The Effects of Nicotine and Cannabinoids on Cytokines


Cite item

Full Text

Abstract

Background:The usage of nicotine and cannabinoids has rapidly grown in popularity, leading to increased research into how they can affect people’s health, both positively and negatively. Nicotine, Cannabidiol (CBD), and Δ9-tetrahydrocannabinol (THC) have been shown to have significant effects on cytokine function and inflammatory response.

Objective:This study aimed to review and summarize the current literature on the effects of nicotine and cannabinoids on cytokines, including interleukins, TNF, IFN, and TGF-β.

Methods:Literature search was conducted on Medline/PubMed electronic databases utilizing the search terms "nicotine" OR "cannabis" OR "cannabinoids" AND "cytokine" AND "inflammation" AND "stress" AND "immune" from 11/1973 to 02/2024.

Results:THC and CBD usage have been associated with conflicting impacts on immune response, and observed to both exacerbate and inhibit inflammation. Nicotine has been shown to be generally proinflammatory with regards to cytokines. These responses have been reported to have significant effects on bodily response to inflammation-related diseases. Nicotine usage is associated with worsened outcomes for some conditions, like chronic pain, but improved outcomes for others, like arthritis. The impacts of cannabinoid usage tend to be more positive, exerting anti-inflammatory effects across a wide range of diseases. Given the widespread usage of these substances, it is important to understand the nature of their consequences on immune functions and the underlying mechanisms by which they act.

Conclusion:This review has covered how cannabinoids and nicotine affect inflammation directly and how these effects can be attributed to the treatment of inflammatory diseases. In summary, the existing research studying the effects of cannabinoids and nicotine supports the major relationship between nicotine and cannabis use and inflammatory diseases.

About the authors

Grace Miller

Department of Pharmacology Toxicology, University at Buffalo, State University of New York

Email: info@benthamscience.net

Ojas Pareek

Department of Pharmacology Toxicology, University at Buffalo, State University of New York

Email: info@benthamscience.net

Samantha Penman

Department of Pharmacology Toxicology, University at Buffalo, State University of New York

Email: info@benthamscience.net

Panayotis Thanos

Department of Pharmacology Toxicology, University at Buffalo, State University of New York

Author for correspondence.
Email: info@benthamscience.net

References

  1. Mlost J, Bryk M, Starowicz K. Cannabidiol for pain treatment: focus on pharmacology and mechanism of action. Int J Mol Sci 2020; 21(22): 8870. doi: 10.3390/ijms21228870 PMID: 33238607
  2. Lafaye G, Karila L, Blecha L, Benyamina A. Cannabis, cannabinoids, and health. Dialogues Clin Neurosci 2017; 19(3): 309-16. doi: 10.31887/DCNS.2017.19.3/glafaye PMID: 29302228
  3. Croxford JL, Yamamura T. Cannabinoids and the immune system: Potential for the treatment of inflammatory diseases? J Neuroimmunol 2005; 166(1-2): 3-18. doi: 10.1016/j.jneuroim.2005.04.023 PMID: 16023222
  4. Nagarkatti P, Pandey R, Rieder SA, Hegde VL, Nagarkatti M. Cannabinoids as novel anti-inflammatory drugs. Future Med Chem 2009; 1(7): 1333-49. doi: 10.4155/fmc.09.93 PMID: 20191092
  5. Katchan V, David P, Shoenfeld Y. Cannabinoids and autoimmune diseases: A systematic review. Autoimmun Rev 2016; 15(6): 513-28. doi: 10.1016/j.autrev.2016.02.008 PMID: 26876387
  6. Suryavanshi SV, Kovalchuk I, Kovalchuk O. Cannabinoids as key regulators of inflammasome signaling: A current perspective. Front Immunol 2021; 11: 613613. doi: 10.3389/fimmu.2020.613613 PMID: 33584697
  7. Widysanto A, Combest FE, Dhakal A, Saadabadi A. Nicotine addiction. Treasure Island, FL: StatPearls 2023.
  8. Dratcu L, Boland X. Does nicotine prevent cytokine storms in COVID-19? Cureus 2020; 12(10): e11220.
  9. Tirgan N, Kulp GA, Gupta P, et al. Nicotine exposure exacerbates development of cataracts in a type 1 diabetic rat model. Exp Diabetes Res 2012; 2012: 1-7. doi: 10.1155/2012/349320 PMID: 23049540
  10. Cohen K, Weizman A, Weinstein A. Positive and negative effects of cannabis and cannabinoids on health. Clin Pharmacol Ther 2019; 105(5): 1139-47. doi: 10.1002/cpt.1381 PMID: 30703255
  11. Ross JA, Levy S. The Impact of cannabis use on adolescent neurodevelopment and clinical outcomes amidst changing state policies. Clin Ther 2023; 45(6): 535-40. doi: 10.1016/j.clinthera.2023.03.009 PMID: 37414504
  12. Sheth P, Mehta F, Jangid G, et al. The rising use of e-cigarettes: Unveiling the health risks and controversies. Cardiol Rev 2024. doi: 10.1097/CRD.0000000000000666 PMID: 38385663
  13. Fagerström K. Nicotine: Pharmacology, toxicity and therapeutic use. J Smok Cessat 2014; 9(2): 53-9. doi: 10.1017/jsc.2014.27
  14. Benowitz NL, Hukkanen J, Jacob P III. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol 2009; 192(192): 29-60. doi: 10.1007/978-3-540-69248-5_2 PMID: 19184645
  15. Osgoei TL, Parivar K, Ebrahimi M, Mortaz E. Nicotine modulates the release of inflammatory cytokines and expression of TLR2, TLR4 of cord blood mononuclear cells. Iran J Allergy Asthma Immunol 2018; 17(4): 372-8. doi: 10.18502/ijaai.v17i4.96 PMID: 30537800
  16. Paramo PYX, Chen G, Ashmore JH, et al. Nicotine-n′-oxidation by flavin monooxygenase enzymes. Cancer Epidemiol Biomarkers Prev 2019; 28(2): 311-20. doi: 10.1158/1055-9965.EPI-18-0669 PMID: 30381441
  17. Benowitz NL. Pharmacology of nicotine: Addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol 2009; 49(1): 57-71. doi: 10.1146/annurev.pharmtox.48.113006.094742 PMID: 18834313
  18. Ho TNT, Abraham N, Lewis RJ. Structure-function of neuronal nicotinic acetylcholine receptor inhibitors derived from natural toxins. Front Neurosci 2020; 14: 609005. doi: 10.3389/fnins.2020.609005 PMID: 33324158
  19. Lloyd GK, Williams M. Neuronal nicotinic acetylcholine receptors as novel drug targets. J Pharmacol Exp Ther 2000; 292(2): 461-7. PMID: 10640281
  20. Miyazawa A, Fujiyoshi Y, Unwin N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 2003; 423(6943): 949-55. doi: 10.1038/nature01748 PMID: 12827192
  21. Wang D, Zhou R, Yao Y, et al. Stimulation of α7 nicotinic acetylcholine receptor by nicotine increases suppressive capacity of naturally occurring CD4+CD25+ regulatory T cells in mice in vitro. J Pharmacol Exp Ther 2010; 335(3): 553-61. doi: 10.1124/jpet.110.169961 PMID: 20843956
  22. Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 2003; 421(6921): 384-8. doi: 10.1038/nature01339 PMID: 12508119
  23. De Rosa MJ, Esandi MC, Garelli A, Rayes D, Bouzat C. Relationship between α7 nAChR and apoptosis in human lymphocytes. J Neuroimmunol 2005; 160(1-2): 154-61. doi: 10.1016/j.jneuroim.2004.11.010 PMID: 15710468
  24. Saeed RW, Varma S, Nemeroff PT, et al. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J Exp Med 2005; 201(7): 1113-23. doi: 10.1084/jem.20040463 PMID: 15809354
  25. De Biasi M, Dani JA. Reward, addiction, withdrawal to nicotine. Annu Rev Neurosci 2011; 34(1): 105-30. doi: 10.1146/annurev-neuro-061010-113734 PMID: 21438686
  26. Grenhoff J, Jones AG, Svensson TH. Nicotinic effects on the firing pattern of midbrain dopamine neurons. Acta Physiol Scand 1986; 128(3): 351-8. doi: 10.1111/j.1748-1716.1986.tb07988.x PMID: 3788613
  27. Imperato A, Mulas A, Di Chiara G. Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. Eur J Pharmacol 1986; 132(2-3): 337-8. doi: 10.1016/0014-2999(86)90629-1 PMID: 3816984
  28. Engvall MM, Evrard A, Pons S, et al. Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors. Neuron 2006; 50(6): 911-21. doi: 10.1016/j.neuron.2006.05.007 PMID: 16772172
  29. Pons S, Fattore L, Cossu G, et al. Crucial role of alpha4 and alpha6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration. J Neurosci 2008; 28(47): 12318-27. doi: 10.1523/JNEUROSCI.3918-08.2008 PMID: 19020025
  30. Zhang T, Zhang L, Liang Y, Siapas AG, Zhou FM, Dani JA. Dopamine signaling differences in the nucleus accumbens and dorsal striatum exploited by nicotine. J Neurosci 2009; 29(13): 4035-43. doi: 10.1523/JNEUROSCI.0261-09.2009 PMID: 19339599
  31. Williamson EM, Evans FJ. Cannabinoids in clinical practice. Drugs 2000; 60(6): 1303-14. doi: 10.2165/00003495-200060060-00005 PMID: 11152013
  32. Cooper ZD, Haney M. Actions of delta-9-tetrahydrocannabinol in cannabis: Relation to use, abuse, dependence. Int Rev Psychiatry 2009; 21(2): 104-12. doi: 10.1080/09540260902782752 PMID: 19367504
  33. Mechoulam R, Parker LA. The endocannabinoid system and the brain. Annu Rev Psychol 2013; 64(1): 21-47. doi: 10.1146/annurev-psych-113011-143739 PMID: 22804774
  34. Grotenhermen F. Pharmacokinetics and pharmacodynamics of cannabinoids. Clin Pharmacokinet 2003; 42(4): 327-60. doi: 10.2165/00003088-200342040-00003 PMID: 12648025
  35. Tanda G, Pontieri FE, Chiara GD. Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 1997; 276(5321): 2048-50. doi: 10.1126/science.276.5321.2048 PMID: 9197269
  36. Bossong MG, van Berckel BNM, Boellaard R, et al. Delta 9-tetrahydrocannabinol induces dopamine release in the human striatum. Neuropsychopharmacology 2009; 34(3): 759-66. doi: 10.1038/npp.2008.138 PMID: 18754005
  37. Barkus E, Morrison PD, Vuletic D, et al. Does intravenous Δ9-tetrahydrocannabinol increase dopamine release? A SPET study. J Psychopharmacol 2011; 25(11): 1462-8. doi: 10.1177/0269881110382465 PMID: 20851843
  38. van Hell HH, Jager G, Bossong MG, et al. Involvement of the endocannabinoid system in reward processing in the human brain. Psychopharmacology 2012; 219(4): 981-90. doi: 10.1007/s00213-011-2428-8 PMID: 21822593
  39. Grotenhermen F, Vahl MK. The therapeutic potential of cannabis and cannabinoids. Dtsch Arztebl Int 2012; 109(29-30): 495-501. doi: 10.3238/arztebl.2012.0495 PMID: 23008748
  40. Starowicz K, Finn DP. Chapter Thirteen - Cannabinoids and Pain: Sites and Mechanisms of Action. Advances in Pharmacology 80. Academic Press 2017; 437-75.
  41. Sofia RD, Knobloch LC, Vassar HB. The anti-edema activity of various naturally occurring cannabinoids. Res Commun Chem Pathol Pharmacol 1973; 6(3): 909-18. PMID: 4760897
  42. Sofia DR, Nalepa SD, Vassar HB, Knobloch LC. Comparative anti-phlogistic activity of Δ9-tetrahydrocannabinol, hydrocortisone and aspirin in various rat paw edema models. Life Sci 1974; 15(2): 251-60. doi: 10.1016/0024-3205(74)90214-8 PMID: 4549916
  43. Wirth PW, Watson SE, ElSohly M, Turner CE, Murphy JC. Anti-inflammatory properties of cannabichromene. Life Sci 1980; 26(23): 1991-5. doi: 10.1016/0024-3205(80)90631-1 PMID: 7401911
  44. Wirth PW, Watson ES, Elsohly MA, Seidel R, Murphy JC, Turner CE. Anti-inflammatory activity of cannabichromene homologs. J Pharm Sci 1980; 69(11): 1359-60. doi: 10.1002/jps.2600691136 PMID: 7452475
  45. Turner C, Elsohly MA. Biological activity of cannabichromene, its homologs and isomers. J Clin Pharmacol 1981; 21(S1): 283S-91S. doi: 10.1002/j.1552-4604.1981.tb02606.x PMID: 7298870
  46. Mechoulam R, Parker LA, Gallily R. Cannabidiol: An overview of some pharmacological aspects. J Clin Pharmacol 2002; 42(S1): 11S-9S. doi: 10.1002/j.1552-4604.2002.tb05998.x PMID: 12412831
  47. Schubart CD, Sommer IEC, Poli FP, de Witte L, Kahn RS, Boks MPM. Cannabidiol as a potential treatment for psychosis. Eur Neuropsychopharmacol 2014; 24(1): 51-64. doi: 10.1016/j.euroneuro.2013.11.002 PMID: 24309088
  48. Skelley JW, Deas CM, Curren Z, Ennis J. Use of cannabidiol in anxiety and anxiety-related disorders. J Am Pharm Assoc 2020; 60(1): 253-61. doi: 10.1016/j.japh.2019.11.008 PMID: 31866386
  49. Zuardi AW, Shirakawa I, Finkelfarb E, Karniol IG. Action of cannabidiol on the anxiety and other effects produced by? 9-THC in normal subjects. Psychopharmacology 1982; 76(3): 245-50. doi: 10.1007/BF00432554 PMID: 6285406
  50. Sales AJ, Fogaça MV, Sartim AG, et al. Cannabidiol induces rapid and sustained antidepressant-like effects through increased BDNF signaling and synaptogenesis in the prefrontal cortex. Mol Neurobiol 2019; 56(2): 1070-81. doi: 10.1007/s12035-018-1143-4 PMID: 29869197
  51. Osborne AL, Solowij N, Babic I, Huang XF, Green WK. Improved social interaction, recognition and working memory with cannabidiol treatment in a prenatal infection (poly I:C) rat model. Neuropsychopharmacology 2017; 42(7): 1447-57. doi: 10.1038/npp.2017.40 PMID: 28230072
  52. Gutiérrez GMS, Navarrete F, Gasparyan A, Olivares AA, Sala F, Manzanares J. Cannabidiol: A potential new alternative for the treatment of anxiety, depression, and psychotic disorders. Biomolecules 2020; 10(11): 1575. doi: 10.3390/biom10111575 PMID: 33228239
  53. Pertwee RG. Pharmacological Actions of Cannabinoids Cannabinoids. Berlin, Heidelberg: Springer Berlin Heidelberg 2005; pp. 1-51. doi: 10.1007/3-540-26573-2_1
  54. Amar BM. Cannabinoids in medicine: A review of their therapeutic potential. J Ethnopharmacol 2006; 105(1-2): 1-25. doi: 10.1016/j.jep.2006.02.001 PMID: 16540272
  55. Izzo AA, Borrelli F, Capasso R, Di Marzo V, Mechoulam R. Non-psychotropic plant cannabinoids: New therapeutic opportunities from an ancient herb. Trends Pharmacol Sci 2009; 30(10): 515-27. doi: 10.1016/j.tips.2009.07.006
  56. Maione S, Costa B, Di Marzo V. Endocannabinoids: A unique opportunity to develop multitarget analgesics. Pain 2013; 154(S1): S87-93. doi: 10.1016/j.pain.2013.03.023 PMID: 23623250
  57. Philpott HT, O’Brien M, McDougall JJ. Attenuation of early phase inflammation by cannabidiol prevents pain and nerve damage in rat osteoarthritis. Pain 2017; 158(12): 2442-51. doi: 10.1097/j.pain.0000000000001052 PMID: 28885454
  58. Wong H, Cairns BE. Cannabidiol, cannabinol and their combinations act as peripheral analgesics in a rat model of myofascial pain. Arch Oral Biol 2019; 104: 33-9. doi: 10.1016/j.archoralbio.2019.05.028 PMID: 31158702
  59. Cabrera RCL, Rudman KS, Horniman N, Clarkson N, Page C. The anti-inflammatory effects of cannabidiol and cannabigerol alone, and in combination. Pulm Pharmacol Ther 2021; 69: 102047. doi: 10.1016/j.pupt.2021.102047 PMID: 34082108
  60. Miller RJ, Miller RE. Is cannabis an effective treatment for joint pain? Clin Exp Rheumatol 2017; 107(5): 59-67.
  61. Malfait AM, Gallily R, Sumariwalla PF, et al. The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Proc Natl Acad Sci 2000; 97(17): 9561-6. doi: 10.1073/pnas.160105897
  62. Burstein S. Cannabidiol (CBD) and its analogs: A review of their effects on inflammation. Bioorg Med Chem 2015; 23(7): 1377-85. doi: 10.1016/j.bmc.2015.01.059 PMID: 25703248
  63. Arout CA, Haney M, Herrmann ES, Bedi G, Cooper ZD. The dose‐dependent analgesic effects, abuse liability, safety and tolerability of oral cannabidiol in healthy humans. Br J Clin Pharmacol 2021.
  64. Lu HC, Mackie K. An introduction to the endogenous cannabinoid system. Biol Psychiatry 2016; 79(7): 516-25. doi: 10.1016/j.biopsych.2015.07.028 PMID: 26698193
  65. Pandey R, Mousawy K, Nagarkatti M, Nagarkatti P. Endocannabinoids and immune regulation. Pharmacol Res 2009; 60(2): 85-92. doi: 10.1016/j.phrs.2009.03.019 PMID: 19428268
  66. Di Marzo V, De Petrocellis L, Sepe N, Buono A. Biosynthesis of anandamide and related acylethanolamides in mouse J774 macrophages and N18 neuroblastoma cells. Biochem J 1996; 316(3): 977-84. doi: 10.1042/bj3160977 PMID: 8670178
  67. Bisogno T, Maurelli S, Melck D, De Petrocellis L, Di Marzo V. Biosynthesis, uptake, and degradation of anandamide and palmitoylethanolamide in leukocytes. J Biol Chem 1997; 272(6): 3315-23. doi: 10.1074/jbc.272.6.3315 PMID: 9013571
  68. Pestonjamasp VK, Burstein SH. Anandamide synthesis is induced by arachidonate mobilizing agonists in cells of the immune system. Biochim Biophys Acta Lipids Lipid Metab 1998; 1394(2-3): 249-60. doi: 10.1016/S0005-2760(98)00110-6 PMID: 9795237
  69. Hillard CJ. Circulating endocannabinoids: From whence do they come and where are they going? Neuropsychopharmacology 2018; 43(1): 155-72. doi: 10.1038/npp.2017.130 PMID: 28653665
  70. Walter L, Franklin A, Witting A, et al. Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J Neurosci 2003; 23(4): 1398-405. doi: 10.1523/JNEUROSCI.23-04-01398.2003 PMID: 12598628
  71. Decara J, Rivera P, Gambero LAJ, et al. Peroxisome proliferator-activated receptors: Experimental targeting for the treatment of inflammatory bowel diseases. Front Pharmacol 2020; 11: 730. doi: 10.3389/fphar.2020.00730 PMID: 32536865
  72. Reggio P. Endocannabinoid binding to the cannabinoid receptors: What is known and what remains unknown. Curr Med Chem 2010; 17(14): 1468-86. doi: 10.2174/092986710790980005 PMID: 20166921
  73. Melville LK, Zhu YF, Sidhu J, et al. Evaluation of the preclinical analgesic efficacy of naturally derived, orally administered oil forms of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and their 1:1 combination. PloS one 2020; 15(6): e0234176.
  74. Tanasescu R, Constantinescu CS. Cannabinoids and the immune system: An overview. Immunobiology (1979) 2010; 215(8): 588-97.
  75. Lunn CA, Fine JS, Triana RA, et al. A novel cannabinoid peripheral cannabinoid receptor-selective inverse agonist blocks leukocyte recruitment in vivo. J Pharmacol Exp Ther 2006; 316(2): 780-8. doi: 10.1124/jpet.105.093500 PMID: 16258021
  76. Mageed ASS, Ammar RM, Nassar NN, Moawad H, Kamel AS. Role of PI3K/Akt axis in mitigating hippocampal ischemia-reperfusion injury via CB1 receptor stimulation by paracetamol and FAAH inhibitor in rat. Neuropharmacology 2022; 207: 108935. doi: 10.1016/j.neuropharm.2021.108935 PMID: 34968475
  77. Elmazoglu Z, López RE, Campos MON, et al. Cannabinoid-profiled agents improve cell survival via reduction of oxidative stress and inflammation, and Nrf2 activation in a toxic model combining hyperglycemia+Aβ1-42 peptide in rat hippocampal neurons. Neurochem Int 2020; 140: 104817. doi: 10.1016/j.neuint.2020.104817 PMID: 32781098
  78. Sireesh D, Dhamodharan U, Ezhilarasi K, Vijay V, Ramkumar KM. Association of NF-E2 related factor 2 (Nrf2) and inflammatory cytokines in recent onset type 2 diabetes mellitus. Sci Rep 2018; 8(1): 5126. doi: 10.1038/s41598-018-22913-6 PMID: 29572460
  79. Saha S, Buttari B, Panieri E, Profumo E, Saso L. An overview of Nrf2 signaling pathway and its role in inflammation. Molecules 2020; 25(22): 5474. doi: 10.3390/molecules25225474 PMID: 33238435
  80. Dinarello CA. Proinflammatory cytokines. Chest 2000; 118(2): 503-8. doi: 10.1378/chest.118.2.503 PMID: 10936147
  81. Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin 2007; 45(2): 27-37. doi: 10.1097/AIA.0b013e318034194e PMID: 17426506
  82. Dinarello CA. Historical insights into cytokines. Eur J Immunol 2007; 37(S1): S34-45. doi: 10.1002/eji.200737772 PMID: 17972343
  83. Opal SM, DePalo VA. Anti-inflammatory cytokines. Chest 2000; 117(4): 1162-72. doi: 10.1378/chest.117.4.1162 PMID: 10767254
  84. Munoz C, Carlet J, Fitting C, Misset B, Blériot JP, Cavaillon JM. Dysregulation of in vitro cytokine production by monocytes during sepsis. J Clin Invest 1991; 88(5): 1747-54. doi: 10.1172/JCI115493 PMID: 1939659
  85. Kasai T, Inada K, Takakuwa T, et al. Anti-inflammatory cytokine levels in patients with septic shock. Res Commun Mol Pathol Pharmacol 1997; 98(1): 34-42. PMID: 9434313
  86. Brocker C, Thompson D, Matsumoto A, Nebert DW, Vasiliou V. Evolutionary divergence and functions of the human interleukin (IL) gene family. Hum Genomics 2010; 5(1): 30-55. doi: 10.1186/1479-7364-5-1-30 PMID: 21106488
  87. Fields JK, Günther S, Sundberg EJ. Structural basis of IL-1 family cytokine signaling. Front Immunol 2019; 10: 1412. doi: 10.3389/fimmu.2019.01412 PMID: 31281320
  88. Lin JX, Leonard WJ. the common cytokine receptor γ chain family of cytokines. Cold Spring Harb Perspect Biol 2018; 10(9): a028449. doi: 10.1101/cshperspect.a028449 PMID: 29038115
  89. Gour N, Karp WM. IL-4 and IL-13 signaling in allergic airway disease. Cytokine 2015; 75(1): 68-78. doi: 10.1016/j.cyto.2015.05.014 PMID: 26070934
  90. Junttila IS. Tuning the cytokine responses: An update on interleukin (IL)-4 and IL-13 receptor complexes. Front Immunol 2018; 9: 888. doi: 10.3389/fimmu.2018.00888 PMID: 29930549
  91. Li X, Shao Y, Sha X, et al. IL-35 (Interleukin-35) suppresses endothelial cell activation by inhibiting mitochondrial reactive oxygen species-mediated site-specific acetylation of H3K14 (Histone 3 Lysine 14). Arterioscler Thromb Vasc Biol 2018; 38(3): 599-609. doi: 10.1161/ATVBAHA.117.310626 PMID: 29371247
  92. Iyer SS, Cheng G. role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol 2012; 32(1): 23-63.
  93. Huang KY, Hsu YH, Chen WY, et al. The roles of IL-19 and IL-20 in the inflammation of degenerative lumbar spondylolisthesis. J Inflamm 2018; 15(1): 19. doi: 10.1186/s12950-018-0195-6 PMID: 30250404
  94. Kingo K, Mössner R, Kõks S, et al. Association analysis of IL19, IL20 and IL24 genes in palmoplantar pustulosis. Br J Dermatol 2007; 156(4): 646-52. doi: 10.1111/j.1365-2133.2006.07731.x PMID: 17263806
  95. Hymowitz SG, Filvaroff EH, Yin JP, et al. IL-17s adopt a cystine knot fold: Structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO J 2001; 20(19): 5332-41. doi: 10.1093/emboj/20.19.5332 PMID: 11574464
  96. Milovanovic J, Arsenijevic A, Stojanovic B, et al. Interleukin-17 in chronic inflammatory neurological diseases. Front Immunol 2020; 11: 947. doi: 10.3389/fimmu.2020.00947 PMID: 32582147
  97. Li MO, Wan YY, Sanjabi S, Robertson AKL, Flavell RA. Transforming growth factor-β regulation of immune responses. Annu Rev Immunol 2006; 24(1): 99-146. doi: 10.1146/annurev.immunol.24.021605.090737 PMID: 16551245
  98. Oh SA, Li MO. TGF-β: Guardian of T cell function. J Immunol 2013; 191(8): 3973-9. doi: 10.4049/jimmunol.1301843 PMID: 24098055
  99. Travis MA, Sheppard D. TGF-β activation and function in immunity. Annu Rev Immunol 2014; 32(1): 51-82. doi: 10.1146/annurev-immunol-032713-120257 PMID: 24313777
  100. Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol 2012; 13(10): 616-30. doi: 10.1038/nrm3434 PMID: 22992590
  101. Prud’homme GJ. Pathobiology of transforming growth factor β in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab Invest 2007; 87(11): 1077-91. doi: 10.1038/labinvest.3700669 PMID: 17724448
  102. Li MO, Flavell RA. TGF-β: A master of all T cell trades. Cell 2008; 134(3): 392-404. doi: 10.1016/j.cell.2008.07.025 PMID: 18692464
  103. Cooper WO, Fava RA, Gates CA, Cremer MA, Townes AS. Acceleration of onset of collagen-induced arthritis by intra-articular injection of tumour necrosis factor or transforming growth factor-beta. Clin Exp Immunol 2008; 89(2): 244-50. doi: 10.1111/j.1365-2249.1992.tb06939.x PMID: 1638767
  104. Shevach EM, Thornton AM. tTregs, pTregs, and iTregs: Similarities and differences. Immunol Rev 2014; 259(1): 88-102. doi: 10.1111/imr.12160 PMID: 24712461
  105. Llorente L, Zou W, Levy Y, et al. Role of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of human systemic lupus erythematosus. J Exp Med 1995; 181(3): 839-44. doi: 10.1084/jem.181.3.839 PMID: 7869046
  106. Lee MS, Mueller R, Wicker LS, Peterson LB, Sarvetnick N. IL-10 is necessary and sufficient for autoimmune diabetes in conjunction with NOD MHC homozygosity. J Exp Med 1996; 183(6): 2663-8. doi: 10.1084/jem.183.6.2663 PMID: 8676087
  107. Ferreira VL, Borba H, Bonetti AF, Leonart LP, Pontarolo R, Eds. Cytokines and interferons: Types and functions autoantibodies and cytokines. IntechOpen 2018.
  108. Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon-gamma at the crossroads of tumor immune surveillance or Evasion. Front Immunol 2018; 9: 847. doi: 10.3389/fimmu.2018.00847 PMID: 29780381
  109. Ivanov II, Zhou L, Littman DR. Transcriptional regulation of Th17 cell differentiation. Semin Immunol 2007; 19(6): 409-17. doi: 10.1016/j.smim.2007.10.011 PMID: 18053739
  110. Bettelli E, Korn T, Oukka M, Kuchroo VK. Induction and effector functions of TH17 cells. Nature 2008; 453(7198): 1051-7. doi: 10.1038/nature07036 PMID: 18563156
  111. Feng G, Gao W, Strom TB, et al. Exogenous IFN‐γ ex vivo shapes the alloreactive T‐cell repertoire by inhibition of Th17 responses and generation of functional Foxp3 + regulatory T cells. Eur J Immunol 2008; 38(9): 2512-27. doi: 10.1002/eji.200838411 PMID: 18792404
  112. Peck A, Mellins ED. Plasticity of T‐cell phenotype and function: The T helper type 17 example. Immunology 2010; 129(2): 147-53. doi: 10.1111/j.1365-2567.2009.03189.x PMID: 19922424
  113. Moudgil KD, Choubey D. Cytokines in autoimmunity: Role in induction, regulation, and treatment. J Interferon Cytokine Res 2011; 31(10): 695-703. doi: 10.1089/jir.2011.0065 PMID: 21942420
  114. Stanifer ML, Guo C, Doldan P, Boulant S. Importance of type I and III interferons at respiratory and intestinal barrier surfaces. Front Immunol 2020; 11: 608645. doi: 10.3389/fimmu.2020.608645 PMID: 33362795
  115. Kotenko SV, Gallagher G, Baurin VV, et al. IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 2003; 4(1): 69-77. doi: 10.1038/ni875 PMID: 12483210
  116. Sheppard P, Kindsvogel W, Xu W, et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 2003; 4(1): 63-8. doi: 10.1038/ni873 PMID: 12469119
  117. Sommereyns C, Paul S, Staeheli P, Michiels T. IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog 2008; 4(3): e1000017. doi: 10.1371/journal.ppat.1000017 PMID: 18369468
  118. Mordstein M, Neugebauer E, Ditt V, et al. Lambda interferon renders epithelial cells of the respiratory and gastrointestinal tracts resistant to viral infections. J Virol 2010; 84(11): 5670-7. doi: 10.1128/JVI.00272-10 PMID: 20335250
  119. Pott J, Mahlakõiv T, Mordstein M, et al. IFN-λ determines the intestinal epithelial antiviral host defense. Proc Natl Acad Sci 2011; 108(19): 7944-9. doi: 10.1073/pnas.1100552108 PMID: 21518880
  120. Chu WM. Tumor necrosis factor. Cancer Lett 2013; 328(2): 222-5. doi: 10.1016/j.canlet.2012.10.014 PMID: 23085193
  121. Hamaty CF, Combe B, Hahne M, Morel J. Lymphotoxin α revisited: General features and implications in rheumatoid arthritis. Arthritis Res Ther 2011; 13(4): 232. doi: 10.1186/ar3376 PMID: 21861866
  122. Wang X, Lin Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol Sin 2008; 29(11): 1275-88. doi: 10.1111/j.1745-7254.2008.00889.x PMID: 18954521
  123. Yuan M, Kiertscher SM, Cheng Q, Zoumalan R, Tashkin DP, Roth MD. Δ9-Tetrahydrocannabinol regulates Th1/Th2 cytokine balance in activated human T cells. J Neuroimmunol 2002; 133(1-2): 124-31. doi: 10.1016/S0165-5728(02)00370-3 PMID: 12446015
  124. Newton CA, Klein TW, Friedman H. Secondary immunity to Legionella pneumophila and Th1 activity are suppressed by delta-9-tetrahydrocannabinol injection. Infect Immun 1994; 62(9): 4015-20. doi: 10.1128/iai.62.9.4015-4020.1994 PMID: 8063421
  125. Srivastava MD, Srivastava BIS, Brouhard B. Δ9-tetrahydrocannabinol and cannabidiol alter cytokine production by human immune cells. Immunopharmacology 1998; 40(3): 179-85. doi: 10.1016/S0162-3109(98)00041-1 PMID: 9858061
  126. Klein TW, Newton CA, Nakachi N, Friedman H. {Delta}9-tetrahydrocannabinol treatment suppresses immunity and early IFN-{gamma}, IL-12, and IL-12 receptor {beta}2 responses to Legionella pneumophila infection. J Immunol 2000; 164(12): 6461.
  127. Smith SR, Terminelli C, Denhardt G. Effects of cannabinoid receptor agonist and antagonist ligands on production of inflammatory cytokines and anti-inflammatory interleukin-10 in endotoxemic mice. J Pharmacol Exp Ther 2000; 293(1): 136-50. PMID: 10734163
  128. Gardner B, Zu LX, Sharma S, et al. Autocrine and paracrine regulation of lymphocyte CB2 receptor expression by TGF-β. Biochem Biophys Res Commun 2002; 290(1): 91-6. doi: 10.1006/bbrc.2001.6179 PMID: 11779138
  129. Zurier RB, Burstein SH. Cannabinoids, inflammation, and fibrosis. FASEB J 2016; 30(11): 3682-9. doi: 10.1096/fj.201600646R PMID: 27435265
  130. Nichols JM, Kaplan BLF. Immune responses regulated by cannabidiol. Cannabis Cannabinoid Res 2020; 5(1): 12-31. doi: 10.1089/can.2018.0073 PMID: 32322673
  131. Britch SC, Goodman AG, Wiley JL, Pondelick AM, Craft RM. Antinociceptive and immune effects of Delta-9-tetrahydrocannabinol or cannabidiol in male versus female rats with persistent inflammatory pain. J Pharmacol Exp Ther 2020; 373(3): 416-28. doi: 10.1124/jpet.119.263319 PMID: 32179573
  132. Jan TR, Farraj AK, Harkema JR, Kaminski NE. Attenuation of the ovalbumin-induced allergic airway response by cannabinoid treatment in A/J mice. Toxicol Appl Pharmacol 2003; 188(1): 24-35. doi: 10.1016/S0041-008X(03)00010-3 PMID: 12668119
  133. Lu T, Newton C, Perkins I, Friedman H, Klein TW. Cannabinoid treatment suppresses the T-helper cell-polarizing function of mouse dendritic cells stimulated with Legionella pneumophila infection. J Pharmacol Exp Ther 2006; 319(1): 269-76. doi: 10.1124/jpet.106.108381 PMID: 16837556
  134. Rizzo MD, Crawford RB, Bach A, Sermet S, Amalfitano A, Kaminski NE. Δ 9-tetrahydrocannabinol suppresses monocyte-mediated astrocyte production of monocyte chemoattractant protein 1 and interleukin-6 in a toll-like receptor 7-stimulated human coculture. J Pharmacol Exp Ther 2019; 371(1): 191-201. doi: 10.1124/jpet.119.260661 PMID: 31383729
  135. Puffenbarger RA, Boothe AC, Cabral GA. Cannabinoids inhibit LPS-inducible cytokine mRNA expression in rat microglial cells. Glia 2000; 29(1): 58-69. doi: 10.1002/(SICI)1098-1136(20000101)29:13.0.CO;2-W PMID: 10594923
  136. Zamberletti E, Gabaglio M, Prini P, Rubino T, Parolaro D. Cortical neuroinflammation contributes to long-term cognitive dysfunctions following adolescent delta-9-tetrahydrocannabinol treatment in female rats. Eur Neuropsychopharmacol 2015; 25(12): 2404-15. doi: 10.1016/j.euroneuro.2015.09.021 PMID: 26499171
  137. Yekhtin Z, Khuja I, Meiri D, Or R, Hazan AO. Differential effects of D9 tetrahydrocannabinol (THC)- and cannabidiol (CBD)-based cannabinoid treatments on macrophage immune function in vitro and on gastrointestinal inflammation in a murine model. Biomedicines 2022; 10(8): 1793. doi: 10.3390/biomedicines10081793 PMID: 35892693
  138. Verrico CD, Wesson S, Konduri V, et al. A randomized, double-blind, placebo-controlled study of daily cannabidiol for the treatment of canine osteoarthritis pain. Pain 2020; 161(9): 2191-202. doi: 10.1097/j.pain.0000000000001896 PMID: 32345916
  139. Karmaus PWF, Wagner JG, Harkema JR, Kaminski NE, Kaplan BLF. Cannabidiol (CBD) enhances lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice. J Immunotoxicol 2013; 10(3): 321-8. doi: 10.3109/1547691X.2012.741628 PMID: 23173851
  140. Gallily R, Yekhtin Z, Hanuš LO. Overcoming the bell-shaped dose-response of cannabidiol by using cannabis extract enriched in cannabidiol. Pharmacol Pharm 2015; 6(2): 75-85. doi: 10.4236/pp.2015.62010
  141. Gallily R, Yekhtin Z, Hanuš LO. The anti-inflammatory properties of terpenoids from cannabis. Cannabis Cannabinoid Res 2018; 3(1): 282-90. doi: 10.1089/can.2018.0014 PMID: 30596146
  142. Dhital S, Stokes JV, Park N, Seo KS, Kaplan BLF. Cannabidiol (CBD) induces functional Tregs in response to low-level T cell activation. Cell Immunol 2017; 312: 25-34. doi: 10.1016/j.cellimm.2016.11.006 PMID: 27865421
  143. Kozela E, Juknat A, Gao F, Kaushansky N, Coppola G, Vogel Z. Pathways and gene networks mediating the regulatory effects of cannabidiol, a nonpsychoactive cannabinoid, in autoimmune T cells. J Neuroinflammation 2016; 13(1): 136. doi: 10.1186/s12974-016-0603-x PMID: 27256343
  144. Weiss L, Zeira M, Reich S, et al. Cannabidiol lowers incidence of diabetes in non-obese diabetic mice. Autoimmunity 2006; 39(2): 143-51. doi: 10.1080/08916930500356674 PMID: 16698671
  145. Gomes JP, Watad A, Shoenfeld Y. Nicotine and autoimmunity: The lotus’ flower in tobacco. Pharmacol Res 2018; 128: 101-9. doi: 10.1016/j.phrs.2017.10.005 PMID: 29051105
  146. Zhou Y, Zuo X, Li Y, Wang Y, Zhao H, Xiao X. Nicotine inhibits tumor necrosis factor-α induced IL-6 and IL-8 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Rheumatol Int 2012; 32(1): 97-104. doi: 10.1007/s00296-010-1549-4 PMID: 20665032
  147. Totti N III, McCusker KT, Campbell EJ, Griffin GL, Senior RM. Nicotine is chemotactic for neutrophils and enhances neutrophil responsiveness to chemotactic peptides. Science 1984; 223(4632): 169-71. doi: 10.1126/science.6318317 PMID: 6318317
  148. Furie MB, Raffanello JA, Gergel EI, Lisinski TJ, Horb LD. Extracts of smokeless tobacco induce pro-inflammatory changes in cultured human vascular endothelial cells. Immunopharmacology 2000; 47(1): 13-23.
  149. Wendell KJ, Stein SH. Regulation of cytokine production in human gingival fibroblasts following treatment with nicotine and lipopolysaccharide. J Periodontol 2001; 72(8): 1038-44. doi: 10.1902/jop.2001.72.8.1038
  150. Aicher A, Heeschen C, Mohaupt M, Cooke JP, Zeiher AM, Dimmeler S. Nicotine strongly activates dendritic cell-mediated adaptive immunity: Potential role for progression of atherosclerotic lesions. Circulation 2003; 107(4): 604-11. doi: 10.1161/01.CIR.0000047279.42427.6D PMID: 12566374
  151. Vassallo R, Kroening PR, Parambil J, Kita H. Nicotine and oxidative cigarette smoke constituents induce immune-modulatory and pro-inflammatory dendritic cell responses. Mol Immunol 2008; 45(12): 3321-9. doi: 10.1016/j.molimm.2008.04.014 PMID: 18533267
  152. Arcos GI, Geraghty P, Baumlin N, et al. Chronic electronic cigarette exposure in mice induces features of COPD in a nicotine-dependent manner. Thorax 2016; 71(12): 1119-29. doi: 10.1136/thoraxjnl-2015-208039 PMID: 27558745
  153. Racke MK, Jalbut DS, Cannella B, Albert PS, Raine CS, McFarlin DE. Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-beta 1. J Immunol 1991; 146(9): 3012-7.
  154. Mageed RA, Adams G, Woodrow D, Podhajcer OL, Chernajovsky Y. Prevention of collagen-induced arthritis by gene delivery of soluble p75 tumour necrosis factor receptor. Gene Ther 1998; 5(12): 1584-92. doi: 10.1038/sj.gt.3300785 PMID: 10023437
  155. Triantaphyllopoulos KA, Williams RO, Tailor H, Chernajovsky Y. Amelioration of collagen-induced arthritis and suppression of interferon-? interleukin-12, and tumor necrosis factor? production by interferon-? gene therapy. Arthritis Rheum 1999; 42(1): 90-9. doi: 10.1002/1529-0131(199901)42:13.0.CO;2-A PMID: 9920019
  156. Croxford JL, Miller SD. Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R(+)WIN55,212. J Clin Invest 2003; 111(8): 1231-40. doi: 10.1172/JCI200317652 PMID: 12697742
  157. Massi P, Vaccani A, Parolaro D. Cannabinoids, immune system and cytokine network. Curr Pharm Des 2006; 12(24): 3135-46. doi: 10.2174/138161206777947425 PMID: 16918439
  158. van Breemen RB, Muchiri RN, Bates TA, et al. Cannabinoids block cellular entry of SARS-CoV-2 and the emerging variants. J Nat Prod 2022; 85(1): 176-84. doi: 10.1021/acs.jnatprod.1c00946 PMID: 35007072
  159. Pereira CF, Vargas D, Toneloto FL, Ito VD, Volpato RJ. Implications of cannabis and cannabinoid use in COVID-19: Scoping review. Rev Bras Enferm 2022; 75(S1): e20201374.
  160. Fontanet A, Tondeur L, Madec Y, et al. Cluster of COVID-19 in Northern France: A retrospective closed cohort study. medRxiv 2020; 2020.04.18.20071134.
  161. Miyara M, Tubach F, Pourcher V, et al. Low rate of daily smokers in patients with symptomatic COVID-19. medRxiv 2020; 2020.06.10.20127514. doi: 10.1101/2020.06.10.20127514
  162. Changeux JP, Amoura Z, Rey FA, Miyara M. A nicotinic hypothesis for COVID-19 with preventive and therapeutic implications. C R Biol 2020; 343(1): 33-9. doi: 10.5802/crbiol.8 PMID: 32720486
  163. Russo EB. Cannabis therapeutics and the future of neurology. Front Integr Nuerosci 2018; 12: 51. doi: 10.3389/fnint.2018.00051 PMID: 30405366
  164. Mecha M, Salinas CFJ, Feliú A, Mestre L, Guaza C. Perspectives on cannabis-based therapy of multiple sclerosis: A mini-review. Front Cell Neurosci 2020; 14: 34. doi: 10.3389/fncel.2020.00034 PMID: 32140100
  165. Croxford JL, Pryce G, Jackson SJ, et al. Cannabinoid-mediated neuroprotection, not immunosuppression, may be more relevant to multiple sclerosis. J Neuroimmunol 2008; 193(1-2): 120-9. doi: 10.1016/j.jneuroim.2007.10.024 PMID: 18037503
  166. Mecha M, Feliú A, Iñigo PM, Mestre L, Salinas CFJ, Guaza C. Cannabidiol provides long-lasting protection against the deleterious effects of inflammation in a viral model of multiple sclerosis: A role for A2A receptors. Neurobiol Dis 2013; 59: 141-50. doi: 10.1016/j.nbd.2013.06.016 PMID: 23851307
  167. Wade DT, Makela P, Robson P, House H, Bateman C. Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Mult Scler 2004; 10(4): 434-41. doi: 10.1191/1352458504ms1082oa PMID: 15327042
  168. Rog D, Nurmikko T, Young C. Oromucosal Δ9-tetrahydrocannabinol/cannabidiol for neuropathic pain associated with multiple sclerosis: An uncontrolled, open-label, 2-year extension trial. Clin Ther 2007; 29(9): 2068-79. doi: 10.1016/j.clinthera.2007.09.013 PMID: 18035205
  169. Hernán MA, Olek MJ, Ascherio A. Cigarette smoking and incidence of multiple sclerosis. Am J Epidemiol 2001; 154(1): 69-74. doi: 10.1093/aje/154.1.69 PMID: 11427406
  170. Sundström P, Nyström L. Smoking worsens the prognosis in multiple sclerosis. Mult Scler 2008; 14(8): 1031-5. doi: 10.1177/1352458508093615 PMID: 18632778
  171. Nizri E, Sinai ITM, Lory O, Urtreger OA, Lavi E, Brenner T. Activation of the cholinergic anti-inflammatory system by nicotine attenuates neuroinflammation via suppression of Th1 and Th17 responses. J Immunol 2009; 183(10): 6681-8. doi: 10.4049/jimmunol.0902212 PMID: 19846875
  172. Pittas F, Ponsonby AL, Mei IAF, et al. Smoking is associated with progressive disease course and increased progression in clinical disability in a prospective cohort of people with multiple sclerosis. J Neurol 2009; 256(4): 577-85. doi: 10.1007/s00415-009-0120-2 PMID: 19365595
  173. Shi FD, Piao WH, Kuo YP, Campagnolo DI, Vollmer TL, Lukas RJ. Nicotinic attenuation of central nervous system inflammation and autoimmunity. J Immunol 2009; 182(3): 1730-9. doi: 10.4049/jimmunol.182.3.1730 PMID: 19155522
  174. Gao Z, Tsirka SE. Animal models of MS reveal multiple roles of microglia in disease pathogenesis. Neurol Res Int 2011; 2011: 1-9. doi: 10.1155/2011/383087 PMID: 22203900
  175. Hao J, Simard AR, Turner GH, et al. Attenuation of CNS inflammatory responses by nicotine involves α7 and non-α7 nicotinic receptors. Exp Neurol 2011; 227(1): 110-9. doi: 10.1016/j.expneurol.2010.09.020 PMID: 20932827
  176. van Noort JM, van den Elsen PJ, van Horssen J, Geurts JJ, van der Valk P, Amor S. Preactive multiple sclerosis lesions offer novel clues for neuroprotective therapeutic strategies. CNS Neurol Disord Drug Targets 2011; 10(1): 68-81. doi: 10.2174/187152711794488566 PMID: 21143143
  177. Zhang Z, Zhang ZY, Schittenhelm J, Wu Y, Meyermann R, Schluesener HJ. Parenchymal accumulation of CD163+ macrophages/microglia in multiple sclerosis brains. J Neuroimmunol 2011; 237(1-2): 73-9. doi: 10.1016/j.jneuroim.2011.06.006 PMID: 21737148
  178. Grade S, Bernardino L, Malva JO. Oligodendrogenesis from neural stem cells: Perspectives for remyelinating strategies. Int J Dev Neurosci 2013; 31(7): 692-700. doi: 10.1016/j.ijdevneu.2013.01.004 PMID: 23340483
  179. Naddafi F, Haidari RM, Azizi G, Sedaghat R, Mirshafiey A. Novel therapeutic approach by nicotine in experimental model of multiple sclerosis. Innov Clin Neurosci 2013; 10(4): 20-5. PMID: 23696955
  180. Simard AR, Gan Y, Pierre SS, et al. Differential modulation of EAE by α9*‐ and β2*‐nicotinic acetylcholine receptors. Immunol Cell Biol 2013; 91(3): 195-200. doi: 10.1038/icb.2013.1 PMID: 23399696
  181. Gao Z, Nissen JC, Legakis L, Tsirka SE. Nicotine modulates neurogenesis in the central canal during experimental autoimmune encephalomyelitis. Neuroscience 2015; 297: 11-21. doi: 10.1016/j.neuroscience.2015.03.031 PMID: 25813705
  182. Gao Z, Nissen JC, Ji K, Tsirka SE. The experimental autoimmune encephalomyelitis disease course is modulated by nicotine and other cigarette smoke components. PLoS One 2014; 9(9): e107979. doi: 10.1371/journal.pone.0107979 PMID: 25250777
  183. Choy EHS, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 2001; 344(12): 907-16. doi: 10.1056/NEJM200103223441207 PMID: 11259725
  184. Wu S, Luo H, Xiao X, Zhang H, Li T, Zuo X. Attenuation of collagen induced arthritis via suppression on Th17 response by activating cholinergic anti-inflammatory pathway with nicotine. Eur J Pharmacol 2014; 735: 97-104. doi: 10.1016/j.ejphar.2014.04.019 PMID: 24755145
  185. Blake DR, Robson P, Ho M, Jubb RW, McCabe CS. Preliminary assessment of the efficacy, tolerability and safety of a cannabis-based medicine (Sativex) in the treatment of pain caused by rheumatoid arthritis. Rheumatology 2006; 45(1): 50-2. doi: 10.1093/rheumatology/kei183 PMID: 16282192
  186. Zurier RB, Rossetti RG, Lane JH, Goldberg JM, Hunter SA, Burstein SH. Dimethylheptyl-THC-11 OIC acid: A nonpsychoactive antiinflammatory agent with a cannabinoid template structure. Arthritis Rheum 1998; 41(1): 163-70. doi: 10.1002/1529-0131(199801)41:13.0.CO;2-9 PMID: 9433882
  187. Sumariwalla PF, Gallily R, Tchilibon S, Fride E, Mechoulam R, Feldmann M. A novel synthetic, nonpsychoactive cannabinoid acid (HU‐320) with antiinflammatory properties in murine collagen‐induced arthritis. Arthritis Rheum 2004; 50(3): 985-98. doi: 10.1002/art.20050 PMID: 15022343
  188. Zurier RB, Rossetti RG, Burstein SH, Bidinger B. Suppression of human monocyte interleukin-1β production by ajulemic acid, a nonpsychoactive cannabinoid. Biochem Pharmacol 2003; 65(4): 649-55. doi: 10.1016/S0006-2952(02)01604-0 PMID: 12566094
  189. Johnson DR, Stebulis JA, Rossetti RG, Burstein SH, Zurier RB. Suppression of fibroblast metalloproteinases by ajulemic acid, a nonpsychoactive cannabinoid acid. J Cell Biochem 2007; 100(1): 184-90. doi: 10.1002/jcb.21046 PMID: 16927387
  190. Selvi E, Lorenzini S, Gonzalez GE, et al. Inhibitory effect of synthetic cannabinoids on cytokine production in rheumatoid fibroblast-like synoviocytes. Clin Exp Rheumatol 2008; 26(4): 574-81. PMID: 18799087
  191. Lowin T, Kok C, Smutny S, Pongratz G. Impact of Δ9-tetrahydrocannabinol on rheumatoid arthritis synovial fibroblasts alone and in co-culture with peripheral blood mononuclear cells. Biomedicines 2022; 10(5): 1118. doi: 10.3390/biomedicines10051118 PMID: 35625855
  192. Lowin T, Tingting R, Zurmahr J, Classen T, Schneider M, Pongratz G. Cannabidiol (CBD): A killer for inflammatory rheumatoid arthritis synovial fibroblasts. Cell Death Dis 2020; 11(8): 714. doi: 10.1038/s41419-020-02892-1 PMID: 32873774
  193. van Maanen MA, Lebre MC, van der Poll T, et al. Stimulation of nicotinic acetylcholine receptors attenuates collagen‐induced arthritis in mice. Arthritis Rheum 2009; 60(1): 114-22. doi: 10.1002/art.24177 PMID: 19116908
  194. Yang Y, Yang Y, Yang J, Xie R, Ren Y, Fan H. Regulatory effect of nicotine on collagen-induced arthritis and on the induction and function of in vitro-cultured Th17 cells. Mod Rheumatol 2014; 24(5): 781-7. doi: 10.3109/14397595.2013.862352 PMID: 24313917
  195. Mao J, Price DD, Lu J, Keniston L, Mayer DJ. Two distinctive antinociceptive systems in rats with pathological pain. Neurosci Lett 2000; 280(1): 13-6. doi: 10.1016/S0304-3940(99)00998-2 PMID: 10696800
  196. Cox ML, Welch SP. The antinociceptive effect of Delta9-tetrahydrocannabinol in the arthritic rat. Eur J Pharmacol 2004; 493(1-3): 65-74. doi: 10.1016/j.ejphar.2004.04.022 PMID: 15189765
  197. Schley M, Legler A, Skopp G, Schmelz M, Konrad C, Rukwied R. Delta‐9-THC based monotherapy in fibromyalgia patients on experimentally induced pain, axon reflex flare, and pain relief. Curr Med Res Opin 2006; 22(7): 1269-76. doi: 10.1185/030079906X112651 PMID: 16834825
  198. Lynch ME, Ware MA. Cannabinoids for the treatment of chronic non-cancer pain: An updated systematic review of randomized controlled trials. J Neuroimmune Pharmacol 2015; 10(2): 293-301. doi: 10.1007/s11481-015-9600-6 PMID: 25796592
  199. Ditre JW, Brandon TH, Zale EL, Meagher MM. Pain, nicotine, and smoking: Research findings and mechanistic considerations. Psychol Bull 2011; 137(6): 1065-93. doi: 10.1037/a0025544 PMID: 21967450
  200. Smuck M, Schneider BJ, Ehsanian R, Martin E, Kao MCJ. Smoking is associated with pain in all body regions, with greatest influence on spinal pain. Pain Med 2020; 21(9): 1759-68. doi: 10.1093/pm/pnz224 PMID: 31578562
  201. Rabinovitch A. An update on cytokines in the pathogenesis of insulin-dependent diabetes mellitus. Diabetes Metab Rev 1998; 14(2): 129-51. doi: 10.1002/(SICI)1099-0895(199806)14:23.0.CO;2-V PMID: 9679667
  202. Rabinovitch A, Pinzon SWL. Cytokines and their roles in pancreatic islet beta-cell destruction and insulin-dependent diabetes mellitus. Biochem Pharmacol 1998; 55(8): 1139-49. doi: 10.1016/S0006-2952(97)00492-9 PMID: 9719467
  203. Li X, Kaminski NE, Fischer LJ. Examination of the immunosuppressive effect of Δ9-tetrahydrocannabinol in streptozotocin-induced autoimmune diabetes. Int Immunopharmacol 2001; 1(4): 699-712. doi: 10.1016/S1567-5769(01)00003-0 PMID: 11357882
  204. Ibrahim MM, Deng H, Zvonok A, et al. Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: Pain inhibition by receptors not present in the CNS. Proc Natl Acad Sci 2003; 100(18): 10529-33. doi: 10.1073/pnas.1834309100 PMID: 12917492
  205. Bottazzo GF, Bonifacio E. Immune factors in the pathogenesis of Insulin-dependent diabetes mellitus. Textbook Diabetes 1991; pp. 122-40.
  206. Rabinovitch A. Immunoregulatory and cytokine imbalances in the pathogenesis of IDDM. Therapeutic intervention by immunostimulation? Diabetes 1994; 43(5): 613-21. doi: 10.2337/diab.43.5.613 PMID: 8168635
  207. Noorchashm H, Kwok W, Rabinovitch A, Harrison LC. Immunology of IDDM. Diabetologia 1997; 40(S3): B50-7. doi: 10.1007/BF03168187 PMID: 9345646
  208. Izzo AA, Camilleri M. Emerging role of cannabinoids in gastrointestinal and liver diseases: Basic and clinical aspects. Gut 2008; 57(8): 1140-55. doi: 10.1136/gut.2008.148791 PMID: 18397936
  209. Hegde VL, Hegde S, Cravatt BF, Hofseth LJ, Nagarkatti M, Nagarkatti PS. Attenuation of experimental autoimmune hepatitis by exogenous and endogenous cannabinoids: Involvement of regulatory T cells. Mol Pharmacol 2008; 74(1): 20-33. doi: 10.1124/mol.108.047035 PMID: 18388242
  210. Abdrakhmanova GR, AlSharari S, Kang M, Damaj MI, Akbarali HI. α7-nAChR-mediated suppression of hyperexcitability of colonic dorsal root ganglia neurons in experimental colitis. Am J Physiol Gastrointest Liver Physiol 2010; 299(3): G761-8. doi: 10.1152/ajpgi.00175.2010 PMID: 20595621
  211. Lakhan SE, Kirchgessner A. Anti-inflammatory effects of nicotine in obesity and ulcerative colitis. J Transl Med 2011; 9(1): 129. doi: 10.1186/1479-5876-9-129 PMID: 21810260
  212. Golub V, Reddy DS. Cannabidiol therapy for refractory epilepsy and seizure disorderscannabinoids and neuropsychiatric disorders. Cham: Springer International Publishing 2021; pp. 93-110. doi: 10.1007/978-3-030-57369-0_7
  213. O’Sullivan SE, Jensen SS, Nikolajsen GN, Bruun HZ, Bhuller R, Hoeng J. The therapeutic potential of purified cannabidiol. J Cannabis Res 2023; 5(1): 21. doi: 10.1186/s42238-023-00186-9 PMID: 37312194
  214. D’Elia RV, Harrison K, Oyston PC, Lukaszewski RA, Clark GC. Targeting the "cytokine storm" for therapeutic benefit. Clin Vaccine Immunol 2013; 20(3): 319-27. doi: 10.1128/CVI.00636-12 PMID: 23283640

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers