Free Radicals, Mitochondrial Dysfunction and Sepsis-induced Organ Dysfunction: A Mechanistic Insight
- Authors: Kumar S.1, Srivastava V.K.2, Kaushik S.2, Saxena J.3, Jyoti A.4
-
Affiliations:
- Department of Biotechnology Engineering and Food Technology, University Institute of Engineering, Chandigarh University
- Amity Institute of Biotechnology, Amity University
- Department of Biotechnology, Parul Institute of Technology, Parul University
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University
- Issue: Vol 30, No 3 (2024)
- Pages: 161-168
- Section: Immunology, Inflammation & Allergy
- URL: https://vestnikugrasu.org/1381-6128/article/view/645895
- DOI: https://doi.org/10.2174/0113816128279655231228055842
- ID: 645895
Cite item
Full Text
Abstract
Sepsis is a complex clinical condition and a leading cause of death worldwide. During Sepsis, there is a derailment in the host response to infection, which can progress to severe sepsis and multiple organ dysfunction or failure, which leads to death. Free radicals, including reactive oxygen species (ROS) generated predominantly in mitochondria, are one of the key players in impairing normal organ function in sepsis. ROS contributing to oxidative stress has been reported to be the main culprit in the injury of the lung, heart, liver, kidney, gastrointestinal, and other organs. Here in the present review, we describe the generation, and essential properties of various types of ROS, their effect on macromolecules, and their role in mitochondrial dysfunction. Furthermore, the mechanism involved in the ROS-mediated pathogenesis of sepsis-induced organ dysfunction has also been discussed.
Keywords
About the authors
Sanni Kumar
Department of Biotechnology Engineering and Food Technology, University Institute of Engineering, Chandigarh University
Email: info@benthamscience.net
Vijay Kumar Srivastava
Amity Institute of Biotechnology, Amity University
Email: info@benthamscience.net
Sanket Kaushik
Amity Institute of Biotechnology, Amity University
Email: info@benthamscience.net
Juhi Saxena
Department of Biotechnology, Parul Institute of Technology, Parul University
Email: info@benthamscience.net
Anupam Jyoti
Department of Life Sciences, Parul Institute of Applied Sciences, Parul University
Author for correspondence.
Email: info@benthamscience.net
References
- Gomberg M. An instance of trivalent carbon: Triphenylmethyl. J Am Chem Soc 1900; 22(11): 757-71. doi: 10.1021/ja02049a006
- Gerschman R, Gilbert D, Nye SW, Dwyer P, Fenn WO. Oxygen poisoning and X-irradiation: A mechanism in common. 1954. Nutrition 2001; 17(2): 162. PMID: 11683139
- Commoner B, Townsend J, Pake G. Free radicals in biological materials. Nature 1954; 174(4432): 689-91. doi: 10.1038/174689a0 PMID: 13213980
- Harman D. The aging process. Proc Natl Acad Sci 1981; 78(11): 7124-8. doi: 10.1073/pnas.78.11.7124 PMID: 6947277
- McCord JM, Roy RS, Schaffer SW. Free radicals and myocardial ischemia. The role of xanthine oxidase. Adv Myocardiol 1985; 5: 183-9. doi: 10.1007/978-1-4757-1287-2_14 PMID: 2982206
- Loschen G, Flohé L, Chance B. Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett 1971; 18(2): 261-4. doi: 10.1016/0014-5793(71)80459-3 PMID: 11946135
- Mittal CK, Murad F. Activation of guanylate cyclase by superoxide dismutase and hydroxyl radical: A physiological regulator of guanosine 3′,5′-monophosphate formation. Proc Natl Acad Sci 1977; 74(10): 4360-4. doi: 10.1073/pnas.74.10.4360 PMID: 22077
- Nohl H, Hegner D. Do mitochondria produce oxygen radicals in vivo? Eur J Biochem 1978; 82(2): 563-7. doi: 10.1111/j.1432-1033.1978.tb12051.x PMID: 203456
- Bergendi L, Bene L, Ďuračková Z, Ferenčik M. Chemistry, physiology and pathology of free radicals. Life Sci 1999; 65(18-19): 1865-74. doi: 10.1016/S0024-3205(99)00439-7 PMID: 10576429
- Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 2015; 30(1): 11-26. doi: 10.1007/s12291-014-0446-0 PMID: 25646037
- Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 2010; 4(8): 118-26. doi: 10.4103/0973-7847.70902 PMID: 22228951
- Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82(1): 47-95. doi: 10.1152/physrev.00018.2001 PMID: 11773609
- Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014; 94(3): 909-50. doi: 10.1152/physrev.00026.2013 PMID: 24987008
- Adams L, Franco MC, Estevez AG. Reactive nitrogen species in cellular signaling. Exp Biol Med 2015; 240(6): 711-7. doi: 10.1177/1535370215581314 PMID: 25888647
- Le Gal K, Schmidt EE, Sayin VI. Cellular redox homeostasis. Antioxidants 2021; 10(9): 1377. doi: 10.3390/antiox10091377 PMID: 34573009
- Jyoti A, Mishra N, Dhas Y. Ageing: Consequences of excessive free radicals and inflammation. Curr Sci 2016; 111(11): 1787-93. doi: 10.18520/cs/v111/i11/1787-1793
- Jomova K, Raptova R, Alomar SY, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch Toxicol 2023; 97(10): 2499-574. doi: 10.1007/s00204-023-03562-9 PMID: 37597078
- Kumar S, Saxena J, Srivastava VK, et al. The interplay of oxidative stress and ROS scavenging: Antioxidants as a therapeutic potential in sepsis. Vaccines 2022; 10(10): 1575. doi: 10.3390/vaccines10101575 PMID: 36298439
- Irato P, Santovito G. Enzymatic and non-enzymatic molecules with antioxidant function. Antioxidants 2021; 10(4): 579. doi: 10.3390/antiox10040579 PMID: 33918542
- Snezhkina AV, Kudryavtseva AV, Kardymon OL, et al. ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev 2019; 2019: 1-17. doi: 10.1155/2019/6175804 PMID: 31467634
- Aranda-Rivera AK, Cruz-Gregorio A, Arancibia-Hernández YL, Hernández-Cruz EY, Pedraza-Chaverri J. RONS and oxidative stress: An overview of basic concepts. Oxygen 2022; 2(4): 437-78. doi: 10.3390/oxygen2040030
- Liu J, Wu M, Zhang R, Xu ZP. Oxygen-derived free radicals: Production, biological importance, bioimaging, and analytical detection with responsive luminescent nanoprobes. VIEW 2021; 2(5): 20200139. doi: 10.1002/VIW.20200139
- Henle ES, Linn S. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem 1997; 272(31): 19095-8. doi: 10.1074/jbc.272.31.19095 PMID: 9235895
- Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell 2022; 185(16): 2853-78. doi: 10.1016/j.cell.2022.06.010 PMID: 35931019
- Graves DB, Bauer G. Key roles of reactive oxygen and nitrogen species. Comprehensive Clinical Plasma Medicine: Cold Physical Plasma for Medical Application 2018; 71-82. doi: 10.1007/978-3-319-67627-2_4
- Davies MJ. Protein oxidation and peroxidation. Biochem J 2016; 473(7): 805-25. doi: 10.1042/BJ20151227 PMID: 27026395
- Al-Shehri SS. Reactive oxygen and nitrogen species and innate immune response. Biochimie 2021; 181: 52-64. doi: 10.1016/j.biochi.2020.11.022 PMID: 33278558
- van der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis. Immunity 2021; 54(11): 2450-64. doi: 10.1016/j.immuni.2021.10.012 PMID: 34758337
- Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG. The pathogenesis of sepsis. Annu Rev Pathol: Pathol Mech Dis 2011; 6: 19-48. doi: 10.1146/annurev-pathol-011110-130327
- Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 2014; 94(2): 329-54. doi: 10.1152/physrev.00040.2012 PMID: 24692350
- Victor VM, Esplugues JV, Hernandez-Mijares A, Rocha M. Oxidative stress and mitochondrial dysfunction in sepsis: A potential therapy with mitochondria-targeted antioxidants. Infect Disord Drug Targets 2009; 9(4): 376-89. doi: 10.2174/187152609788922519
- Alsharabasy AM, Glynn S, Farràs P, Pandit A. Protein nitration induced by Hemin/NO: A complementary mechanism through the catalytic functions of hemin and NO-scavenging. Nitric Oxide 2022; 124: 49-67. doi: 10.1016/j.niox.2022.04.005 PMID: 35513288
- Galluzzi L, Kepp O, Kroemer G. Mitochondria: Master regulators of danger signalling. Nat Rev Mol Cell Biol 2012; 13(12): 780-8. doi: 10.1038/nrm3479 PMID: 23175281
- Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 2014; 5(1): 66-72. doi: 10.4161/viru.26907 PMID: 24185508
- Kessas K, Chouari Z, Ghzaiel I, et al. Role of bioactive compounds in the regulation of mitochondrial dysfunctions in brain and age-related neurodegenerative diseases. Cells 2022; 11(2): 257. doi: 10.3390/cells11020257 PMID: 35053373
- Kovacic P, Pozos RS, Somanathan R, Shangari N, OBrien PJ. Mechanism of mitochondrial uncouplers, inhibitors, and toxins: Focus on electron transfer, free radicals, and structure-activity relationships. Curr Med Chem 2005; 12(22): 2601-23. doi: 10.2174/092986705774370646 PMID: 16248817
- Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y. Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. Front Physiol 2021; 12: 627837. doi: 10.3389/fphys.2021.627837 PMID: 33967820
- N Kolodkin A, Sharma RP, Colangelo AM, et al. ROS networks: Designs, aging, Parkinsons disease and precision therapies. NPJ Syst Biol Appl 2020; 6(1): 34. doi: 10.1038/s41540-020-00150-w PMID: 33106503
- Voets AM, Huigsloot M, Lindsey PJ, et al. Transcriptional changes in OXPHOS complex I deficiency are related to anti-oxidant pathways and could explain the disturbed calcium homeostasis. Biochim Biophys Acta Mol Basis Dis 2012; 1822(7): 1161-8. doi: 10.1016/j.bbadis.2011.10.009 PMID: 22033105
- Nadalutti CA, Ayala-Peña S, Santos JH. Mitochondrial DNA damage as driver of cellular outcomes. Am J Physiol Cell Physiol 2022; 322(2): C136-50. doi: 10.1152/ajpcell.00389.2021 PMID: 34936503
- Andreazza AC, Shao L, Wang JF, Young LT. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry 2010; 67(4): 360-8. doi: 10.1001/archgenpsychiatry.2010.22 PMID: 20368511
- Brealey D, Brand M, Hargreaves I, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 2002; 360(9328): 219-23. doi: 10.1016/S0140-6736(02)09459-X PMID: 12133657
- Yin F, Sancheti H, Cadenas E. Mitochondrial thiols in the regulation of cell death pathways. Antioxid Redox Signal 2012; 17(12): 1714-27. doi: 10.1089/ars.2012.4639 PMID: 22530585
- Leyane TS, Jere SW, Houreld NN. Oxidative stress in ageing and chronic degenerative pathologies: Molecular mechanisms involved in counteracting oxidative stress and chronic inflammation. Int J Mol Sci 2022; 23(13): 7273. doi: 10.3390/ijms23137273 PMID: 35806275
- Kong C, Song W, Fu T. Systemic inflammatory response syndrome is triggered by mitochondrial damage (Review). Mol Med Rep 2022; 25(4): 147. doi: 10.3892/mmr.2022.12663 PMID: 35234261
- Hee JS, Cresswell P. Viperin interaction with mitochondrial antiviral signaling protein (MAVS) limits viperin-mediated inhibition of the interferon response in macrophages. PLoS One 2017; 12(2): e0172236. doi: 10.1371/journal.pone.0172236 PMID: 28207838
- Segal AW. How neutrophils kill microbes. Annu Rev Immunol 2005; 23(1): 197-223. doi: 10.1146/annurev.immunol.23.021704.115653 PMID: 15771570
- Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303(5663): 1532-5.
- Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 2007; 176(2): 231-41. doi: 10.1083/jcb.200606027 PMID: 17210947
- Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 2010; 191(3): 677-91. doi: 10.1083/jcb.201006052 PMID: 20974816
- Saffarzadeh M, Juenemann C, Queisser MA, et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: A predominant role of histones. PLoS One 2012; 7(2): e32366. doi: 10.1371/journal.pone.0032366 PMID: 22389696
- Kumar S, Gupta E, Gupta N, et al. Functional role of iNOS-Rac2 interaction in neutrophil extracellular traps (NETs) induced cytotoxicity in sepsis. Clin Chim Acta 2021; 513: 43-9. doi: 10.1016/j.cca.2020.12.004 PMID: 33309799
- Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM. Myeloperoxidase: A front-line defender against phagocytosed microorganisms. J Leukoc Biol 2013; 93(2): 185-98. doi: 10.1189/jlb.0712349 PMID: 23066164
- Martemucci G, Costagliola C, Mariano M, Dandrea L, Napolitano P, DAlessandro AG. Free radical properties, source and targets, antioxidant consumption and health. Oxygen 2022; 2(2): 48-78. doi: 10.3390/oxygen2020006
- Holmström KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 2014; 15(6): 411-21. doi: 10.1038/nrm3801 PMID: 24854789
- Rohrbach AS, Slade DJ, Thompson PR, Mowen KA. Activation of PAD4 in NET formation. Front Immunol 2012; 3: 360. doi: 10.3389/fimmu.2012.00360 PMID: 23264775
- Parker H, Dragunow M, Hampton MB, Kettle AJ, Winterbourn CC. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J Leukoc Biol 2012; 92(4): 841-9. doi: 10.1189/jlb.1211601 PMID: 22802447
- Keshari RS, Verma A, Barthwal MK, Dikshit M. Reactive oxygen species-induced activation of ERK and p38 MAPK mediates PMA-induced NETs release from human neutrophils. J Cell Biochem 2013; 114(3): 532-40. doi: 10.1002/jcb.24391 PMID: 22961925
- Kumar S, Gupta E, Kaushik S, Jyoti A. Neutrophil extracellular traps: Formation and involvement in disease progression. Iran J Allergy Asthma Immunol 2018; 17(3): 208-20. PMID: 29908538
- Metzler KD, Fuchs TA, Nauseef WM, et al. Myeloperoxidase is required for neutrophil extracellular trap formation: Implications for innate immunity. Blood 2011; 117(3): 953-9. doi: 10.1182/blood-2010-06-290171 PMID: 20974672
- Shen XF, Cao K, Jiang J, Guan WX, Du JF. Neutrophil dysregulation during sepsis: An overview and update. J Cell Mol Med 2017; 21(9): 1687-97. doi: 10.1111/jcmm.13112 PMID: 28244690
- Sônego F, Castanheira FVS, Ferreira RG, et al. Paradoxical roles of the neutrophil in sepsis: Protective and deleterious. Front Immunol 2016; 7: 155. doi: 10.3389/fimmu.2016.00155 PMID: 27199981
- Santana-Garrido Á, Reyes-Goya C, Arroyo-Barrios A, André H, Vázquez CM, Mate A. Hypertension secondary to nitric oxide depletion produces oxidative imbalance and inflammatory/fibrotic outcomes in the cornea of C57BL/6 mice. J Physiol Biochem 2022; 78(4): 915-32. doi: 10.1007/s13105-022-00916-2 PMID: 35943663
- Kumar S, Gupta E, Kaushik S, Kumar Srivastava V, Mehta S, Jyoti A. Evaluation of oxidative stress and antioxidant status: Correlation with the severity of sepsis. Scand J Immunol 2018; 87(4): e12653. doi: 10.1111/sji.12653 PMID: 29484685
- Gofton TE, Young GB. Sepsis-associated encephalopathy. Nat Rev Neurol 2012; 8(10): 557-66. doi: 10.1038/nrneurol.2012.183 PMID: 22986430
- Gamal M, Moawad J, Rashed L, Morcos MA, Sharawy N. Possible involvement of tetrahydrobiopterin in the disturbance of redox homeostasis in sepsis Induced brain dysfunction. Brain Res 2018; 1685: 19-28. doi: 10.1016/j.brainres.2018.02.008 PMID: 29428597
- Catalão CHR, Santos-Júnior NN, da Costa LHA, Souza AO, Alberici LC, Rocha MJA. Brain oxidative stress during experimental sepsis is attenuated by simvastatin administration. Mol Neurobiol 2017; 54(9): 7008-18. doi: 10.1007/s12035-016-0218-3 PMID: 27796742
- Liu H, Wu J, Yao J, Wang H, Li S. The role of oxidative stress in decreased acetylcholinesterase activity at the neuromuscular junction of the diaphragm during sepsis. Oxid Med Cell Longev 2017; 2017: 1-6. doi: 10.1155/2017/9718615 PMID: 29230271
- Ottesen LH, Harry D, Frost M, et al. Increased formation of S-nitrothiols and nitrotyrosine in cirrhotic rats during endotoxemia. Free Radic Biol Med 2001; 31(6): 790-8. doi: 10.1016/S0891-5849(01)00647-5 PMID: 11557317
- Hong H, Park TJ, Jang S, et al. Anti-inflammatory activity of 6-O- phospho-7-hydroxycoumarin in LPS-induced RAW 264.7 cells. J Appl Biol Chem 2022; 65(1): 33-41. doi: 10.3839/jabc.2022.005
- Mehta C, Mehta Y. Management of refractory hypoxemia. Ann Card Anaesth 2016; 19(1): 89-96. doi: 10.4103/0971-9784.173030 PMID: 26750680
- Zeng M, He W, Li L, et al. Ghrelin attenuates sepsis-associated acute lung injury oxidative stress in rats. Inflammation 2015; 38(2): 683-90. doi: 10.1007/s10753-014-9977-z PMID: 25037094
- Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longevity 2016; 2016 doi: 10.1155/2016/1245049
- Caudrillier A, Kessenbrock K, Gilliss BM, et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest 2012; 122(7): 2661-71. doi: 10.1172/JCI61303 PMID: 22684106
- Gan T, Yang Y, Hu F, et al. TLR3 regulated poly I: C-induced neutrophil extracellular traps and acute lung injury partly through p38 MAP kinase. Front Microbiol 2018; 9: 3174. doi: 10.3389/fmicb.2018.03174 PMID: 30622526
- Tsolaki V, Makris D, Mantzarlis K, Zakynthinos E. Sepsis-induced cardiomyopathy: Oxidative implications in the initiation and resolution of the damage. Oxid Med Cell Longev 2017; 2017: 1-11. doi: 10.1155/2017/7393525 PMID: 29057035
- Beesley SJ, Weber G, Sarge T, et al. Septic cardiomyopathy. Crit Care Med 2018; 46(4): 625-34. doi: 10.1097/CCM.0000000000002851 PMID: 29227368
- Martin L, Derwall M, Al Zoubi S, et al. The septic heart: Current understanding of molecular mechanisms and clinical implications. Chest 2019; 155(2): 427-37. doi: 10.1016/j.chest.2018.08.1037 PMID: 30171861
- Bateman RM, Sharpe MD, Ellis CG. Bench-to-bedside review: Microvascular dysfunction in sepsis-hemodynamics, oxygen transport, and nitric oxide. Crit Care 2003; 7(5): 359-73. doi: 10.1186/cc2353 PMID: 12974969
- Yan J, Li S, Li S. The role of the liver in sepsis. Int Rev Immunol 2014; 33(6): 498-510. doi: 10.3109/08830185.2014.889129 PMID: 24611785
- Guo S, Zhang Y, Wang Z, Yu Y, Wang G. Intraperitoneal gardiquimod protects against hepatotoxicity through inhibition of oxidative stress and inflammation in mice with sepsis. J Biochem Mol Toxicol 2017; 31(8): e21923. doi: 10.1002/jbt.21923 PMID: 28422377
- Cogger VC, Mross PE, Hosie MJ, Ansselin AD, McLean AJ. Le Couteur1, 2, 4, 5, 6 DG. The effect of acute oxidative stress on the ultrastructure of the perfused rat liver. Pharmacol Toxicol 2001; 89(6): 306-11. doi: 10.1034/j.1600-0773.2001.d01-165.x PMID: 11903956
- Li Z, Liu T, Feng Y, et al. PPARγ alleviates sepsis-induced liver injury by inhibiting hepatocyte pyroptosis via inhibition of the ROS/TXNIP/NLRP3 signaling pathway. Oxid Med Cell Longev 2022; 2022: 1-15. doi: 10.1155/2022/1269747
- Oliva-Vilarnau N, Hankeova S, Vorrink SU, Mkrtchian S, Andersson ER, Lauschke VM. Calcium signaling in liver injury and regeneration. Front Med 2018; 5: 192. doi: 10.3389/fmed.2018.00192 PMID: 30023358
- Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney injury from sepsis: Current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int 2019; 96(5): 1083-99. doi: 10.1016/j.kint.2019.05.026 PMID: 31443997
- Fani F, Regolisti G, Delsante M, et al. Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury. J Nephrol 2018; 31(3): 351-9. doi: 10.1007/s40620-017-0452-4 PMID: 29273917
- Kumar S, Gupta E, Srivastava VK, et al. Nitrosative stress and cytokines are linked with the severity of sepsis and organ dysfunction. Br J Biomed Sci 2019; 76(1): 29-34. doi: 10.1080/09674845.2018.1543160 PMID: 30379116
- Kumar S, Payal N, Srivastava VK, Kaushik S, Saxena J, Jyoti A. Neutrophil extracellular traps and organ dysfunction in sepsis. Clin Chim Acta 2021; 523: 152-62. doi: 10.1016/j.cca.2021.09.012 PMID: 34537216
- Caloren L. Exploration of rare mitochondrial DNA mutations in lymphocyte subsets of people living with human immunodeficiency virus. University of British Columbia 2023.
- Vallianou NG, Skourtis A, Kounatidis D, et al. The role of the respiratory microbiome in the pathogenesis of aspiration pneumonia: Implications for diagnosis and potential therapeutic choices. Antibiotics 2023; 12(1): 140. doi: 10.3390/antibiotics12010140 PMID: 36671341
- Mokhtari B, Yavari R, Badalzadeh R, Mahmoodpoor A. An overview on mitochondrial-based therapies in sepsis-related myocardial dysfunction: Mitochondrial transplantation as a promising approach. Can J Infect Dis Med Microbiol 2022; 2022: 1-17. doi: 10.1155/2022/3277274 PMID: 35706715
- Kothari N, Keshari RS, Bogra J, et al. Increased myeloperoxidase enzyme activity in plasma is an indicator of inflammation and onset of sepsis. J Crit Care 2011; 26(4): 435.e1-7. doi: 10.1016/j.jcrc.2010.09.001 PMID: 21036525
Supplementary files
