Green Synthesis of Silver Nanoparticles and their Potential Applications in Mitigating Cancer


Citar

Texto integral

Resumo

:In recent years, the field of nanotechnology has brought about significant advancements that have transformed the landscape of disease diagnosis, prevention, and treatment, particularly in the realm of medical science. Among the various approaches to nanoparticle synthesis, the green synthesis method has garnered increasing attention. Silver nanoparticles (AgNPs) have emerged as particularly noteworthy nanomaterials within the spectrum of metallic nanoparticles employed for biomedical applications. AgNPs possess several key attributes that make them highly valuable in the biomedical field. They are biocompatible, cost-effective, and environmentally friendly, rendering them suitable for various bioengineering and biomedical applications. Notably, AgNPs have found a prominent role in the domain of cancer diagnosis. Research investigations have provided evidence of AgNPs' anticancer activity, which involves mechanisms such as DNA damage, cell cycle arrest, induction of apoptosis, and the regulation of specific cytokine genes. The synthesis of AgNPs primarily involves the reduction of silver ions by reducing agents. Interestingly, natural products and living organisms have proven to be effective sources for the generation of precursor materials used in AgNP synthesis. This comprehensive review aims to summarize the key aspects of AgNPs, including their characterization, properties, and recent advancements in the field of biogenic AgNP synthesis. Furthermore, the review highlights the potential applications of these nanoparticles in combating cancer.

Sobre autores

Reyaz Mir

Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir

Email: info@benthamscience.net

Mudasir Maqbool

Pharmacy Practice Division, Department of Pharmaceutical Sciences, University of Kashmir

Email: info@benthamscience.net

Prince Mir

Department of Pharmaceutical Sciences,, Khalsa College of Pharmacy

Email: info@benthamscience.net

Md. Hussain

School of Pharmaceutical Sciences,, Jaipur National University

Email: info@benthamscience.net

Shahid din Wani

Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir

Email: info@benthamscience.net

Faheem Pottoo

Department of Pharmacology, College of Clinical Pharmacy,, Imam Abdulrahman Bin Faisal University

Autor responsável pela correspondência
Email: info@benthamscience.net

Roohi Mohi-ud-din

Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS)

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Torre L, Siegel R, Jemal A. American Cancer Society. Global Cancer Facts & Figures. 2015; pp. 1-64.
  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  3. Vickers A. Alternative cancer cures: "Unproven" or "disproven"? CA Cancer J Clin 2004; 54(2): 110-8. doi: 10.3322/canjclin.54.2.110 PMID: 15061600
  4. Hussain MS, Afzal O, Gupta G, et al. Long non-coding RNAs in lung cancer: Unraveling the molecular modulators of MAPK signaling. Pathol Res Pract 2023; 249: 154738. doi: 10.1016/j.prp.2023.154738 PMID: 37595448
  5. Mir RH, Mohi-ud-din R, Wani TU, et al. Indole: A privileged heterocyclic moiety in the management of cancer. Curr Org Chem 2021; 25(6): 724-36. doi: 10.2174/1385272825666210208142108
  6. Wani TU, Mohi-ud-din R, Mir RH, et al. Exosomes harnessed as nanocarriers for cancer therapy-current status and potential for future clinical applications. Curr Mol Med 2021; 21(9): 707-23. doi: 10.2174/18755666MTA53OTMcx PMID: 32933459
  7. Gowda BHJ, Ahmed MG, Alshehri SA, et al. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics. Environ Res 2023; 237(Pt 1): 116894. doi: 10.1016/j.envres.2023.116894 PMID: 37586450
  8. Hani U, Gowda JBH, Siddiqua A, et al. Herbal approach for treatment of cancer using curcumin as an anticancer agent: A review on novel drug delivery systems. J Mol Liq 2023; 390: 123037. doi: 10.1016/j.molliq.2023.123037
  9. Dar MO, Mir RH, Mohiuddin R, Masoodi MH, Sofi FA. Metal complexes of xanthine and its derivatives: Synthesis and biological activity. J Inorg Biochem 2023; 246: 112290. doi: 10.1016/j.jinorgbio.2023.112290 PMID: 37327591
  10. Mir PA, Mohi-Ud-Din R, Banday N, et al. Anticancer potential of thymoquinone: A novel bioactive natural compound from Nigella sativa L. Anti-Cancer Agents Med Chem 2022; 22(20): 3401-15.
  11. Mir PA, Uppal J, Noor A, et al. Recent advances of dihydropyrimidinone derivatives in cancer research. Dihydropyrimidinones Potent Anticancer Agents 2023; pp. 153-71. doi: 10.1016/B978-0-443-19094-0.00006-0
  12. Mohi-ud-din R, Mir RH, Sabreen S, Jan R, Pottoo FH, Singh IP. Recent insights into therapeutic potential of plant-derived flavonoids against cancer. Anticancer Agents Med Chem 2022; 22(20): 3343-69. doi: 10.2174/1871520622666220421094055 PMID: 35593353
  13. Mohi-ud-din R, Mir RH, Banday N, et al. Resveratrol: A potential drug candidate with multispectrum therapeutic application. Stud Nat Prod Chem 2022; 73: 99-137. doi: 10.1016/B978-0-323-91097-2.00009-1
  14. Khan MS, Gowda BHJ, Nasir N, et al. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer. Int J Pharm 2023; 643: 123276. doi: 10.1016/j.ijpharm.2023.123276 PMID: 37516217
  15. Wani SU, Ali M, Masoodi MH, et al. A review on nanoparticles categorization, characterization and applications in drug delivery systems. Vib Spectrosc 2022; 121: 103407. doi: 10.1016/j.vibspec.2022.103407
  16. Mohi-ud-din R, Mir RH, Wani TU, et al. The regulation of endoplasmic reticulum stress in cancer: Special focuses on luteolin patents. Molecules 2022; 27(8): 2471. doi: 10.3390/molecules27082471 PMID: 35458669
  17. Yan A, Chen Z. Impacts of silver nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism. Int J Mol Sci 2019; 20(5): 1003. doi: 10.3390/ijms20051003 PMID: 30813508
  18. Hussain MS, Sharma P, Dhanjal DS, et al. Nanotechnology based advanced therapeutic strategies for targeting interleukins in chronic respiratory diseases. Chem Biol Interact 2021; 348: 109637. doi: 10.1016/j.cbi.2021.109637 PMID: 34506765
  19. Mohi-ud-din R, Mir RH, Wani TU, et al. Novel drug delivery system for curcumin: Implementation to improve therapeutic efficacy against neurological disorders. Comb Chem High Throughput Screen 2022; 25(4): 607-15. doi: 10.2174/1386207324666210705114058 PMID: 34225614
  20. Hussain MS, Altamimi ASA, Afzal M, et al. Kaempferol: Paving the path for advanced treatments in aging-related diseases. Exp Gerontol 2024; 188: 112389. doi: 10.1016/j.exger.2024.112389 PMID: 38432575
  21. Mohanto S, Narayana S, Merai KP, et al. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int J Biol Macromol 2023; 253(Pt 5): 127143. doi: 10.1016/j.ijbiomac.2023.127143 PMID: 37793512
  22. Li X, Cui R, Liu W, et al. The use of nanoscaled fibers or tubes to improve biocompatibility and bioactivity of biomedical materials. J Nanomater 2013; 2013: 1-16. doi: 10.1155/2013/728130
  23. Kataria T, Hussain S, Kaur G, Deb A. Emerging nanoparticles in the diagnosis of atherosclerosis. Int J Pharm Sci Rev Res 2021; 70(2): 46-57. doi: 10.47583/ijpsrr.2021.v70i02.008
  24. Hani U, Gowda BHJ, Haider N, et al. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review. AAPS PharmSciTech 2023; 24(8): 233. doi: 10.1208/s12249-023-02670-0 PMID: 37973643
  25. Zeng L, Gowda BHJ, Ahmed MG, et al. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer 2023; 22(1): 10. doi: 10.1186/s12943-022-01708-4 PMID: 36635761
  26. Ashique S, Kumar S, Hussain A, et al. A narrative review on the role of magnesium in immune regulation, inflammation, infectious diseases, and cancer. J Health Popul Nutr 2023; 42(1): 74. doi: 10.1186/s41043-023-00423-0 PMID: 37501216
  27. Ratan ZA, Haidere MF, Nurunnabi M, et al. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers 2020; 12(4): 855. doi: 10.3390/cancers12040855 PMID: 32244822
  28. Lee S, Jun BH. Silver nanoparticles: Synthesis and application for nanomedicine. Int J Mol Sci 2019; 20(4): 865. doi: 10.3390/ijms20040865 PMID: 30781560
  29. Gowda BHJ, Ahmed MG, Almoyad MAA, Wahab S, Almalki WH, Kesharwani P. Nanosponges as an emerging platform for cancer treatment and diagnosis. Adv Funct Mater 2024; 34(7): 2307074. doi: 10.1002/adfm.202307074
  30. Ahmadi S. The importance of silver nanoparticles in human life. Adv Appl NanoBio-Technol 2020; 1(1): 5-9. doi: 10.47277/AANBT/1(1)9
  31. Shenton W, Douglas T, Young M, Stubbs G, Mann S. Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 1999; 11(3): 253-6. doi: 10.1002/(SICI)1521-4095(199903)11:33.0.CO;2-7
  32. Medvedeva NV, Ipatova OM, Ivanov YD, Drozhzhin AI, Archakov AI. Nanobiotechnology and nanomedicine. Biochemistry (Moscow). Supplement Series B: Biomed Chem 2007; 1: 114-24.
  33. Zhang D, Ma X, Gu Y, Huang H, Zhang G. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem 2020; 8: 799. doi: 10.3389/fchem.2020.00799 PMID: 33195027
  34. Mohi-ud-din R, Mir RH, Wani TU, Shah AJ, Banday N, Pottoo FH. Berberine in the treatment of neurodegenerative diseases and nanotechnology enabled targeted delivery. Comb Chem High Throughput Screen 2022; 25(4): 616-33. doi: 10.2174/1386207324666210804122539 PMID: 34348611
  35. Tang S, Mao C, Liu Y, Kelly DQ, Banerjee SK. Protein-mediated nanocrystal assembly for flash memory fabrication. IEEE Trans Electron Dev 2007; 54(3): 433-8. doi: 10.1109/TED.2006.890234
  36. Stepanov AL, Golubev AN, Nikitin SI, Osin YN. A review on the fabrication and properties of platinum nanoparticles. Rev Adv Mater Sci 2014; 38(2): 160-75.
  37. Wang L, Chen X, Zhan J, et al. Synthesis of gold nano- and microplates in hexagonal liquid crystals. J Phys Chem B 2005; 109(8): 3189-94. doi: 10.1021/jp0449152 PMID: 16851339
  38. You H, Yang S, Ding B, Yang H. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem Soc Rev 2013; 42(7): 2880-904. doi: 10.1039/C2CS35319A PMID: 23152097
  39. Singh P, Kim YJ, Zhang D, Yang DC. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 2016; 34(7): 588-99. doi: 10.1016/j.tibtech.2016.02.006 PMID: 26944794
  40. Gurunathan S, Park JH, Han JW, Kim JH. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy. Int J Nanomedicine 2015; 10: 4203-22. doi: 10.2147/IJN.S83953 PMID: 26170659
  41. Gouyau J, Duval RE, Boudier A, Lamouroux E. Investigation of nanoparticle metallic core antibacterial activity: Gold and silver nanoparticles against Escherichia coli and Staphylococcus aureus. Int J Mol Sci 2021; 22(4): 1905. doi: 10.3390/ijms22041905 PMID: 33672995
  42. Hassan R, Mohi-ud-din R, Dar MO, et al. Bioactive heterocyclic compounds as potential therapeutics in the treatment of gliomas: A review. Anticancer Agents Med Chem 2022; 22(3): 551-65. doi: 10.2174/1871520621666210901112954 PMID: 34488596
  43. Chernousova S, Epple M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew Chem Int Ed 2013; 52(6): 1636-53. doi: 10.1002/anie.201205923 PMID: 23255416
  44. Li C, Zhang Y, Wang M, et al. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 2014; 35(1): 393-400. doi: 10.1016/j.biomaterials.2013.10.010 PMID: 24135267
  45. Sondi I, Sondi SB. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004; 275(1): 177-82. doi: 10.1016/j.jcis.2004.02.012 PMID: 15158396
  46. Li L, Hu J, Yang W, Alivisatos AP. Band gap variation of size-and shape-controlled colloidal CdSe quantum rods. Nano Lett 2001; 1(7): 349-51. doi: 10.1021/nl015559r
  47. Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 2009; 145(1-2): 83-96. doi: 10.1016/j.cis.2008.09.002 PMID: 18945421
  48. Khan MS, Gowda JBH, Almalki WH, Singh T, Sahebkar A, Kesharwani P. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment. Drug Discov Today 2024; 29(1): 103819. doi: 10.1016/j.drudis.2023.103819 PMID: 37940034
  49. Gurunathan S, Kalishwaralal K, Vaidyanathan R, et al. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces 2009; 74(1): 328-35. doi: 10.1016/j.colsurfb.2009.07.048 PMID: 19716685
  50. Lin PC, Lin S, Wang PC, Sridhar R. Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 2014; 32(4): 711-26. doi: 10.1016/j.biotechadv.2013.11.006 PMID: 24252561
  51. Pleus R. Nanotechnologies-guidance on physicochemical characterization of engineered nanoscale materials for toxicologic assessment. Geneva, Switzerland: ISO 2012.
  52. Jo DH, Kim JH, Lee TG, Kim JH. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine 2015; 11(7): 1603-11. doi: 10.1016/j.nano.2015.04.015 PMID: 25989200
  53. Staquicini FI, Ozawa MG, Moya CA, et al. Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma. J Clin Invest 2011; 121(1): 161-73. doi: 10.1172/JCI44798 PMID: 21183793
  54. Duan X, Li Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 2013; 9(9-10): 1521-32. doi: 10.1002/smll.201201390 PMID: 23019091
  55. Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012; 14(1): 1-16. doi: 10.1146/annurev-bioeng-071811-150124 PMID: 22524388
  56. Panáček A, Kolář M, Večeřová R, et al. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 2009; 30(31): 6333-40. doi: 10.1016/j.biomaterials.2009.07.065 PMID: 19698988
  57. Zodrow K, Brunet L, Mahendra S, et al. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 2009; 43(3): 715-23. doi: 10.1016/j.watres.2008.11.014 PMID: 19046755
  58. Wong KK, Cheung SO, Huang L, et al. Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem: Chem Enabl Drug Discov 2009; 4(7): 1129-35. doi: 10.1002/cmdc.200900049
  59. Gurunathan S, Lee KJ, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH. Antiangiogenic properties of silver nanoparticles. Biomaterials 2009; 30(31): 6341-50. doi: 10.1016/j.biomaterials.2009.08.008 PMID: 19698986
  60. Sriram MI, Kanth SB, Kalishwaralal K, Gurunathan S. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int J Nanomed 2010; 5: 753-62. PMID: 21042421
  61. Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res 2010; 62(2): 90-9. doi: 10.1016/j.phrs.2010.03.005 PMID: 20380880
  62. Mir RH, Sabreen S, Mohi-ud-din R, et al. Isoflavones of soy: Chemistry and health benefits. Edible Plants in Health and Diseases. Cultural, Practical and Economic Value 2022; 1: pp. 303-24. doi: 10.1007/978-981-16-4880-9_13
  63. Naganthran A, Verasoundarapandian G, Khalid FE, et al. Synthesis, characterization and biomedical application of silver nanoparticles. Materials 2022; 15(2): 427. doi: 10.3390/ma15020427 PMID: 35057145
  64. Yoon KY, Byeon HJ, Park JH, Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 2007; 373(2-3): 572-5. doi: 10.1016/j.scitotenv.2006.11.007 PMID: 17173953
  65. Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R. Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 2019; 7: 65. doi: 10.3389/fchem.2019.00065 PMID: 30800654
  66. Sukirtha R, Priyanka KM, Antony JJ, et al. Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochem 2012; 47(2): 273-9. doi: 10.1016/j.procbio.2011.11.003
  67. Farcau BS, Potara M, Simon T, Juhem A, Baldeck P, Astilean S. Folic acid-conjugated, SERS-labeled silver nanotriangles for multimodal detection and targeted photothermal treatment on human ovarian cancer cells. Mol Pharm 2014; 11(2): 391-9. doi: 10.1021/mp400300m PMID: 24304361
  68. Mir RH, Mir PA, Mohi-ud-din R, et al. A comprehensive review on journey of pyrrole scaffold against multiple therapeutic targets. Anticancer Agents Med Chem 2022; 22(19): 3291-303. doi: 10.2174/1871520622666220613140607 PMID: 35702764
  69. Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V. A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 2010; 40(4): 328-46. doi: 10.3109/10408440903453074 PMID: 20128631
  70. Mohi-ud-Din R, Mir RH, Mir PA, et al. Dysfunction of ABC transporters at the surface of BBB: potential implications in intractable epilepsy and applications of nanotechnology enabled drug delivery. Curr Drug Metab 2022; 23(9): 735-56. doi: 10.2174/1389200223666220817115003 PMID: 35980054
  71. Rycenga M, Cobley CM, Zeng J, et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 2011; 111(6): 3669-712. doi: 10.1021/cr100275d PMID: 21395318
  72. Mohi-ud-din R, Mir RH, Sawhney G, Dar MA, Bhat ZA. Possible pathways of hepatotoxicity caused by chemical agents. Curr Drug Metab 2019; 20(11): 867-79. doi: 10.2174/1389200220666191105121653 PMID: 31702487
  73. Ren J, Tilley RD. Preparation, self-assembly, and mechanistic study of highly monodispersed nanocubes. J Am Chem Soc 2007; 129(11): 3287-91. doi: 10.1021/ja067636w PMID: 17311381
  74. Misra SK, Dybowska A, Berhanu D, Luoma SN, Jones VE. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci Total Environ 2012; 438: 225-32. doi: 10.1016/j.scitotenv.2012.08.066 PMID: 23000548
  75. Huang T, Xu X-HN. Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. J Mater Chem 2010; 20(44): 9867-76. doi: 10.1039/c0jm01990a PMID: 22707855
  76. Mahmoud MA, Sayed EMA. Different plasmon sensing behavior of silver and gold nanorods. J Phys Chem Lett 2013; 4(9): 1541-5. doi: 10.1021/jz4005015 PMID: 26282312
  77. Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 2016; 17(9): 1534. doi: 10.3390/ijms17091534 PMID: 27649147
  78. Sastry M, Patil V, Sainkar SR. Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. J Phys Chem B 1998; 102(8): 1404-0.
  79. Huang X, Jain PK, Sayed EIH, Sayed EMA. Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2007; 2(5): 681-93. doi: 10.2217/17435889.2.5.681
  80. Leung AB, Suh KI, Ansari RR. Particle-size and velocity measurements in flowing conditions using dynamic light scattering. Appl Opt 2006; 45(10): 2186-90. doi: 10.1364/AO.45.002186 PMID: 16607982
  81. Tomaszewska E, Soliwoda K, Kadziola K, et al. Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J Nanomater 2013; 2013: 1-10. doi: 10.1155/2013/313081
  82. Das R, Nath SS, Chakdar D, Gope G, Bhattacharjee RJ. Preparation of silver nanoparticles and their characterization. J Nanotechnol 2009; 5: 1-6.
  83. Kreibig U, Vollmer M. Optical properties of metal clusters. Springer Science & Business Media 2013.
  84. Link S, Sayed EMA. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 2003; 54(1): 331-66. doi: 10.1146/annurev.physchem.54.011002.103759 PMID: 12626731
  85. Noginov MA, Zhu G, Bahoura M, et al. The effect of gain and absorption on surface plasmons in metal nanoparticles. Appl Phys B 2007; 86(3): 455-60. doi: 10.1007/s00340-006-2401-0
  86. Nath S, Chakdar D. Synthesis of CdS and ZnS quantum dots and their applications in electronics. Nanotrends. 2007.
  87. Taleb A, Petit C, Pileni MP. Optical properties of self-assembled 2D and 3D superlattices of silver nanoparticles. J Phys Chem B 1998; 102(12): 2214-20. doi: 10.1021/jp972807s
  88. He R, Qian X, Yin J, Zhu Z. Preparation of polychrome silver nanoparticles in different solvents. J Mater Chem 2002; 12(12): 3783-6. doi: 10.1039/b205214h
  89. Henglein A. Physicochemical properties of small metal particles in solution: "Microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 1993; 97(21): 5457-71. doi: 10.1021/j100123a004
  90. Sastry M, Mayya KS, Bandyopadhyay K. pH dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloids Surf A Physicochem Eng Asp 1997; 127(1-3): 221-8. doi: 10.1016/S0927-7757(97)00087-3
  91. Waseda Y, Matsubara E, Shinoda K. X-ray diffraction crystallography: Introduction, examples and solved problems. Springer Science & Business Media 2011.
  92. Ivanisevic I. Physical stability studies of miscible amorphous solid dispersions. J Pharm Sci 2010; 99(9): 4005-12. doi: 10.1002/jps.22247 PMID: 20533553
  93. Cabral M, Pedrosa F, Margarido F, Nogueira CA. End-of-life Zn-MnO2 batteries: Electrode materials characterization. Environ Technol 2013; 34(10): 1283-95. doi: 10.1080/09593330.2012.745621 PMID: 24191461
  94. Dey A, Mukhopadhyay AK, Gangadharan S, Sinha MK, Basu D, Bandyopadhyay NR. Nanoindentation study of microplasma sprayed hydroxyapatite coating. Ceram Int 2009; 35(6): 2295-304. doi: 10.1016/j.ceramint.2009.01.002
  95. Ananias D, Paz AFA, Carlos LD, Rocha J. Chiral microporous rare-earth silico-germanates: Synthesis, structure and photoluminescence properties. Microporous Mesoporous Mater 2013; 166: 50-8. doi: 10.1016/j.micromeso.2012.04.032
  96. Singh DK, Pandey DK, Yadav RR, Singh D. A study of ZnO nanoparticles and ZnO-EG nanofluid. J Exp Nanosci 2013; 8(5): 731-41. doi: 10.1080/17458080.2011.602369
  97. Macaluso RT. Introduction to powder diffraction and its application to nanoscale and heterogeneous materials. ACS Symposium Series 2010; 1010: 75-86. doi: 10.1021/bk-2009-1010.ch006
  98. Zawrah MF, Zayed HA, Essawy RA, Nassar AH, Taha MA. Preparation by mechanical alloying, characterization and sintering of Cu-20 wt.% Al2O3 nanocomposites. Mater Design (1980-2015) 2013; 46: 485-90.
  99. Yazdian N, Karimzadeh F, Enayati MH. In situ fabrication of Al3V/Al2O3 nanocomposite through mechanochemical synthesis and evaluation of its mechanism. Adv Powder Technol 2013; 24(1): 106-12. doi: 10.1016/j.apt.2012.03.004
  100. Wu H, He L, Gao M, Gao S, Liao X, Shi B. One-step in situ assembly of size-controlled silver nanoparticles on polyphenol-grafted collagen fiber with enhanced antibacterial properties. New J Chem 2011; 35(12): 2902-9. doi: 10.1039/c1nj20674e
  101. Vaia RA, Liu W. X-ray powder diffraction of polymer/layered silicate nanocomposites: Model and practice. J Polym Sci, B, Polym Phys 2002; 40(15): 1590-600. doi: 10.1002/polb.10214
  102. Ray SS, Okamoto M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog Polym Sci 2003; 28(11): 1539-641. doi: 10.1016/j.progpolymsci.2003.08.002
  103. Pavlidou S, Papaspyrides CD. A review on polymer-layered silicate nanocomposites. Prog Polym Sci 2008; 33(12): 1119-98. doi: 10.1016/j.progpolymsci.2008.07.008
  104. Kou T, Jin C, Zhang C, Sun J, Zhang Z. Nanoporous core-shell Cu@Cu2O nanocomposites with superior photocatalytic properties towards the degradation of methyl orange. RSC Advances 2012; 2(33): 12636-43. doi: 10.1039/c2ra21821f
  105. Khan A, Asiri AM, Rub MA, et al. Synthesis, characterization of silver nanoparticle embedded polyaniline tungstophosphate-nanocomposite cation exchanger and its application for heavy metal selective membrane. Compos, Part B Eng 2013; 45(1): 1486-92. doi: 10.1016/j.compositesb.2012.09.023
  106. Dolatmoradi A, Raygan S, Abdizadeh H. Mechanochemical synthesis of W-Cu nanocomposites via in situ co-reduction of the oxides. Powder Technol 2013; 233: 208-14. doi: 10.1016/j.powtec.2012.08.013
  107. Aghili SE, Enayati MH, Karimzadeh F. In situ synthesis of alumina reinforced (Fe, Cr) 3Al intermetallic matrix nanocomposite. Mater Manuf Process 2012; 27(12): 1348-53. doi: 10.1080/10426914.2012.663141
  108. Sapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL. Analyzing nanomaterial bioconjugates: A review of current and emerging purification and characterization techniques. Anal Chem 2011; 83(12): 4453-88. doi: 10.1021/ac200853a PMID: 21545140
  109. Fleming PJ, Correia JJ, Fleming KG. Revisiting macromolecular hydration with HullRadSAS. Eur Biophys J 2023; 52(4-5): 215-24. doi: 10.1007/s00249-022-01627-8 PMID: 36602579
  110. Das R, Ali E, Abd Hamid SB. Current applications of x-ray powder diffraction-A review. Rev Adv Mater Sci 2014; 38(2)
  111. Caminade A, Laurent R, Majoral J. Characterization of dendrimers. Adv Drug Deliv Rev 2005; 57(15): 2130-46. doi: 10.1016/j.addr.2005.09.011 PMID: 16289434
  112. Prabhu N, Keerthi C, Shruthi S, Sangeetha SK, Jeevitha S. A Review on green synthesis of silver nanoparticles, characterization techniques and its medical applications. European J Biotechnol Biosci 2019; 7(6): 10-22.
  113. Joshi M, Bhattacharyya A, Ali SW. Characterization techniques for nanotechnology applications in textiles. Indian J Fibre Textile Res 2008; 33(3): 304-17.
  114. Cuevas JC, Scheer E. Molecular electronics: An introduction to theory and experiment. World Sci Ser Nanosci Nanotechnol 2010; 15: 848. doi: 10.1142/7434
  115. Chapman HN, Fromme P, Barty A, et al. Femtosecond X-ray protein nanocrystallography. Nature 2011; 470(7332): 73-7. doi: 10.1038/nature09750 PMID: 21293373
  116. Inagaki S, Ghirlando R, Grisshammer R. Biophysical characterization of membrane proteins in nanodiscs. Methods 2013; 59(3): 287-300. doi: 10.1016/j.ymeth.2012.11.006 PMID: 23219517
  117. Jans H, Liu X, Austin L, Maes G, Huo Q. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Anal Chem 2009; 81(22): 9425-32. doi: 10.1021/ac901822w PMID: 19803497
  118. Khlebtsov BN, Khlebtsov NG. On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid J 2011; 73(1): 118-27. doi: 10.1134/S1061933X11010078
  119. Ramos ZBG, Garcia FMB, de Oliveira CS, et al. Dynamic light scattering and atomic force microscopy techniques for size determination of polyurethane nanoparticles. Mater Sci Eng C 2009; 29(2): 638-40. doi: 10.1016/j.msec.2008.10.040
  120. Fissan H, Ristig S, Kaminski H, Asbach C, Epple M. Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Anal Methods 2014; 6(18): 7324-34. doi: 10.1039/C4AY01203H
  121. Berne BJ, Pecora R. Dynamic light scattering: with applications to chemistry, biology, and physics. Courier Corporation 2000.
  122. Koppel DE. Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants. J Chem Phys 1972; 57(11): 4814-20. doi: 10.1063/1.1678153
  123. Dieckmann Y, Cölfen H, Hofmann H, Fink PA. Particle size distribution measurements of manganese-doped ZnS nanoparticles. Anal Chem 2009; 81(10): 3889-95. doi: 10.1021/ac900043y PMID: 19374425
  124. Murdock RC, Stolle BL, Schrand AM, Schlager JJ, Hussain SM. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 2008; 101(2): 239-53. doi: 10.1093/toxsci/kfm240 PMID: 17872897
  125. Lange H. Comparative test of methods to determine particle size and particle size distribution in the submicron range. Part Part Syst Charact 1995; 12(3): 148-57. doi: 10.1002/ppsc.19950120307
  126. Gerwert K. Molecular reaction mechanisms of proteins monitored by time-resolved FTIR-spectroscopy. Biol Chem 1999; 380(7-8): 931-5.
  127. Jung C. Insight into protein structure and protein-ligand recognition by Fourier transform infrared spectroscopy. J Mol Recognit 2000; 13(6): 325-51. doi: 10.1002/1099-1352(200011/12)13:63.0.CO;2-C PMID: 11114067
  128. Kim S, Barry BA. Reaction-induced FT-IR spectroscopic studies of biological energy conversion in oxygenic photosynthesis and transport. J Phys Chem B 2001; 105(19): 4072-83. doi: 10.1021/jp0042516
  129. Mäntele WG, Wollenweber AM, Nabedryk E, Breton J. Infrared spectroelectrochemistry of bacteriochlorophylls and bacteriopheophytins: Implications for the binding of the pigments in the reaction center from photosynthetic bacteria. Proc Natl Acad Sci 1988; 85(22): 8468-72. doi: 10.1073/pnas.85.22.8468 PMID: 16593991
  130. Vogel R, Siebert F. Vibrational spectroscopy as a tool for probing protein function. Curr Opin Chem Biol 2000; 4(5): 518-23. doi: 10.1016/S1367-5931(00)00125-3 PMID: 11006538
  131. Wharton CW. Infrared spectroscopy of enzyme reaction intermediates. Nat Prod Rep 2000; 17(5): 447-53. doi: 10.1039/b002066o PMID: 11072892
  132. Zscherp C, Barth A. Reaction-induced infrared difference spectroscopy for the study of protein reaction mechanisms. Biochemistry 2001; 40(7): 1875-83. doi: 10.1021/bi002567y PMID: 11329252
  133. Shang L, Wang Y, Jiang J, Dong S. pH-dependent protein conformational changes in albumin: Gold nanoparticle bioconjugates: A spectroscopic study. Langmuir 2007; 23(5): 2714-21. doi: 10.1021/la062064e PMID: 17249699
  134. Perevedentseva EV, Su FY, Su TH, et al. Laser-optical investigation of the effect of diamond nanoparticles on the structure and functional properties of proteins. Quantum Electron 2010; 40(12): 1089. doi: 10.1070/QE2010v040n12ABEH014507
  135. Mohi-ud-din R, Chawla A, Sharma P, et al. Repurposing approved non-oncology drugs for cancer therapy: A comprehensive review of mechanisms, efficacy, and clinical prospects. Eur J Med Res 2023; 28(1): 345. doi: 10.1186/s40001-023-01275-4 PMID: 37710280
  136. Baudot C, Tan CM, Kong JC. FTIR spectroscopy as a tool for nano-material characterization. Infrared Phys Technol 2010; 53(6): 434-8. doi: 10.1016/j.infrared.2010.09.002
  137. Barth A, Zscherp C. What vibrations tell about proteins. Q Rev Biophys 2002; 35(4): 369-430. doi: 10.1017/S0033583502003815 PMID: 12621861
  138. Kumar S, Barth A. Following enzyme activity with infrared spectroscopy. Sensors 2010; 10(4): 2626-37. doi: 10.3390/s100402626 PMID: 22319264
  139. Goormaghtigh E, Raussens V, Ruysschaert JM. Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim Biophys Acta Rev Biomembr 1999; 1422(2): 105-85. doi: 10.1016/S0304-4157(99)00004-0 PMID: 10393271
  140. Hind AR, Bhargava SK, McKinnon A. At the solid/liquid interface: FTIR/ATR — the tool of choice. Adv Colloid Interface Sci 2001; 93(1-3): 91-114. doi: 10.1016/S0001-8686(00)00079-8 PMID: 11591110
  141. Kazarian SG, Chan KLA. Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochim Biophys Acta Biomembr 2006; 1758(7): 858-67. doi: 10.1016/j.bbamem.2006.02.011 PMID: 16566893
  142. Liu H, Webster TJ. Nanomedicine for implants: A review of studies and necessary experimental tools. Biomaterials 2007; 28(2): 354-69. doi: 10.1016/j.biomaterials.2006.08.049 PMID: 21898921
  143. Acosta EJ, Gonzalez SO, Simanek EE. Synthesis, characterization, and application of melamine-based dendrimers supported on silica gel. J Polym Sci A Polym Chem 2005; 43(1): 168-77. doi: 10.1002/pola.20493
  144. Demathieu C, Chehimi MM, Lipskier JF, Caminade AM, Majoral JP. Characterization of dendrimers by X-ray photoelectron spectroscopy. Appl Spectrosc 1999; 53(10): 1277-81. doi: 10.1366/0003702991945524
  145. Manna A, Imae T, Aoi K, Okada M, Yogo T. Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: Comparison of size between silver and gold particles. Chem Mater 2001; 13(5): 1674-81. doi: 10.1021/cm000416b
  146. Desimoni E, Brunetti B. X-ray photoelectron spectroscopic characterization of chemically modified electrodes used as chemical sensors and biosensors: A review. Materials 2015; 3(2): 70-117.
  147. Gautam SP, Gupta AK, Agrawal S, Sureka S. Spectroscopic characterization of dendrimers. Int J Pharm Pharm Sci 2012; 4(2): 77-80.
  148. Pawley JB. The development of field-emission scanning electron microscopy for imaging biological surfaces. Scanning-New York and Baden Baden Then Mahwah 1997; 19: 324-6.
  149. Wang ZL. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 2000; 104(6): 1153-75. doi: 10.1021/jp993593c
  150. Yao H, Kimura K. Field emission scanning electron microscopy for structural characterization of 3D gold nanoparticle superlattices. Modern Res Educational Topics Microscopy 2007; 2: 568-76.
  151. Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE. Characterization of nanoparticles for therapeutics. Nanomedicine 2007; 2(6): 789-803. doi: 10.2217/17435889.2.6.789
  152. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science: An introduction to materials in medicine. Elsevier 2004.
  153. Carter CB, Williams DB, Eds. Transmission electron microscopy: Diffraction, imaging, and spectrometry. Springer 2016. doi: 10.1007/978-3-319-26651-0
  154. Hinterdorfer P, Parajo GMF, Dufrêne YF. Single-molecule imaging of cell surfaces using near-field nanoscopy. Acc Chem Res 2012; 45(3): 327-36. doi: 10.1021/ar2001167 PMID: 21992025
  155. Koh AL, Hu W, Wilson RJ, Wang SX, Sinclair R. TEM analyses of synthetic anti-ferromagnetic (SAF) nanoparticles fabricated using different release layers. Ultramicroscopy 2008; 108(11): 1490-4. doi: 10.1016/j.ultramic.2008.03.012 PMID: 18672328
  156. Mavrocordatos D, Pronk W, Boller M. Analysis of environmental particles by atomic force microscopy, scanning and transmission electron microscopy. Water Sci Technol 2004; 50(12): 9-18. doi: 10.2166/wst.2004.0690 PMID: 15685998
  157. Picas L, Milhiet PE, Borrell HJ. Atomic force microscopy: A versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale. Chem Phys Lipids 2012; 165(8): 845-60. doi: 10.1016/j.chemphyslip.2012.10.005 PMID: 23194897
  158. Song J, Kim H, Jang Y, Jang J. Enhanced antibacterial activity of silver/polyrhodanine-composite-decorated silica nanoparticles. ACS Appl Mater Interfaces 2013; 5(22): 11563-8. doi: 10.1021/am402310u PMID: 24156562
  159. Parot P, Dufrêne YF, Hinterdorfer P, et al. Past, present and future of atomic force microscopy in life sciences and medicine. J Mol Recognit 2007; 20(6): 418-31. doi: 10.1002/jmr.857 PMID: 18080995
  160. Yang L, Watts DJ. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 2005; 158(2): 122-32. doi: 10.1016/j.toxlet.2005.03.003 PMID: 16039401
  161. Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellöv M. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2008; 25(7): 795-821. doi: 10.1080/02652030802007553 PMID: 18569000
  162. Gmoshinski IV, Khotimchenko SA, Popov VO, et al. Nanomaterials and nanotechnologies: Methods of analysis and control. Russ Chem Rev 2013; 82(1): 48-76. doi: 10.1070/RC2013v082n01ABEH004329
  163. Sikora A, Rodak A, Unold O, Klapetek P. The development of the spatially correlated adjustment wavelet filter for atomic force microscopy data. Ultramicroscopy 2016; 171: 146-52. doi: 10.1016/j.ultramic.2016.09.012 PMID: 27686275
  164. Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 2005; 23(6): 741-5. doi: 10.1038/nbt1100 PMID: 15908940
  165. Sannomiya T, Hafner C, Voros J. In situ sensing of single binding events by localized surface plasmon resonance. Nano Lett 2008; 8(10): 3450-5. doi: 10.1021/nl802317d
  166. Li C, Wu C, Zheng J, Lai J, Zhang C, Zhao Y. LSPR sensing of molecular biothiols based on noncoupled gold nanorods. Langmuir 2010; 26(11): 9130-5. doi: 10.1021/la101285r PMID: 20426452
  167. Shopova SI, Rajmangal R, Holler S, Arnold S. Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection. Appl Phys Lett 2011; 98(24): 243104. doi: 10.1063/1.3599584
  168. Zijlstra P, Paulo PMR, Orrit M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nanotechnol 2012; 7(6): 379-82. doi: 10.1038/nnano.2012.51 PMID: 22504707
  169. Lis D, Cecchet F. Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: Towards an astonishing molecular sensitivity. Beilstein J Nanotechnol 2014; 5(1): 2275-92. doi: 10.3762/bjnano.5.237 PMID: 25551056
  170. Torresdey GJL, Tiemann KJ, Dokken K, Pingitore NE. Recovery of gold (III) by alfalfa biomass and binding characterization using X-ray microfluoresence. Adv Environ Res 1999; 34(20): U7-U93.
  171. Armendariz V, Herrera I, videa PJR, et al. Size controlled gold nanoparticle formation by Avena sativa biomass: Use of plants in nanobiotechnology. J Nanopart Res 2004; 6(4): 377-82. doi: 10.1007/s11051-004-0741-4
  172. Soni N, Prakash S. Factors affecting the geometry of silver nanoparticles synthesis in Chrysosporium tropicum and Fusarium oxysporum. Am J Nanotechnol 2011; 2(1): 112-21.
  173. Torresdey GJL, Tiemann KJ, Gamez G, Dokken K, Tehuacanero S, Yacamán JM. Gold nanoparticles obtained by bio-precipitation from gold (III) solutions. J Nanopart Res 1999; 1(3): 397-404. doi: 10.1023/A:1010008915465
  174. Dubey SP, Lahtinen M, Sillanpää M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 2010; 45(7): 1065-71. doi: 10.1016/j.procbio.2010.03.024
  175. Sathishkumar M, Sneha K, Won SW, Cho CW, Kim S, Yun YS. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B Biointerfaces 2009; 73(2): 332-8. doi: 10.1016/j.colsurfb.2009.06.005 PMID: 19576733
  176. Kumar V, Yadav SK. Synthesis of different-sized silver nanoparticles by simply varying reaction conditions with leaf extracts of Bauhinia variegata L. IET Nanobiotechnol 2012; 6(1): 1-8.
  177. Cui S, Zhang S, Ge S, Xiong L, Sun Q. Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Ind Crops Prod 2016; 83: 346-52. doi: 10.1016/j.indcrop.2016.01.019
  178. Sadeghi B, Gholamhoseinpoor F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta A Mol Biomol Spectrosc 2015; 134: 310-5. doi: 10.1016/j.saa.2014.06.046 PMID: 25022503
  179. Moon J, Hedman HP, Kemell M, et al. A study of monitoring hydrogen using mesoporous TiO2 synthesized by anodization. Sens Actuators B Chem 2013; 189: 246-50. doi: 10.1016/j.snb.2013.05.070
  180. Huang X, Jain PK, Sayed EIH, Sayed EMA. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem Photobiol 2006; 82(2): 412-7. doi: 10.1562/2005-12-14-RA-754 PMID: 16613493
  181. Sultan M, Siddique M, Khan R, et al. Ligustrum lucidum leaf extract-assisted green synthesis of silver nanoparticles and nano-adsorbents having potential in ultrasound-assisted adsorptive removal of methylene blue dye from wastewater and antimicrobial activity. Materials 2022; 15(5): 1637. doi: 10.3390/ma15051637 PMID: 35268867
  182. Narayanan KB, Sakthivel N. Phytosynthesis of gold nanoparticles using leaf extract of Coleus amboinicus Lour. Mater Charact 2010; 61(11): 1232-8. doi: 10.1016/j.matchar.2010.08.003
  183. Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S. Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 2009; 63(15): 1231-4. doi: 10.1016/j.matlet.2009.02.042
  184. Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK. Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B Biointerfaces 2009; 74(1): 309-16. doi: 10.1016/j.colsurfb.2009.07.040 PMID: 19700266
  185. Sadhasivam S, Shanmugam P, Yun K. Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B Biointerfaces 2010; 81(1): 358-62. doi: 10.1016/j.colsurfb.2010.07.036 PMID: 20705438
  186. Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 2002; 78(5): 583-8. doi: 10.1002/bit.10233 PMID: 12115128
  187. Darroudi M, Ahmad MB, Zamiri R, Zak AK, Abdullah AH, Ibrahim NA. Time-dependent effect in green synthesis of silver nanoparticles. Int J Nanomed 2011; 6: 677-81. doi: 10.2147/IJN.S17669 PMID: 21556342
  188. Kuchibhatla SVNT, Karakoti AS, Baer DR, et al. Influence of aging and environment on nanoparticle chemistry: Implication to confinement effects in nanoceria. J Phys Chem C 2012; 116(26): 14108-14. doi: 10.1021/jp300725s PMID: 23573300
  189. Mudunkotuwa IA, Pettibone JM, Grassian VH. Environmental implications of nanoparticle aging in the processing and fate of copper-based nanomaterials. Environ Sci Technol 2012; 46(13): 7001-10. doi: 10.1021/es203851d PMID: 22280489
  190. Baer DR. Surface characterization of nanoparticles: Critical needs and significant challenges. J Surf Anal 2011; 17(3): 163-9. doi: 10.1384/jsa.17.163 PMID: 25342927
  191. Ahmad N, Sharma S. Green synthesis of silver nanoparticles using extracts of Ananas comosus. Green Sustain Chem 2012; 2(4): 141-7.
  192. Prasad TNVKV, Kambala VSR, Naidu R. Phyconanotechnology: Synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. J Appl Phycol 2013; 25(1): 177-82. doi: 10.1007/s10811-012-9851-z
  193. Rai A, Singh A, Ahmad A, Sastry M. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir 2006; 22(2): 736-41. doi: 10.1021/la052055q PMID: 16401125
  194. Song JY, Jang HK, Kim BS. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem 2009; 44(10): 1133-8. doi: 10.1016/j.procbio.2009.06.005
  195. Pan P, Hu C, Yang W, et al. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresour Technol 2010; 101(12): 4593-9. doi: 10.1016/j.biortech.2010.01.070 PMID: 20153636
  196. Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K. Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 2011; 79(3): 594-8. doi: 10.1016/j.saa.2011.03.040 PMID: 21536485
  197. Song JY, Kwon EY, Kim BS. Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 2010; 33(1): 159-64. doi: 10.1007/s00449-009-0373-2 PMID: 19701776
  198. Gericke M, Pinches A. Microbial production of gold nanoparticles. Gold Bull 2006; 39(1): 22-8. doi: 10.1007/BF03215529
  199. Gericke M, Pinches A. Biological synthesis of metal nanoparticles. Hydrometallurgy 2006; 83(1-4): 132-40. doi: 10.1016/j.hydromet.2006.03.019
  200. Foss JF, Bohl DG, Hicks TJ. The pulse width modulated - constant temperature anemometer. Meas Sci Technol 1996; 7(10): 1388-95. doi: 10.1088/0957-0233/7/10/009
  201. Thirumurugan A, Aswitha P, Kiruthika C, Nagarajan S, Christy AN. Green synthesis of platinum nanoparticles using Azadirachta indica - An eco-friendly approach. Mater Lett 2016; 170: 175-8. doi: 10.1016/j.matlet.2016.02.026
  202. Jameel MS, Aziz AA, Dheyab MA. Green synthesis: Proposed mechanism and factors influencing the synthesis of platinum nanoparticles. Green Proc Synth 2020; 9(1): 386-98.
  203. Wynsberghe VM, Flejeo J, Sakhi H, et al. Nephrotoxicity of anti-angiogenic therapies. Diagnostics 2021; 11(4): 640. doi: 10.3390/diagnostics11040640 PMID: 33916159
  204. Khalil AT, Ovais M, Ullah I, et al. Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif Cells Nanomed Biotechnol 2018; 46(4): 838-52. doi: 10.1080/21691401.2017.1345928 PMID: 28687045
  205. Shanmuganathan R, Karuppusamy I, Saravanan M, et al. Synthesis of silver nanoparticles and their biomedical applications-A comprehensive review. Curr Pharm Des 2019; 25(24): 2650-60. doi: 10.2174/1381612825666190708185506 PMID: 31298154
  206. Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R, Mukherjee P. Intrinsic therapeutic applications of noble metal nanoparticles: Past, present and future. Chem Soc Rev 2012; 41(7): 2943-70. doi: 10.1039/c2cs15355f PMID: 22388295
  207. Ovais M, Khalil AT, Raza A, et al. Green synthesis of silver nanoparticles via plant extracts: Beginning a new era in cancer theranostics. Nanomedicine 2016; 11(23): 3157-77. doi: 10.2217/nnm-2016-0279 PMID: 27809668
  208. Sperling RA, Parak WJ. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophic Trans Royal Soc A: Math, Phys Eng Sci 2010; 368(1915): 1333-83.
  209. Erathodiyil N, Ying JY. Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res 2011; 44(10): 925-35. doi: 10.1021/ar2000327 PMID: 21648430
  210. Algal nanoparticles: Synthesis and biotechnological potentials. Algae-organ Imminent Biotechnol 2016; 7: 157-82.
  211. Benelli G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: A review. Parasitol Res 2016; 115(1): 23-34. doi: 10.1007/s00436-015-4800-9 PMID: 26541154
  212. Husen A, Siddiqi KS. Phytosynthesis of nanoparticles: Concept, controversy and application. Nanoscale Res Lett 2014; 9(1): 229. doi: 10.1186/1556-276X-9-229 PMID: 24910577
  213. Wei L, Lu J, Xu H, Patel A, Chen ZS, Chen G. Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discov Today 2015; 20(5): 595-601. doi: 10.1016/j.drudis.2014.11.014 PMID: 25543008
  214. LewisOscar F, MubarakAli D, Nithya C, et al. One pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa. Biofouling 2015; 31(4): 379-91. doi: 10.1080/08927014.2015.1048686 PMID: 26057498
  215. Chari N, Felix L, Davoodbasha M, Ali SA, Nooruddin T. In vitro and in vivo antibiofilm effect of copper nanoparticles against aquaculture pathogens. Biocatal Agric Biotechnol 2017; 10: 336-41. doi: 10.1016/j.bcab.2017.04.013
  216. MubarakAli D, Arunkumar J, Pooja P, Subramanian G, Thajuddin N, Alharbi NS. Synthesis and characterization of biocompatibility of tenorite nanoparticles and potential property against biofilm formation. Saudi Pharm J 2015; 23(4): 421-8. doi: 10.1016/j.jsps.2014.11.007 PMID: 27134545
  217. Shanmuganathan R, MubarakAli D, Prabakar D, et al. An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: Green approach. Environ Sci Pollut Res Int 2018; 25(11): 10362-70. doi: 10.1007/s11356-017-9367-9 PMID: 28600792
  218. MubarakAli D, Thajuddin N, Jeganathan K, Gunasekaran M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B Biointerfaces 2011; 85(2): 360-5. doi: 10.1016/j.colsurfb.2011.03.009 PMID: 21466948
  219. Ojha AK, Rout J, Behera S, Nayak PL. Green synthesis and characterization of zero valent silver nanoparticles from the leaf extract of Datura metel. Int J Pharm Res Allied Sci 2013; 2: 31-5.
  220. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 2005; 19(7): 975-83. doi: 10.1016/j.tiv.2005.06.034 PMID: 16125895
  221. Liu W, Wu Y, Wang C, et al. Impact of silver nanoparticles on human cells: Effect of particle size. Nanotoxicology 2010; 4(3): 319-30. doi: 10.3109/17435390.2010.483745 PMID: 20795913
  222. Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 2008; 179(3): 130-9. doi: 10.1016/j.toxlet.2008.04.015 PMID: 18547751
  223. Braga VT, Graff MR, Wojdyla K, et al. Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics. ACS Nano 2014; 8(3): 2161-75. doi: 10.1021/nn4050744 PMID: 24512182
  224. Hussain MS, Gupta G, Afzal M, et al. Exploring the role of lncrna neat1 knockdown in regulating apoptosis across multiple cancer types: A review. Pathol Res Pract 2023; 252: 154908. doi: 10.1016/j.prp.2023.154908 PMID: 37950931
  225. Carlson C, Hussain SM, Schrand AMK, et al. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. J Phys Chem B 2008; 112(43): 13608-19. doi: 10.1021/jp712087m PMID: 18831567
  226. Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 2009; 190(2): 156-62. doi: 10.1016/j.toxlet.2009.07.009 PMID: 19607894
  227. Foldbjerg R, Irving ES, Hayashi Y, et al. Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol Sci 2012; 130(1): 145-57. doi: 10.1093/toxsci/kfs225 PMID: 22831968
  228. Kim S, Choi JE, Choi J, et al. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 2009; 23(6): 1076-84. doi: 10.1016/j.tiv.2009.06.001 PMID: 19508889
  229. Avalos A, Haza AI, Mateo D, Morales P. Interactions of manufactured silver nanoparticles of different sizes with normal human dermal fibroblasts. Int Wound J 2016; 13(1): 101-9. doi: 10.1111/iwj.12244 PMID: 24612846
  230. Piao MJ, Kang KA, Lee IK, et al. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 2011; 201(1): 92-100. doi: 10.1016/j.toxlet.2010.12.010 PMID: 21182908
  231. Eom HJ, Choi J. p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol 2010; 44(21): 8337-42. doi: 10.1021/es1020668 PMID: 20932003
  232. Nishanth RP, Jyotsna RG, Schlager JJ, Hussain SM, Reddanna P. Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: Role of ROS-NFκB signaling pathway. Nanotoxicology 2011; 5(4): 502-16. doi: 10.3109/17435390.2010.541604 PMID: 21417802
  233. Hussain MS, Gupta G, Samuel VP, et al. Immunopathology of herpes simplex virus-associated neuroinflammation: Unveiling the mysteries. Rev Med Virol 2024; 34(1): e2491. doi: 10.1002/rmv.2491 PMID: 37985599
  234. Sethu S, Lim HK, Balaji G, Valiyaveettil S, Hande MP. Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr 2012; 3: 1-4.
  235. Asare N, Instanes C, Sandberg WJ, et al. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology 2012; 291(1-3): 65-72. doi: 10.1016/j.tox.2011.10.022 PMID: 22085606
  236. Kwok KWH, Auffan M, Badireddy AR, et al. Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): Effect of coating materials. Aquat Toxicol 2012; 120-121: 59-66. doi: 10.1016/j.aquatox.2012.04.012 PMID: 22634717
  237. Hussain MS, Gupta G, Goyal A, et al. From nature to therapy: Luteolin’s potential as an immune system modulator in inflammatory disorders. J Biochem Mol Toxicol 2023; 37(11): e23482. doi: 10.1002/jbt.23482 PMID: 37530602
  238. Ahamed M, Karns M, Goodson M, et al. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 2008; 233(3): 404-10. doi: 10.1016/j.taap.2008.09.015 PMID: 18930072
  239. Chichova M, Shkodrova M, Vasileva P, Kirilova K, Stoimenova DD. Influence of silver nanoparticles on the activity of rat liver mitochondrial ATPase. J Nanopart Res 2014; 16(2): 2243. doi: 10.1007/s11051-014-2243-3
  240. De Matteis V, Malvindi MA, Galeone A, et al. Negligible particle-specific toxicity mechanism of silver nanoparticles: The role of Ag+ ion release in the cytosol. Nanomedicine 2015; 11(3): 731-9. doi: 10.1016/j.nano.2014.11.002 PMID: 25546848
  241. Nair LS, Laurencin CT. Silver nanoparticles: Synthesis and therapeutic applications. J Biomed Nanotechnol 2007; 3(4): 301-16. doi: 10.1166/jbn.2007.041
  242. Panáček A, Kvítek L, Prucek R, et al. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J Phys Chem B 2006; 110(33): 16248-53. doi: 10.1021/jp063826h PMID: 16913750
  243. Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002; 298(5601): 2176-9.
  244. Kruis FE, Fissan H, Rellinghaus B. Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Mater Sci Eng B 2000; 69-70: 329-34. doi: 10.1016/S0921-5107(99)00298-6
  245. Tien DC, Liao CY, Huang JC, et al. Novel technique for preparing a nano-silver water suspension by the arc-discharge method. Rev Adv Mater Sci 2008; 18(8): 752-8.
  246. Shameli K, Zargar M, Darroudi M, et al. Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity. Int J Nanomed 2010; 5: 875-87. doi: 10.2147/IJN.S13632 PMID: 21116328
  247. Nour AEKMM, Eftaiha A, Warthan AA, Ammar RAA. Synthesis and applications of silver nanoparticles. Arab J Chem 2010; 3(3): 135-40. doi: 10.1016/j.arabjc.2010.04.008
  248. Tao A, Sinsermsuksakul P, Yang P. Polyhedral silver nanocrystals with distinct scattering signatures. Angew Chem Int Ed Engl 2006; 45(28): 4597-601.
  249. Wiley B, Sun Y, Mayers B, Xia Y. Shape-controlled synthesis of metal nanostructures: The case of silver. Chemistry 2005; 11(2): 454-63. doi: 10.1002/chem.200400927 PMID: 15565727
  250. Mir RH, Mir PA, Uppal J, et al. Evolution of natural product scaffolds as potential proteasome inhibitors in developing cancer therapeutics. Metabolites 2023; 13(4): 509. doi: 10.3390/metabo13040509 PMID: 37110167
  251. Li WR, Xie XB, Shi QS, Zeng HY, OU-Yang YS, Chen YB. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 2010; 85(4): 1115-22. doi: 10.1007/s00253-009-2159-5 PMID: 19669753
  252. Deepak V, Umamaheshwaran PS, Guhan K, et al. Synthesis of gold and silver nanoparticles using purified URAK. Colloids Surf B Biointerfaces 2011; 86(2): 353-8. doi: 10.1016/j.colsurfb.2011.04.019 PMID: 21592748
  253. Mallick K, Witcomb MJ, Scurrell MS. Polymer stabilized silver nanoparticles: A photochemical synthesis route. J Mater Sci 2004; 39(14): 4459-63. doi: 10.1023/B:JMSC.0000034138.80116.50
  254. Malik MA, O’Brien P, Revaprasadu N. A simple route to the synthesis of core/shell nanoparticles of chalcogenides. Chem Mater 2002; 14(5): 2004-10. doi: 10.1021/cm011154w
  255. Mafuné F, Kohno J, Takeda Y, Kondow T, Sawabe H. Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 2000; 104(39): 9111-7. doi: 10.1021/jp001336y
  256. Zhu JJ, Liao XH, Zhao XN, Chen HY. Preparation of silver nanorods by electrochemical methods. Mater Lett 2001; 49(2): 91-5. doi: 10.1016/S0167-577X(00)00349-9
  257. Mashkani HSM, Ramezani M. Silver and silver oxide nanoparticles: Synthesis and characterization by thermal decomposition. Mater Lett 2014; 130: 259-62. doi: 10.1016/j.matlet.2014.05.133
  258. Gurunathan S, Han JW, Kim E, Park JH, Kim JH. Reduction of graphene oxide by resveratrol: A novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule. Int J Nanomed 2015; 10: 2951-69. doi: 10.2147/IJN.S79879 PMID: 25931821
  259. Anastas P, Eghbali N. Green chemistry: Principles and practice. Chem Soc Rev 2010; 39(1): 301-12. doi: 10.1039/B918763B PMID: 20023854
  260. Rafique M, Sadaf I, Rafique MS, Tahir MB. A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomed Biotechnol 2017; 45(7): 1272-91. doi: 10.1080/21691401.2016.1241792 PMID: 27825269
  261. Ali M, Kim B, Belfield KD, Norman D, Brennan M, Ali GS. Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract-A comprehensive study. Mater Sci Eng C 2016; 58: 359-65. doi: 10.1016/j.msec.2015.08.045 PMID: 26478321
  262. Mohi-ud-din R, Mir RH, Pottoo FH, Sawhney G, Masoodi MH, Bhat ZA. Nanophytomedicine ethical issues, regulatory aspects, and challenges. Nanophytomedicine: Concept to clinic. Springer 2020; pp. 173-92. doi: 10.1007/978-981-15-4909-0_10
  263. Kalimuthu K, Babu SR, Venkataraman D, Bilal M, Gurunathan S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces 2008; 65(1): 150-3. doi: 10.1016/j.colsurfb.2008.02.018 PMID: 18406112
  264. Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 2008; 62(29): 4411-3. doi: 10.1016/j.matlet.2008.06.051
  265. Nair B, Pradeep T. Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2002; 2(4): 293-8. doi: 10.1021/cg0255164
  266. Kalishwaralal K, Deepak V, Pandian RKS, et al. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B Biointerfaces 2010; 77(2): 257-62. doi: 10.1016/j.colsurfb.2010.02.007 PMID: 20197229
  267. Shankar SS, Ahmad A, Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 2003; 19(6): 1627-31. doi: 10.1021/bp034070w PMID: 14656132
  268. Gurunathan S, Han JW, Dayem AA, et al. Green synthesis of anisotropic silver nanoparticles and its potential cytotoxicity in human breast cancer cells (MCF-7). J Ind Eng Chem 2013; 19(5): 1600-5. doi: 10.1016/j.jiec.2013.01.029
  269. Gurunathan S, Jeong JK, Han JW, Zhang XF, Park JH, Kim JH. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res Lett 2015; 10(1): 35. doi: 10.1186/s11671-015-0747-0 PMID: 25852332
  270. Gurunathan S. Biologically synthesized silver nanoparticles enhances antibiotic activity against Gram-negative bacteria. J Ind Eng Chem 2015; 29: 217-26. doi: 10.1016/j.jiec.2015.04.005
  271. Shankar S, Rhim JW. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydr Polym 2015; 130: 353-63. doi: 10.1016/j.carbpol.2015.05.018 PMID: 26076636
  272. Gurunathan S, Han JW, Kwon DN, Kim JH. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res Lett 2014; 9(1): 373. doi: 10.1186/1556-276X-9-373 PMID: 25136281
  273. Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine 2010; 6(2): 257-62. doi: 10.1016/j.nano.2009.07.002 PMID: 19616126
  274. Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 2007; 73(6): 1712-20. doi: 10.1128/AEM.02218-06 PMID: 17261510
  275. Pyatenko A, Yamaguchi M, Suzuki M. Synthesis of spherical silver nanoparticles with controllable sizes in aqueous solutions. J Phys Chem C 2007; 111(22): 7910-7. doi: 10.1021/jp071080x
  276. Khodashenas B, Ghorbani HR. Synthesis of silver nanoparticles with different shapes. Arab J Chem 2019; 12(8): 1823-38. doi: 10.1016/j.arabjc.2014.12.014
  277. Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: A review. Arab J Chem 2019; 12(8): 3576-600. doi: 10.1016/j.arabjc.2015.11.002
  278. Nasrollahzadeh M, Atarod M, Sajjadi M, Sajadi SM, Issaabadi Z. Plant-mediated green synthesis of nanostructures: Mechanisms, characterization, and applications. In Interface Science Technology. Elsevier 2019; 28: pp. 199-322. doi: 10.1016/B978-0-12-813586-0.00006-7
  279. Thakur PK, Verma V. A review on green synthesis, characterization and anticancer application of metallic nanoparticles. Appl Biochem Biotechnol 2021; 193(7): 2357-78. doi: 10.1007/s12010-021-03598-6 PMID: 34114200
  280. Gowda BHJ, Ahmed MG, Chinnam S, et al. Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery. J Drug Deliv Sci Technol 2022; 71: 103305. doi: 10.1016/j.jddst.2022.103305
  281. Auda MM, Shareef HA, Mohammed BL. Green synthesis of silver nanoparticles using the extract of Rheum ribes and evaluating their antifungal activity against some of Candida sp. Tikrit J Pure Science 2022; 26(2): 53-9. doi: 10.25130/tjps.v26i2.119
  282. Deepa , Ameen F, Islam AM, Dhanker R. Green synthesis of silver nanoparticles from vegetable waste of pea Pisum sativum and bottle gourd Lagenaria siceraria: Characterization and antibacterial properties. Front Environ Sci 2022; 10: 941554. doi: 10.3389/fenvs.2022.941554
  283. Mondal A, Mondal A, Sen K, Debnath P, Mondal NK. Synthesis, characterization and optimization of chicken bile-mediated silver nanoparticles: A mechanistic insight into antibacterial and antibiofilm activity. Environ Sci Pollut Res Int 2022; 30(6): 16525-38. doi: 10.1007/s11356-022-23401-1 PMID: 36190628
  284. Koładka WK, Malina D, Suder A, Pluta K, Wzorek Z. Bio-based synthesis of silver nanoparticles from waste agricultural biomass and its antimicrobial activity. Processes 2022; 10(2): 389. doi: 10.3390/pr10020389
  285. Fadli RM, Nuruddin A, Yuliarto B. Green synthesis of silver/silver chloride nanoparticles using shallot peel extract as reducing agent. J Phys: Conf Ser Bali Indonesia 2024; 2705(1): 012011.
  286. Mohamed SA. Eco-friendly green biosynthesis of silver nanoparticles (Or-AgNPs) using orange peel (Citrus sinensis) waste and evaluation of their antibacterial and cytotoxic activities. Nano Hybrids Compos 2022; 36: 57-68. doi: 10.4028/p-9pjwgi
  287. Patel S, Patel N. Tectona grandis seed mediated green synthesis of silver nanoparticles and their antibacterial activity. Trends Sci 2023; 20(5): 5104. doi: 10.48048/tis.2023.5104
  288. Ahamad I, Aziz N, Zaki A, Fatma T. Synthesis and characterization of silver nanoparticles using Anabaena variabilis as a potential antimicrobial agent. J Appl Phycol 2021; 33(2): 829-41. doi: 10.1007/s10811-020-02323-w
  289. Chakraborty N, Ghosh S, Samanta M, Das B, Chattopadhyay KK. Silver nanoparticle decorated perforated graphene: An efficient and low-cost catalyst for hydrogen evolution reaction. ECS J Solid State Sci Technol 2023; 12(10): 101001. doi: 10.1149/2162-8777/acfbb5
  290. Sepeur S. Nanotechnology: Technical basics and applications. Vincentz Network GmbH & Co KG 2008.
  291. Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci 2006; 51(4): 427-556. doi: 10.1016/j.pmatsci.2005.08.003
  292. Mukherjee P, Ahmad A, Mandal D, et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett 2001; 1(10): 515-9. doi: 10.1021/nl0155274
  293. Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 2013; 31(2): 346-56. doi: 10.1016/j.biotechadv.2013.01.003 PMID: 23318667
  294. Sintubin L, Verstraete W, Boon N. Biologically produced nanosilver: Current state and future perspectives. Biotechnol Bioeng 2012; 109(10): 2422-36. doi: 10.1002/bit.24570 PMID: 22674445
  295. Prabhu S, Poulose EK. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2012; 2(1): 32. doi: 10.1186/2228-5326-2-32
  296. Karthik L, Kumar G, Kirthi AV, Rahuman AA, Rao BKV. Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng 2014; 37(2): 261-7. doi: 10.1007/s00449-013-0994-3 PMID: 23771163
  297. Vaidyanathan R, Gopalram S, Kalishwaralal K, Deepak V, Pandian SRK, Gurunathan S. Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloids Surf B Biointerfaces 2010; 75(1): 335-41. doi: 10.1016/j.colsurfb.2009.09.006 PMID: 19796922
  298. Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M. Biogenic synthesis of metal nanoparticles from actinomycetes: Biomedical applications and cytotoxicity. Appl Microbiol Biotechnol 2014; 98(19): 8083-97. doi: 10.1007/s00253-014-5953-7 PMID: 25158833
  299. van Hullebusch ED, Zandvoort MH, Lens PNL. Metal immobilisation by biofilms: Mechanisms and analytical tools. Rev Environ Sci Biotechnol 2003; 2(1): 9-33. doi: 10.1023/B:RESB.0000022995.48330.55
  300. Lin Z, Zhou C, Wu J, Zhou J, Wang L. A further insight into the mechanism of Ag+ biosorption by Lactobacillus sp. strain A09. Spectrochim Acta A Mol Biomol Spectrosc 2005; 61(6): 1195-200. doi: 10.1016/j.saa.2004.06.041 PMID: 15741121
  301. Sintubin L, De Windt W, Dick J, et al. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 2009; 84(4): 741-9. doi: 10.1007/s00253-009-2032-6 PMID: 19488750
  302. Nanda A, Saravanan M. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 2009; 5(4): 452-6. doi: 10.1016/j.nano.2009.01.012 PMID: 19523420
  303. Samadi N, Golkaran D, Eslamifar A, Jamalifar H, Fazeli MR, Mohseni FA. Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste. J Biomed Nanotechnol 2009; 5(3): 247-53. doi: 10.1166/jbn.2009.1029 PMID: 20055006
  304. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochem 2007; 42(5): 919-23. doi: 10.1016/j.procbio.2007.02.005
  305. Kharissova OV, Dias HVR, Kharisov BI, Pérez BO, Pérez VMJ. The greener synthesis of nanoparticles. Trends Biotechnol 2013; 31(4): 240-8. doi: 10.1016/j.tibtech.2013.01.003 PMID: 23434153
  306. Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: Technological concepts and future applications. J Nanopart Res 2008; 10(3): 507-17. doi: 10.1007/s11051-007-9275-x
  307. Dhillon GS, Brar SK, Kaur S, Verma M. Green approach for nanoparticle biosynthesis by fungi: Current trends and applications. Crit Rev Biotechnol 2012; 32(1): 49-73. doi: 10.3109/07388551.2010.550568 PMID: 21696293
  308. Sastry M, Ahmad A, Khan MI, Kumar R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 2003; 85(2): 162-70.
  309. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 2006; 69(5): 485-92. doi: 10.1007/s00253-005-0179-3 PMID: 16317546
  310. Kuppusamy P, Ichwan SJA, Zikri APNH, et al. In vitro anticancer activity of Au, Ag nanoparticles synthesized using Commelina nudiflora L. aqueous extract against HCT-116 colon cancer cells. Biol Trace Elem Res 2016; 173(2): 297-305. doi: 10.1007/s12011-016-0666-7 PMID: 26961292
  311. Ramasamy M, Lee JH, Lee J. Direct one-pot synthesis of cinnamaldehyde immobilized on gold nanoparticles and their antibiofilm properties. Colloids Surf B Biointerfaces 2017; 160: 639-48. doi: 10.1016/j.colsurfb.2017.10.018 PMID: 29031224
  312. Hanmoungjai P, Pyle DL, Niranjan K. Biotechnology: International research in process, E. Technology, C. Enzyme-assisted water-extraction of oil and protein from rice bran. Environ Clean Technol 2002; 77: 771-6.
  313. Mukunthan KS, Balaji S. Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles. International J Green Nanotechnol 2012; 4(2): 71-9. doi: 10.1080/19430892.2012.676900
  314. Sathishkumar P, Vennila K, Jayakumar R, Yusoff ARM, Hadibarata T, Palvannan T. Phyto-synthesis of silver nanoparticles using Alternanthera tenella leaf extract: An effective inhibitor for the migration of human breast adenocarcinoma (MCF-7) cells. Bioprocess Biosyst Eng 2016; 39(4): 651-9. doi: 10.1007/s00449-016-1546-4 PMID: 26801668
  315. Vijayaraghavan K, Nalini SPK, Prakash NU, Madhankumar D. Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum. Mater Lett 2012; 75: 33-5. doi: 10.1016/j.matlet.2012.01.083
  316. Jasuja ND, Gupta DK, Reza M, Joshi SC. Green synthesis of AgNPs stabilized with biowaste and their antimicrobial activities. Braz J Microbiol 2014; 45(4): 1325-32. doi: 10.1590/S1517-83822014000400024 PMID: 25763037
  317. Muniyappan N, Nagarajan NS. Green synthesis of silver nanoparticles with Dalbergia spinosa leaves and their applications in biological and catalytic activities. Process Biochem 2014; 49(6): 1054-61. doi: 10.1016/j.procbio.2014.03.015
  318. Mariselvam R, Ranjitsingh AJA, Nanthini URA, Kalirajan K, Padmalatha C, Selvakumar MP. Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 2014; 129: 537-41. doi: 10.1016/j.saa.2014.03.066 PMID: 24762541
  319. Ramteke C, Chakrabarti T, Sarangi BK, Pandey RA. Synthesis of silver nanoparticles from the aqueous extract of leaves of Ocimum sanctum for enhanced antibacterial activity. J Chem 2013; 2013.
  320. Arokiyaraj S, Arasu VM, Vincent S, et al. Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L. and its antibacterial and cytotoxic effects: An in vitro study. Int J Nanomedicine 2014; 9: 379-88. doi: 10.2147/IJN.S53546 PMID: 24426782
  321. Sundrarajan M, Gowri S. Green synthesis of titanium dioxide nanoparticles by Nyctanthes arbor-tristis leaves extract. Chalcogenide Lett 2011; 8(8): 447-51.
  322. Husain S, Sardar M, Fatma T. Screening of cyanobacterial extracts for synthesis of silver nanoparticles. World J Microbiol Biotechnol 2015; 31(8): 1279-83. doi: 10.1007/s11274-015-1869-3 PMID: 25971548
  323. Zinicovscaia I, Chiriac T, Cepoi L, et al. Selenium uptake and assessment of the biochemical changes in Arthrospira (Spirulina) platensis biomass during the synthesis of selenium nanoparticles. Can J Microbiol 2017; 63(1): 27-34. doi: 10.1139/cjm-2016-0339 PMID: 27841947
  324. Hamouda RA, Hussein MH, Elmagd ARA, Bawazir SS. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep 2019; 9(1): 13071. doi: 10.1038/s41598-019-49444-y PMID: 31506473
  325. Patel V, Berthold D, Puranik P, Gantar M. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep 2015; 5: 112-9. doi: 10.1016/j.btre.2014.12.001 PMID: 28626689
  326. Parial D, Pal R. Green synthesis of gold nanoparticles using cyanobacteria and their characterization. Indian J Appl Res 2011; 4(1): 69-72. doi: 10.15373/2249555X/JAN2014/22
  327. Buhari R, Rohani MM, Abdullah ME. Dynamic load coefficient of tyre forces from truck axles. Appl Mech Mater 2013; 405-408: 1900-11. doi: 10.4028/ href='www.scientific.net/AMM.405-408.1900' target='_blank'>www.scientific.net/AMM.405-408.1900
  328. Lengke MF, Fleet ME, Southam G. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir 2007; 23(5): 2694-9. doi: 10.1021/la0613124 PMID: 17309217
  329. Mira AK, Yousef AS, Abdullah A. Biosynthesis of silver nanoparticles by Cyanobacterium gloeocapsa sp. IJERSTE 2015; 4(9): 60-73.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024