: 118816. doi: 10.1016/j.ijpharm.2019.118816 PMID: 31678527
  7. Mustafa WW, Fletcher J, Khoder M, Alany RG. Solid dispersions of gefitinib prepared by spray drying with improved mucoadhesive and drug dissolution properties. AAPS PharmSciTech 2022; 23(1): 48. doi: 10.1208/s12249-021-02187-4 PMID: 34984564
  8. Dabhade D, Wadher K, Bute S, Naidu N, Umekar M, Anantwar S. Preparation and characterization of artemether solid dispersion by spray drying technique. J Drug Deliv Ther 2021; 11(2): 1-5. doi: 10.22270/jddt.v11i2.4557
  9. Zaini E, Fitriani L, Haqi A. Preparation and characterization of solid dispersion freeze-dried efavirenz - polyvinylpyrrolidone K-30. J Adv Pharm Technol Res 2016; 7(3): 105-9. doi: 10.4103/2231-4040.184592 PMID: 27429930
  10. Ansari MT, Hussain A, Nadeem S, et al. Preparation and characterization of solid dispersions of artemether by freeze-dried method. BioMed Res Int 2015; 2015: 1-11. doi: 10.1155/2015/109563 PMID: 26097842
  11. Ren Y, Mei L, Zhou L, Guo G. Recent perspectives in hot melt extrusion-based polymeric formulations for drug delivery: Applications and innovations. AAPS PharmSciTech 2019; 20(3): 92. doi: 10.1208/s12249-019-1300-8 PMID: 30690659
  12. Paczkowska-Walendowska M, Miklaszewski A, Szymanowska D, Skalicka-Woźniak K, Cielecka-Piontek J. Hot melt extrusion as an effective process in the development of mucoadhesive tablets containing Scutellariae baicalensis radix extract and chitosan dedicated to the treatment of oral infections. Int J Mol Sci 2023; 24(6): 5834. doi: 10.3390/ijms24065834 PMID: 36982908
  13. Lang B, McGinity JW, Williams RO III. Dissolution enhancement of itraconazole by hot-melt extrusion alone and the combination of hot-melt extrusion and rapid freezing-effect of formulation and processing variables. Mol Pharm 2014; 11(1): 186-96. doi: 10.1021/mp4003706 PMID: 24283890
  14. Narala S, Komanduri N, Nyavanandi D, et al. Hard gelatin capsules containing hot melt extruded solid crystal suspension of carbamazepine for improving dissolution: Preparation and in vitro evaluation. J Drug Deliv Sci Technol 2023; 82: 104384. doi: 10.1016/j.jddst.2023.104384 PMID: 37124158
  15. Narala S, Nyavanandi D, Mandati P, et al. Preparation and in vitro evaluation of hot-melt extruded pectin-based pellets containing ketoprofen for colon targeting. Int J Pharm 2023; 5: 100156. doi: 10.1016/j.ijpx.2022.100156 PMID: 36636366
  16. Koutsamanis I, Roblegg E, Spoerk M. Controlled delivery via hot-melt extrusion: A focus on non-biodegradable carriers for non-oral applications. J Drug Deliv Sci Technol 2023; 81: 104289. doi: 10.1016/j.jddst.2023.104289
  17. Tambe S, Jain D, Agarwal Y, Amin P. Hot-melt extrusion: Highlighting recent advances in pharmaceutical applications. J Drug Deliv Sci Technol 2021; 63: 102452. doi: 10.1016/j.jddst.2021.102452
  18. Moseson DE, Eren A, Altman KJ, et al. Optimization of amorphization kinetics during hot melt extrusion by particle engineering: An experimental and computational study. Cryst Growth Des 2022; 22(1): 821-41. doi: 10.1021/acs.cgd.1c01306
  19. Vo AQ, Feng X, Morott JT, et al. A novel floating controlled release drug delivery system prepared by hot-melt extrusion. Eur J Pharm Biopharm 2016; 98: 108-21. doi: 10.1016/j.ejpb.2015.11.015 PMID: 26643801
  20. Bezerra GSN, de Lima TAM, Colbert DM, Geever J, Geever L. Formulation and evaluation of fenbendazole extended-release extrudes processed by hot-melt extrusion. Polymers 2022; 14(19): 4188. doi: 10.3390/polym14194188 PMID: 36236135
  21. Muhindo D, Ashour EA, Almutairi M, Repka MA. Development and evaluation of raloxifene hydrochloride-loaded subdermal implants using hot-melt extrusion technology. Int J Pharm 2022; 622: 121834. doi: 10.1016/j.ijpharm.2022.121834 PMID: 35597391
  22. Zhang S, Meng X, Wang Z, et al. Engineering hot-melt extruded solid dispersion for controlled release of hydrophilic drugs. Eur J Pharm Sci 2017; 100: 109-15. doi: 10.1016/j.ejps.2017.01.009 PMID: 28087352
  23. Simões MF, Pinto RMA, Simões S. Hot-melt extrusion: A roadmap for product development. AAPS PharmSciTech 2021; 22(5): 184. doi: 10.1208/s12249-021-02017-7 PMID: 34142250
  24. Patil H, Tiwari RV, Repka MA. Hot-melt extrusion: From theory to application in pharmaceutical formulation. AAPS PharmSciTech 2016; 17(1): 20-42. doi: 10.1208/s12249-015-0360-7 PMID: 26159653
  25. Deshkar S, Rathi M, Zambad S, Gandhi K. Hot melt extrusion and its application in 3d printing of pharmaceuticals. Curr Drug Deliv 2021; 18(4): 387-407. doi: 10.2174/1567201817999201110193655 PMID: 33176646
  26. Li S, Tian Y, Jones DS, Andrews GP. Optimising drug solubilisation in amorphous polymer dispersions: Rational selection of hot-melt extrusion processing parameters. AAPS PharmSciTech 2016; 17(1): 200-13. doi: 10.1208/s12249-015-0450-6 PMID: 26729536
  27. Schittny A, Ogawa H, Huwyler J, Puchkov M. A combined mathematical model linking the formation of amorphous solid dispersions with hot-melt-extrusion process parameters. Eur J Pharm Biopharm 2018; 132: 127-45. doi: 10.1016/j.ejpb.2018.09.011 PMID: 30240820
  28. Alshetaili A, Alshahrani SM, Almutairy BK, Repka MA. Hot melt extrusion processing parameters optimization. Processes 2020; 8(11): 1516. doi: 10.3390/pr8111516
  29. Matić J, Paudel A, Bauer H, Garcia RAL, Biedrzycka K, Khinast JG. Developing HME-based drug products using emerging science: A fast-track roadmap from concept to clinical batch. AAPS PharmSciTech 2020; 21(5): 176. doi: 10.1208/s12249-020-01713-0 PMID: 32572701
  30. Maniruzzaman M, Nokhodchi A. Continuous manufacturing via hot-melt extrusion and scale up: Regulatory matters. Drug Discov Today 2017; 22(2): 340-51. doi: 10.1016/j.drudis.2016.11.007 PMID: 27866007
  31. Adepu S, Ramakrishna S. Controlled drug delivery systems: Current status and future directions. Molecules 2021; 26(19): 5905. doi: 10.3390/molecules26195905 PMID: 34641447
  32. Sawant KP, Fule R, Maniruzzaman M, Amin PD. Extended release delivery system of metoprolol succinate using hot-melt extrusion: Effect of release modifier on methacrylic acid copolymer. Drug Deliv Transl Res 2018; 8(6): 1679-93. doi: 10.1007/s13346-018-0545-1 PMID: 29948916
  33. Alshetaili A, Almutairy BK, Alshehri SM, Repka MA. Development and characterization of sustained-released donepezil hydrochloride solid dispersions using hot melt extrusion technology. Pharmaceutics 2021; 13(2): 213. doi: 10.3390/pharmaceutics13020213 PMID: 33557076
  34. Yang Y, Shen L, Li J, Shan W. Preparation and evaluation of metoprolol tartrate sustained-release pellets using hot melt extrusion combined with hot melt coating. Drug Dev Ind Pharm 2017; 43(6): 939-46. doi: 10.1080/03639045.2017.1287715 PMID: 28128647
  35. Balogh A, Farkas B, Domokos A, et al. Controlled-release solid dispersions of Eudragit®FS 100 and poorly soluble spironolactone prepared by electrospinning and melt extrusion. Eur Polym J 2017; 95: 406-17. doi: 10.1016/j.eurpolymj.2017.08.032
  36. Qi S, Gryczke A, Belton P, Craig DQM. Characterisation of solid dispersions of paracetamol and EUDRAGIT®E prepared by hot-melt extrusion using thermal, microthermal and spectroscopic analysis. Int J Pharm 2008; 354(1-2): 158-67. doi: 10.1016/j.ijpharm.2007.11.048 PMID: 18242020
  37. Li Q, Wen H, Jia D, et al. Preparation and investigation of controlled-release glipizide novel oral device with three-dimensional printing. Int J Pharm 2017; 525(1): 5-11. doi: 10.1016/j.ijpharm.2017.03.066 PMID: 28377316
  38. Yi S, Wang J, Lu Y, et al. Novel hot melt extruded matrices of hydroxypropyl cellulose and amorphous felodipine-plasticized hydroxypropyl methylcellulose as controlled release systems. AAPS PharmSciTech 2019; 20(6): 219. doi: 10.1208/s12249-019-1435-7 PMID: 31201583
  39. Kachrimanis K, Nikolakakis I. Polymers as formulation excipients for hot-melt extrusion processing of pharmaceuticals. Handbook of Polymers for Pharmaceutical Technologies. (1st ed.). Wiley 2015; pp. 121-49. doi: 10.1002/9781119041412.ch5
  40. dos Santos J, da Silva GS, Velho MC, Beck RCR. Eudragit®: A versatile family of polymers for hot melt extrusion and 3d printing processes in pharmaceutics. Pharmaceutics 2021; 13(9): 1424. doi: 10.3390/pharmaceutics13091424 PMID: 34575500
  41. Kaur G, Grewal J, Jyoti K, Jain UK, Chandra R, Madan J. Oral controlled and sustained drug delivery systems. Drug Targeting and Stimuli Sensitive Drug Delivery Systems. Elsevier 2018; pp. 567-626. doi: 10.1016/B978-0-12-813689-8.00015-X
  42. Owusu-Ware SK, Boateng JS, Chowdhry BZ, Antonijevic MD. Glassy state molecular mobility and its relationship to the physico-mechanical properties of plasticized hydroxypropyl methylcellulose (HPMC) films. Int J Pharm X 2019; 1: 100033. doi: 10.1016/j.ijpx.2019.100033 PMID: 31528853
  43. Fan W, Zhang X, Zhu W, Di L. The preparation of curcumin sustained-release solid dispersion by hot-melt extrusioni II. Optimization of preparation process and evaluation in vitro and in vivo. J Pharm Sci 2020; 109(3): 1253-60. doi: 10.1016/j.xphs.2019.11.020 PMID: 31794699
  44. Zhu W, Fan W, Zhang X, Gao M. Sustained-release solid dispersion of high-melting-point and insoluble resveratrol prepared through hot melt extrusion to improve its solubility and bioavailability. Molecules 2021; 26(16): 4982. doi: 10.3390/molecules26164982 PMID: 34443569
  45. Lu J, Obara S, Liu F, Fu W, Zhang W, Kikuchi S. Melt extrusion for a high melting point compound with improved solubility and sustained release. AAPS PharmSciTech 2018; 19(1): 358-70. doi: 10.1208/s12249-017-0846-6 PMID: 28741140
  46. Ijaz QA, Latif S, Shoaib Q, et al. Preparation and characterization of ph-independent sustained-release tablets containing hot melt extruded solid dispersions of clarithromycin. AAPS PharmSciTech 2021; 22(8): 275. doi: 10.1208/s12249-021-02115-6 PMID: 34773162
  47. Song Y, Wang L, Yang P, et al. Physicochemical characterization of felodipine-kollidon VA64 amorphous solid dispersions prepared by hot-melt extrusion. J Pharm Sci 2013; 102(6): 1915-23. doi: 10.1002/jps.23538 PMID: 23580396
  48. Stewart S, Domínguez-Robles J, Donnelly R, Larrañeta E. Implantable polymeric drug delivery devices: Classification, manufacture, materials, and clinical applications. Polymers 2018; 10(12): 1379. doi: 10.3390/polym10121379 PMID: 30961303
  49. Pons-Faudoa FP, Ballerini A, Sakamoto J, Grattoni A. Advanced implantable drug delivery technologies: Transforming the clinical landscape of therapeutics for chronic diseases. Biomed Microdevices 2019; 21(2): 47. doi: 10.1007/s10544-019-0389-6 PMID: 31104136
  50. Noreen S, Maqbool I, Madni A. Dexamethasone: Therapeutic potential, risks, and future projection during COVID-19 pandemic. Eur J Pharmacol 2021; 894: 173854. doi: 10.1016/j.ejphar.2021.173854 PMID: 33428898
  51. Li D, Guo G, Fan R, et al. PLA/F68/Dexamethasone implants prepared by hot-melt extrusion for controlled release of anti-inflammatory drug to implantable medical devices: I. Preparation, characterization and hydrolytic degradation study. Int J Pharm 2013; 441(1-2): 365-72. doi: 10.1016/j.ijpharm.2012.11.019 PMID: 23178216
  52. Cossé A, König C, Lamprecht A, Wagner KG. Hot melt extrusion for sustained protein release: Matrix erosion and in vitro release of PLGA-based implants. AAPS PharmSciTech 2017; 18(1): 15-26. doi: 10.1208/s12249-016-0548-5 PMID: 27193002
  53. Tran PHL, Tran TTD, Park JB, Lee BJ. Controlled release systems containing solid dispersions: Strategies and mechanisms. Pharm Res 2011; 28(10): 2353-78. doi: 10.1007/s11095-011-0449-y PMID: 21553168
  54. Maincent J, Williams RO. Sustained-release amorphous solid dispersions. Drug Deliv Transl Res 2018; 8(6): 1714-25. doi: 10.1007/s13346-018-0494-8 PMID: 29498004
  55. Thakral S, Thakral NK. Prediction of drug-polymer miscibility through the use of solubility parameter based Flory-Huggins interaction parameter and the experimental validation: PEG as model polymer. J Pharm Sci 2013; 102(7): 2254-63. doi: 10.1002/jps.23583 PMID: 23649486
  56. Alshahrani SM, Lu W, Park JB, et al. Stability-enhanced hot-melt extruded amorphous solid dispersions via combinations of Soluplus® and HPMCAS-HF. AAPS PharmSciTech 2015; 16(4): 824-34. doi: 10.1208/s12249-014-0269-6 PMID: 25567525
  57. Samsoen S, Dudognon É, Le Fer G, Fournier D, Woisel P, Affouard F. Impact of the polymer dispersity on the properties of curcumin/polyvinylpyrrolidone amorphous solid dispersions. Int J Pharm 2024; 653: 123895. doi: 10.1016/j.ijpharm.2024.123895 PMID: 38346598

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024