Exploring the Effect of Xiao-Chai-Hu Decoction on Treating Psoriasis Based on Network Pharmacology and Experiment Validation


Cite item

Full Text

Abstract

Background:Psoriasis is a chronic, inflammatory and recurrent skin disease. Xiao-Chai-Hu Decoction (XCHD) has shown good effects against some inflammatory diseases and cancers. However, the pharmacological effect and mechanisms of XCHD on psoriasis are not yet clear.

Objective:To uncover the effect and mechanisms of XCHD on psoriasis by integrating network pharmacology, molecular docking, and in vivo experiments.

Methods:The active ingredients and corresponding targets of XCHD were screened through Traditional Chinese Medicine Systems Pharmacology Database and Analysis (TCMSP) and Traditional Chinese Medicine Integrated Database (TCMID). Differentially expressed genes (DEGs) of psoriasis were obtained from the gene expression omnibus (GEO) database. The XCHD-psoriasis intersection targets were obtained by intersecting XCHD targets, and DEGs were used to establish the "herb-active ingredient-target" network and Protein-Protein Interaction (PPI) Network. The hub targets were identified based on the PPI network by Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed next. Molecular docking was executed via AutoDockTools-1.5.6. Finally, in vivo experiments were carried out further to validate the therapeutic effects of XCHD on psoriasis.

Results:58 active components and 219 targets of XCHD were screened. 4 top-active components (quercetin, baicalein, wogonin and kaempferol) and 7 hub targets (IL1B, CXCL8, CCND1, FOS, MMP9, STAT1 and CCL2) were identified. GO and KEGG pathway enrichment analyses indicated that the TNF signaling pathway, IL-17 signaling pathway and several pathways were involved. Molecular docking results indicated that hub genes had a good affinity to the corresponding key compounds. In imiquimod (IMQ)-induced psoriasis mouse models, XCHD could significantly improve psoriasis-like skin lesions, downregulate KRT17 and Ki67, and inhibit inflammation cytokines and VEGF.

Conclusions:XCHD showed the therapeutic effect on psoriasis by regulating keratinocyte differentiation, and suppressing inflammation and angiogenesis, which provided a theoretical basis for further experiments and clinical research.

About the authors

Ke He

Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University

Email: info@benthamscience.net

Ziyang Wang

Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University

Email: info@benthamscience.net

Meng Liu

Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University

Email: info@benthamscience.net

Wenqian Du

Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University

Email: info@benthamscience.net

Tingyi Yin

Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University

Email: info@benthamscience.net

Ruimin Bai

Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University

Email: info@benthamscience.net

Qiqi Duan

Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University

Email: info@benthamscience.net

Yuqian Wang

Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University

Email: info@benthamscience.net

Hao Lei

Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University

Email: info@benthamscience.net

Yan Zheng

Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Chandran V, Raychaudhuri SP. Geoepidemiology and environmental factors of psoriasis and psoriatic arthritis. J Autoimmun 2010; 34(3): J314-21. doi: 10.1016/j.jaut.2009.12.001 PMID: 20034760
  2. Dubertret L, Mrowietz U, Ranki A, et al. European patient perspectives on the impact of psoriasis: The EUROPSO patient membership survey. Br J Dermatol 2006; 155(4): 729-36. doi: 10.1111/j.1365-2133.2006.07405.x PMID: 16965422
  3. Rapp SR, Feldman SR, Exum ML, Fleischer AB Jr, Reboussin DM. Psoriasis causes as much disability as other major medical diseases. J Am Acad Dermatol 1999; 41(3): 401-7. doi: 10.1016/S0190-9622(99)70112-X PMID: 10459113
  4. Boehncke WH, Schön MP. Psoriasis. Lancet 2015; 386(9997): 983-94. doi: 10.1016/S0140-6736(14)61909-7 PMID: 26025581
  5. Prodanovich S, Kirsner RS, Kravetz JD, Ma F, Martinez L, Federman DG. Association of psoriasis with coronary artery, cerebrovascular, and peripheral vascular diseases and mortality. Arch Dermatol 2009; 145(6): 700-3. doi: 10.1001/archdermatol.2009.94 PMID: 19528427
  6. Kimball AB, Guerin A, Latremouille-viau D, et al. Coronary heart disease and stroke risk in patients with psoriasis: Retrospective analysis. Am J Med 2010; 123(4): 350-7. doi: 10.1016/j.amjmed.2009.08.022 PMID: 20362755
  7. Ahlehoff O, Gislason GH, Charlot M, et al. Psoriasis is associated with clinically significant cardiovascular risk: A Danish nationwide cohort study. J Intern Med 2011; 270(2): 147-57. doi: 10.1111/j.1365-2796.2010.02310.x PMID: 21114692
  8. Gelfand JM, Neimann AL, Shin DB, Wang X, Margolis DJ, Troxel AB. Risk of myocardial infarction in patients with psoriasis. JAMA 2006; 296(14): 1735-41. doi: 10.1001/jama.296.14.1735 PMID: 17032986
  9. Gelfand JM, Dommasch ED, Shin DB, et al. The risk of stroke in patients with psoriasis. J Invest Dermatol 2009; 129(10): 2411-8. doi: 10.1038/jid.2009.112 PMID: 19458634
  10. Gowda BHJ, Ahmed MG, Hani U, Kesharwani P, Wahab S, Paul K. Microneedles as a momentous platform for psoriasis therapy and diagnosis: A state-of-the-art review. Int J Pharm 2023; 632: 122591. doi: 10.1016/j.ijpharm.2023.122591 PMID: 36626973
  11. Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med 2009; 361(5): 496-509. doi: 10.1056/NEJMra0804595 PMID: 19641206
  12. Menter A, Strober BE, Kaplan DH, et al. Joint AAD-NPF guidelines of care for the management and treatment of psoriasis with biologics. J Am Acad Dermatol 2019; 80(4): 1029-72. doi: 10.1016/j.jaad.2018.11.057 PMID: 30772098
  13. Sondermann W, Ventzke J, Matusiewicz D, Körber A. Analysis of pharmaceutical care in patients with psoriatic arthritis using statutory health insurance data. J Dtsch Dermatol Ges 2018; 16(3): 285-94. doi: 10.1111/ddg.13464 PMID: 29537175
  14. China PoPsRo. National Commission of Chinese Pharmacopoeia. Beijing: Chinese Medical Science Press 2015.
  15. Su Y, Qin W, Wu L, et al. A review of Chinese medicine for the treatment of psoriasis: Principles, methods and analysis. Chin Med 2021; 16(1): 138. doi: 10.1186/s13020-021-00550-y PMID: 34930402
  16. Weng SW, Chen BC, Wang YC, et al. Traditional Chinese medicine use among patients with psoriasis in Taiwan: A nationwide population-based study. Evid Based Complement Alternat Med 2016; 2016: 1-13. doi: 10.1155/2016/3164105 PMID: 27822287
  17. Nguyen LTH, Choi MJ, Shin HM, Yang IJ. Coptisine alleviates imiquimod-induced psoriasis-like skin lesions and anxiety-like behavior in mice. Molecules 2022; 27(4): 1412. doi: 10.3390/molecules27041412 PMID: 35209199
  18. Mao J, Ma X, Zhu J, Zhang H. Ginsenoside Rg1 ameliorates psoriasis-like skin lesions by suppressing proliferation and NLRP3 inflammasomes in keratinocytes. J Food Biochem 2022; 46(5): e14053. doi: 10.1111/jfbc.14053 PMID: 35218026
  19. Jia HY, Qiu HY, Zhang MD, Hou JJ, Zhou ML, Wu Y. Lenalidomide attenuates IMQ-induced inflammation in a mouse model of psoriasis. Biomed Pharmacother 2022; 156: 113883. doi: 10.1016/j.biopha.2022.113883 PMID: 36270258
  20. Yang Y, Zhang Y, Chen X, Su Z, Deng Y, Zhao Q. Khasianine ameliorates psoriasis-like skin inflammation and represses TNF-α/NF-κB axis mediated transactivation of IL-17A and IL-33 in keratinocytes. J Ethnopharmacol 2022; 292: 115124. doi: 10.1016/j.jep.2022.115124 PMID: 35183690
  21. Gowda BHJ, Ahmed MG, Husain A. Transferosomal in situ gel administered through umbilical skin tissues for improved systemic bioavailability of drugs: A novel strategy to replace conventional transdermal route. Med Hypotheses 2022; 161: 110805. doi: 10.1016/j.mehy.2022.110805
  22. Huang Y, Lu J, Xu Y, et al. Xiaochaihu decorction relieves liver fibrosis caused by Schistosoma japonicum infection via the HSP47/TGF-β pathway. Parasit Vectors 2020; 13(1): 254. doi: 10.1186/s13071-020-04121-2 PMID: 32410640
  23. Zhang SK, Cui NQ, Zhuo YZ, et al. Modified xiaochaihu decoction () promotes collagen degradation and inhibits pancreatic fibrosis in chronic pancreatitis rats. Chin J Integr Med 2020; 26(8): 599-603. doi: 10.1007/s11655-017-2413-0 PMID: 29181733
  24. Zhan L, Pu J, Hu Y, Xu P, Liang W, Ji C. Uncovering the pharmacology of xiaochaihu decoction in the treatment of acute pancreatitis based on the network pharmacology. BioMed Res Int 2021; 2021: 1-11. doi: 10.1155/2021/6621682 PMID: 33824873
  25. Kato M, Isobe K, Dai Y, Liu W, Nakashima I, Takahashi M. Further characterization of the Sho-saio-to-mediated anti-tumor effect on melanoma developed in RET-transgenic mice. J Invest Dermatol 2000; 114(3): 599-601. doi: 10.1046/j.1523-1747.2000.02005.x PMID: 10777360
  26. Kato M, Liu W, Yi H, et al. The herbal medicine Sho-saiko-to inhibits growth and metastasis of malignant melanoma primarily developed in ret-transgenic mice. J Invest Dermatol 1998; 111(4): 640-4. doi: 10.1046/j.1523-1747.1998.00341.x PMID: 9764846
  27. Jiao X, Jin X, Ma Y, et al. A comprehensive application: Molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based Chinese medicine. Comput Biol Chem 2021; 90: 107402. doi: 10.1016/j.compbiolchem.2020.107402 PMID: 33338839
  28. Xu Q, Sheng L, Zhu X, et al. Jingfang granules exert anti-psoriasis effect by targeting MAPK-mediated dendritic cell maturation and PPARγ-mediated keratinocytes cell cycle progression in vitro and in vivo. Phytomedicine 2023; 117: 154925. doi: 10.1016/j.phymed.2023.154925 PMID: 37321079
  29. Hu X, Qi C, Feng F, et al. Combining network pharmacology, RNA-seq, and metabolomics strategies to reveal the mechanism of Cimicifugae Rhizoma - Smilax glabra Roxb herb pair for the treatment of psoriasis. Phytomedicine 2022; 105: 154384. doi: 10.1016/j.phymed.2022.154384 PMID: 35963195
  30. Qu K, Luo Y, Yan X, et al. Qinzhuliangxue mixture alleviates psoriasis-like skin lesions via inhibiting the IL6/STAT3 axis. J Ethnopharmacol 2021; 274: 114041. doi: 10.1016/j.jep.2021.114041 PMID: 33757812
  31. Kuai L, Song J, Zhang R, et al. Uncovering the mechanism of Jueyin granules in the treatment of psoriasis using network pharmacology. J Ethnopharmacol 2020; 262: 113214. doi: 10.1016/j.jep.2020.113214 PMID: 32736045
  32. Di T, Zhao J, Wang Y, et al. Tuhuaiyin alleviates imiquimod-induced psoriasis via inhibiting the properties of IL-17-producing cells and remodels the gut microbiota. Biomed Pharmacother 2021; 141: 111884. doi: 10.1016/j.biopha.2021.111884 PMID: 34243099
  33. Zhao J, Wang Y, Chen W, et al. Systems pharmacology approach and experiment evaluation reveal multidimensional treatment strategy of liangxuejiedu formula for psoriasis. Front Pharmacol 2021; 12: 626267. doi: 10.3389/fphar.2021.626267 PMID: 34168554
  34. Jin L, Wang G. Keratin 17: A critical player in the pathogenesis of psoriasis. Med Res Rev 2014; 34(2): 438-54. doi: 10.1002/med.21291 PMID: 23722817
  35. Zhang X, Yin M, Zhang L. Keratin 6, 16 and 17-critical barrier alarmin molecules in skin wounds and psoriasis. Cells 2019; 8(8): 807. doi: 10.3390/cells8080807 PMID: 31374826
  36. Sezer E, Böer-Auer A, Cetin E, et al. Diagnostic utility of Ki-67 and Cyclin D1 immunostaining in differentiation of psoriasis vs. other psoriasiform dermatitis. Dermatol Pract Concept 2015; 5(3): 7-13. doi: 10.5826/dpc.0503a02 PMID: 26336616
  37. Lee HJ, Hong YJ, Kim M. Angiogenesis in chronic inflammatory skin disorders. Int J Mol Sci 2021; 22(21): 12035. doi: 10.3390/ijms222112035 PMID: 34769465
  38. Liu M, Zhang G, Naqvi S, et al. Cytotoxicity of Saikosaponin A targets HEKa cell through apoptosis induction by ROS accumulation and inflammation suppression via NF-κB pathway. Int Immunopharmacol 2020; 86: 106751. doi: 10.1016/j.intimp.2020.106751 PMID: 32634696
  39. Shen SC, Lee WR, Yang LY, Tsai HH, Yang LL, Chen YC. Quercetin enhancement of arsenic-induced apoptosis via stimulating ROS-dependent p53 protein ubiquitination in human HaCaT keratinocytes. Exp Dermatol 2012; 21(5): 370-5. doi: 10.1111/j.1600-0625.2012.01479.x PMID: 22509835
  40. Chen H, Lu C, Liu H, et al. Quercetin ameliorates imiquimod-induced psoriasis-like skin inflammation in mice via the NF-κB pathway. Int Immunopharmacol 2017; 48: 110-7. doi: 10.1016/j.intimp.2017.04.022 PMID: 28499194
  41. Yu J, Jing Z, Shen D, et al. Quercetin promotes autophagy to alleviate cigarette smoke-related periodontitis. J Periodontal Res 2023; 58(5): 1082-95. doi: 10.1111/jre.13170 PMID: 37533377
  42. Islam MT, Tuday E, Allen S, et al. Senolytic drugs, dasatinib and quercetin, attenuate adipose tissue inflammation, and ameliorate metabolic function in old age. Aging Cell 2023; 22(2): e13767. doi: 10.1111/acel.13767 PMID: 36637079
  43. Wang Y, Wan R, Peng W, Zhao X, Bai W, Hu C. Quercetin alleviates ferroptosis accompanied by reducing M1 macrophage polarization during neutrophilic airway inflammation. Eur J Pharmacol 2023; 938: 175407. doi: 10.1016/j.ejphar.2022.175407 PMID: 36417973
  44. Wang H, Yan Y, Pathak JL, et al. Quercetin prevents osteoarthritis progression possibly via regulation of local and systemic inflammatory cascades. J Cell Mol Med 2023; 27(4): 515-28. doi: 10.1111/jcmm.17672 PMID: 36722313
  45. Huang KF, Ma KH, Liu PS, Chen BW, Chueh SH. Baicalein increases keratin 1 and 10 expression in HaCaT keratinocytes via TRPV 4 receptor activation. Exp Dermatol 2016; 25(8): 623-9. doi: 10.1111/exd.13024 PMID: 27060689
  46. Yu M, Li H, Wang B, et al. Baicalein ameliorates polymyxin B-induced acute renal injury by inhibiting ferroptosis via regulation of SIRT1/p53 acetylation. Chem Biol Interact 2023; 382: 110607. doi: 10.1016/j.cbi.2023.110607 PMID: 37354967
  47. Wan Y, shen K, Yu H, Fan W. Baicalein limits osteoarthritis development by inhibiting chondrocyte ferroptosis. Free Radic Biol Med 2023; 196: 108-20. doi: 10.1016/j.freeradbiomed.2023.01.006 PMID: 36657732
  48. Liu L, Wu W, Li S, et al. Engineered baicalein-decorated zinc phosphates for synergistic alleviation of inflammatory bowel disease by repairing the mucosal barrier and relieving oxidative stress. Biomater Sci 2023; 11(23): 7678-91. doi: 10.1039/D3BM01284K PMID: 37870399
  49. Sulistyowati E, Huang SE, Cheng TL, et al. Vasculoprotective potential of baicalein in angiotensin II-infused abdominal aortic aneurysms through inhibiting inflammation and oxidative stress. Int J Mol Sci 2023; 24(21): 16004. doi: 10.3390/ijms242116004 PMID: 37958985
  50. Liu C, Liu H, Lu C, et al. Kaempferol attenuates imiquimod-induced psoriatic skin inflammation in a mouse model. Clin Exp Immunol 2019; 198(3): 403-15. doi: 10.1111/cei.13363 PMID: 31407330
  51. Li Y, Cui H, Li S, et al. Kaempferol modulates IFN-γ induced JAK-STAT signaling pathway and ameliorates imiquimod-induced psoriasis-like skin lesions. Int Immunopharmacol 2023; 114: 109585. doi: 10.1016/j.intimp.2022.109585 PMID: 36527884
  52. Nasanbat B, Uchiyama A, Amalia SN, et al. Kaempferol therapy improved MC903 induced-atopic dermatitis in a mouse by suppressing TSLP, oxidative stress, and type 2 inflammation. J Dermatol Sci 2023; 111(3): 93-100. doi: 10.1016/j.jdermsci.2023.06.008 PMID: 37393173
  53. Xie Y, Mei X, Shi W. Kaempferol promotes melanogenesis and reduces oxidative stress in PIG1 normal human skin melanocytes. J Cell Mol Med 2023; 27(7): 982-90. doi: 10.1111/jcmm.17711 PMID: 36924030
  54. Li N, Chen S, Deng W, et al. Kaempferol attenuates gouty arthritis by regulating the balance of Th17/Treg cells and secretion of IL-17. Inflammation 2023; 46(5): 1901-16. doi: 10.1007/s10753-023-01849-8 PMID: 37311931
  55. Zhou Y, Dou F, Song H, Liu T. Anti-ulcerative effects of wogonin on ulcerative colitis induced by dextran sulfate sodium via Nrf2/ TLR4/NF-κB signaling pathway in BALB /c mice. Environ Toxicol 2022; 37(4): 954-63. doi: 10.1002/tox.23457 PMID: 35044701
  56. Lucas CD, Dorward DA, Sharma S, et al. Wogonin induces eosinophil apoptosis and attenuates allergic airway inflammation. Am J Respir Crit Care Med 2015; 191(6): 626-36. doi: 10.1164/rccm.201408-1565OC PMID: 25629436
  57. Sirong S, Yang C, Taoran T, et al. Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis. Bone Res 2020; 8(1): 6. doi: 10.1038/s41413-019-0077-4 PMID: 32047705
  58. Su Y, Liang J, Zhang M, et al. Wogonin regulates colonocyte metabolism via PPARγ to inhibit Enterobacteriaceae against dextran sulfate sodium-induced colitis in mice. Phytother Res 2023; 37(3): 872-84. doi: 10.1002/ptr.7677 PMID: 36451541
  59. He X, Wang J, Sun L, et al. Wogonin attenuates inflammation and oxidative stress in lipopolysaccharide-induced mastitis by inhibiting Akt/NF-κB pathway and activating the Nrf2/HO-1 signaling. Cell Stress Chaperones 2023; 28(6): 989-99. doi: 10.1007/s12192-023-01391-4 PMID: 37910344
  60. Li L, Ji Y, Zhang L, et al. Wogonin inhibits the growth of HT144 melanoma via regulating hedgehog signaling-mediated inflammation and glycolysis. Int Immunopharmacol 2021; 101(Pt B): 108222. doi: 10.1016/j.intimp.2021.108222 PMID: 34688155
  61. Wang Y, Cho JG, Hwang ES, et al. Enhancement of protective effects of radix scutellariae on UVB-induced photo damage in human HaCat keratinocytes. Appl Biochem Biotechnol 2018; 184(4): 1073-93. doi: 10.1007/s12010-017-2611-4 PMID: 28948464
  62. Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci 2019; 20(6): 1475. doi: 10.3390/ijms20061475 PMID: 30909615
  63. Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol 2014; 32(1): 227-55. doi: 10.1146/annurev-immunol-032713-120225 PMID: 24655295
  64. Lavoie JN, Rivard N, L’Allemain G, Pouysségur J. A temporal and biochemical link between growth factor-activated MAP kinases, cyclin D1 induction and cell cycle entry. Prog Cell Cycle Res 1996; 2: 49-58. doi: 10.1007/978-1-4615-5873-6_5 PMID: 9552382
  65. Kim SA, Ryu YW, Kwon JI, Choe MS, Jung JW, Cho JW. Differential expression of cyclin D1, Ki-67, pRb, and p53 in psoriatic skin lesions and normal skin. Mol Med Rep 2018; 17(1): 735-42. PMID: 29115643
  66. Uluçkan Ö, Guinea-Viniegra J, Jimenez M, Wagner EF. Signalling in inflammatory skin disease by AP-1 (Fos/Jun). Clin Exp Rheumatol 2015; 33(4): S44-9. PMID: 26458100
  67. Mehic D, Bakiri L, Ghannadan M, Wagner EF, Tschachler E. Fos and jun proteins are specifically expressed during differentiation of human keratinocytes. J Invest Dermatol 2005; 124(1): 212-20. doi: 10.1111/j.0022-202X.2004.23558.x PMID: 15654976
  68. Chen J, Zhu Z, Li Q, et al. Neutrophils enhance cutaneous vascular dilation and permeability to aggravate psoriasis by releasing matrix metallopeptidase 9. J Invest Dermatol 2021; 141(4): 787-99. doi: 10.1016/j.jid.2020.07.028 PMID: 32888954
  69. Hald A, Andrés RM, Salskov-Iversen ML, Kjellerup RB, Iversen L, Johansen C. STAT1 expression and activation is increased in lesional psoriatic skin. Br J Dermatol 2013; 168(2): 302-10. doi: 10.1111/bjd.12049 PMID: 23013371
  70. Bai L, Fang H, Xia S, et al. STAT1 activation represses IL-22 gene expression and psoriasis pathogenesis. Biochem Biophys Res Commun 2018; 501(2): 563-9. doi: 10.1016/j.bbrc.2018.05.042 PMID: 29750958
  71. Behfar S, Hassanshahi G, Nazari A, Khorramdelazad H. A brief look at the role of monocyte chemoattractant protein-1 (CCL2) in the pathophysiology of psoriasis. Cytokine 2018; 110: 226-31. doi: 10.1016/j.cyto.2017.12.010 PMID: 29277337
  72. Kay AM, Simpson CL, Stewart JA Jr. The role of AGE/RAGE signaling in diabetes-mediated vascular calcification. J Diabetes Res 2016; 2016: 1-8. doi: 10.1155/2016/6809703 PMID: 27547766
  73. Pleńkowska J, Gabig-Cimińska M, Mozolewski P. Oxidative stress as an important contributor to the pathogenesis of psoriasis. Int J Mol Sci 2020; 21(17): 6206. doi: 10.3390/ijms21176206 PMID: 32867343
  74. Siddiqi HK, Ridker PM. Psoriasis and atherosclerosis. Circ Res 2018; 123(11): 1183-4. doi: 10.1161/CIRCRESAHA.118.314073 PMID: 30571473
  75. Gowda BHJ, Ahmed MG, Sahebkar A, Riadi Y, Shukla R, Kesharwani P. Stimuli-responsive microneedles as a transdermal drug delivery system: A demand-supply strategy. Biomacromolecules 2022; 23(4): 1519-44. doi: 10.1021/acs.biomac.1c01691 PMID: 35274937

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers