The Relationship between SNAP25 and Some Common Human Neurological Syndromes
- Autores: Shu J.1, Peng F.1, Li J.1, Liu Y.1, Li X.2, Yuan C.1
-
Afiliações:
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medicine,, The Second Peoples Hospital of China Three Gorges University
- Edição: Volume 30, Nº 30 (2024)
- Páginas: 2378-2386
- Seção: Immunology, Inflammation & Allergy
- URL: https://vestnikugrasu.org/1381-6128/article/view/645888
- DOI: https://doi.org/10.2174/0113816128305683240621060024
- ID: 645888
Citar
Texto integral
Resumo
:Over the years, research on the pathogenesis of neurological diseases has progressed slowly worldwide. However, as the incidence rate continues to increase and the disease gradually develops, early diagnosis and treatment have become a top priority. SANP25, a protein present on the presynaptic membrane and involved in neurotransmitter release, is closely related to the loss or abnormal expression of synapses and neurons. SNAP25 deficiency can lead to synaptic disorders and inhibit neurotransmitter release. Therefore, a large amount of literature believes that SNAP25 gene mutation is a risk factor for many neurological diseases. This review used advanced search on PubMed to conduct extensive article searches for relevant literature. The search keywords included SNAP25 and Alzheimer's disease, SNAP25 and Parkinson's disease, and so on. After reading and summarizing the previous papers, the corresponding conclusions were obtained to achieve the purpose of the review. The deficiency or variation of SNAP25 might be related to the onset of schizophrenia, epilepsy, attention deficit/hypoactivity disorder, bipolar disorder effective disorder, and autism. SNAP25 has been found to be used as a neuropathological marker for neurological diseases, which could be the target of diagnosis or treatment of Alzheimers disease and Parkinsons disease. Cerebrospinal Fluid (CSF) or blood has been found to enable more effective drug development.
Sobre autores
Jie Shu
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
Email: info@benthamscience.net
Fan Peng
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
Email: info@benthamscience.net
Jing Li
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
Email: info@benthamscience.net
Yuhang Liu
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
Email: info@benthamscience.net
Xiaolan Li
College of Basic Medicine,, The Second Peoples Hospital of China Three Gorges University
Autor responsável pela correspondência
Email: info@benthamscience.net
Chengfu Yuan
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Alten B, Zhou Q, Shin OH, et al. Role of aberrant spontaneous neurotransmission in SNAP25-associated encephalopathies. Neuron 2021; 109(1): 59-72.e5. doi: 10.1016/j.neuron.2020.10.012 PMID: 33147442
- Houenou J, Boisgontier J, Henrion A, et al. A multilevel functional study of a SNAP25 at-risk variant for bipolar disorder and schizophrenia. J Neurosci 2017; 37(43): 10389-97. doi: 10.1523/JNEUROSCI.1040-17.2017 PMID: 28972123
- Uzay B, Kavalali ET. Genetic disorders of neurotransmitter release machinery. Front Synaptic Neurosci 2023; 15: 1148957. doi: 10.3389/fnsyn.2023.1148957 PMID: 37066095
- McGrowder DA, Miller F, Vaz K, et al. Cerebrospinal fluid biomarkers of Alzheimers disease: Current evidence and future perspectives. Brain Sci 2021; 11(2): 215. doi: 10.3390/brainsci11020215 PMID: 33578866
- Kovács-Nagy R, Hu J, Rónai Z, Sasvári-Székely M. SNAP-25: A novel candidate gene in psychiatric genetics. Neuropsychopharmacol Hung 2009; 11(2): 89-94. PMID: 19827316
- Zhang H, Zhu S, Zhu Y, Chen J, Zhang G, Chang H. An association study between SNAP-25 gene and attention-deficit hyperactivity disorder. Eur J Paediatr Neurol 2011; 15(1): 48-52. doi: 10.1016/j.ejpn.2010.06.001 PMID: 20599404
- Zhang H, Therriault J, Kang MS, et al. Cerebrospinal fluid synaptosomal-associated protein 25 is a key player in synaptic degeneration in mild cognitive impairment and Alzheimers disease. Alzheimers Res Ther 2018; 10(1): 80. doi: 10.1186/s13195-018-0407-6 PMID: 30115118
- Antonucci F, Corradini I, Fossati G, Tomasoni R, Menna E, Matteoli M. SNAP-25, a known presynaptic protein with emerging postsynaptic functions. Front Synaptic Neurosci 2016; 8: 7. doi: 10.3389/fnsyn.2016.00007 PMID: 27047369
- Høgh P. Alzheimers disease. Ugeskr Laeger 2017; 179(12): V09160686. PMID: 28330540
- Lane CA, Hardy J, Schott JM. Alzheimers disease. Eur J Neurol 2018; 25(1): 59-70. doi: 10.1111/ene.13439 PMID: 28872215
- Apostolova LG, Hwang KS, Andrawis JP, et al. 3D PIB and CSF biomarker associations with hippocampal atrophy in ADNI subjects. Neurobiol Aging 2010; 31(8): 1284-303. doi: 10.1016/j.neurobiolaging.2010.05.003 PMID: 20538372
- Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimers disease. Lancet 2011; 377(9770): 1019-31. doi: 10.1016/S0140-6736(10)61349-9 PMID: 21371747
- Wang Q, Tao S, Xing L, et al. SNAP25 is a potential target for early stage Alzheimers disease and Parkinsons disease. Eur J Med Res 2023; 28(1): 570. doi: 10.1186/s40001-023-01360-8 PMID: 38053192
- Sui X, Liu J, Yang X. Cerebrospinal fluid biomarkers of Alzheimers disease. Neurosci Bull 2014; 30(2): 233-42. doi: 10.1007/s12264-013-1412-1 PMID: 24733653
- Najera K, Fagan BM, Thompson PM. SNAP-25 in major psychiatric disorders: A review. Neuroscience 2019; 420: 79-85. doi: 10.1016/j.neuroscience.2019.02.008 PMID: 30790667
- Öhrfelt A, Brinkmalm A, Dumurgier J, et al. A novel ELISA for the measurement of cerebrospinal fluid SNAP-25 in patients with Alzheimers disease. Neuroscience 2019; 420: 136-44. doi: 10.1016/j.neuroscience.2018.11.038 PMID: 30528858
- Blennow K, Zetterberg H. Biomarkers for Alzheimers disease: Current status and prospects for the future. J Intern Med 2018; 284(6): 643-63. doi: 10.1111/joim.12816 PMID: 30051512
- Karmakar S, Sharma LG, Roy A, Patel A, Pandey LM. Neuronal SNARE complex: A protein folding system with intricate protein-protein interactions, and its common neuropathological hallmark, SNAP25. Neurochem Int 2019; 122: 196-207. doi: 10.1016/j.neuint.2018.12.001 PMID: 30517887
- Pereira JB, Janelidze S, Ossenkoppele R, et al. Untangling the association of amyloid-β and tau with synaptic and axonal loss in Alzheimers disease. Brain 2021; 144(1): 310-24. doi: 10.1093/brain/awaa395 PMID: 33279949
- Agostini S, Mancuso R, Liuzzo G, et al. Serum miRNAs expression and SNAP-25 genotype in Alzheimers disease. Front Aging Neurosci 2019; 11: 52. doi: 10.3389/fnagi.2019.00052 PMID: 30914946
- Ren Z, Yu J, Wu Z, et al. MicroRNA-210-5p contributes to cognitive impairment in early vascular dementia rat model through targeting snap25. Front Mol Neurosci 2018; 11: 388. doi: 10.3389/fnmol.2018.00388 PMID: 30483048
- Jia L, Zhu M, Kong C, et al. Blood neuro-exosomal synaptic proteins predict Alzheimers disease at the asymptomatic stage. Alzheimers Dement 2021; 17(1): 49-60. doi: 10.1002/alz.12166 PMID: 32776690
- Fowler KD, Funt JM, Artyomov MN, Zeskind B, Kolitz SE, Towfic F. Leveraging existing data sets to generate new insights into Alzheimers disease biology in specific patient subsets. Sci Rep 2015; 5(1): 14324. doi: 10.1038/srep14324 PMID: 26395074
- Brinkmalm A, Brinkmalm G, Honer WG, et al. SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimers disease. Mol Neurodegener 2014; 9(1): 53. doi: 10.1186/1750-1326-9-53 PMID: 25418885
- Hayes MT. Parkinsons disease and parkinsonism. Am J Med 2019; 132(7): 802-7. doi: 10.1016/j.amjmed.2019.03.001 PMID: 30890425
- Beitz JM. Parkinson's disease a review. Front Biosci 2014; S6(1): 65-74. doi: 10.2741/S415 PMID: 24389262
- Tolosa E, Garrido A, Scholz SW, Poewe W. Challenges in the diagnosis of Parkinsons disease. Lancet Neurol 2021; 20(5): 385-97. doi: 10.1016/S1474-4422(21)00030-2 PMID: 33894193
- Nakata Y, Yasuda T, Fukaya M, et al. Accumulation of α-synuclein triggered by presynaptic dysfunction. J Neurosci 2012; 32(48): 17186-96. doi: 10.1523/JNEUROSCI.2220-12.2012 PMID: 23197711
- Garcia-Reitböck P, Anichtchik O, Bellucci A, et al. SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinsons disease. Brain 2010; 133(7): 2032-44. doi: 10.1093/brain/awq132 PMID: 20534649
- Caminiti SP, Presotto L, Baroncini D, et al. Axonal damage and loss of connectivity in nigrostriatal and mesolimbic dopamine pathways in early Parkinsons disease. Neuroimage Clin 2017; 14: 734-40. doi: 10.1016/j.nicl.2017.03.011 PMID: 28409113
- Agliardi C, Meloni M, Guerini FR, et al. Oligomeric α-Syn and SNARE complex proteins in peripheral extracellular vesicles of neural origin are biomarkers for Parkinsons disease. Neurobiol Dis 2021; 148: 105185. doi: 10.1016/j.nbd.2020.105185 PMID: 33217562
- Gorenberg EL, Chandra SS. The role of co-chaperones in synaptic proteostasis and neurodegenerative disease. Front Neurosci 2017; 11: 248. doi: 10.3389/fnins.2017.00248 PMID: 28579939
- Bereczki E, Bogstedt A, Höglund K, et al. Synaptic proteins in CSF relate to Parkinsons disease stage markers. NPJ Parkinsons Dis 2017; 3(1): 7. doi: 10.1038/s41531-017-0008-2 PMID: 28649607
- Huang J, Liu L, Qin L, Huang H, Li X. Weighted gene coexpression network analysis uncovers critical genes and pathways for multiple brain regions in Parkinsons disease. BioMed Res Int 2021; 2021: 1-46. doi: 10.1155/2021/6616434 PMID: 33791366
- Richetto J, Meyer U. Epigenetic modifications in schizophrenia and related disorders: Molecular scars of environmental exposures and source of phenotypic variability. Biol Psychiatry 2021; 89(3): 215-26. doi: 10.1016/j.biopsych.2020.03.008 PMID: 32381277
- Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet 2016; 388(10039): 86-97. doi: 10.1016/S0140-6736(15)01121-6 PMID: 26777917
- Yang H, Zhang M, Shi J, et al. Brain-specific SNAP-25 deletion leads to elevated extracellular glutamate level and schizophrenia like behavior in mice. Neural Plast 2017; 2017: 1-11. doi: 10.1155/2017/4526417 PMID: 29318050
- Condliffe SB, Matteoli M. Inactivation kinetics of voltage-gated calcium channels in glutamatergic neurons are influenced by SNAP-25. Channels 2011; 5(4): 304-7. doi: 10.4161/chan.5.4.16228 PMID: 21558797
- Ramos-Miguel A, Gicas K, Alamri J, et al. Reduced SNAP25 protein fragmentation contributes to SNARE complex dysregulation in schizophrenia postmortem brain. Neuroscience 2019; 420: 112-28. doi: 10.1016/j.neuroscience.2018.12.015 PMID: 30579835
- Barakauskas VE, Moradian A, Barr AM, et al. Quantitative mass spectrometry reveals changes in SNAP-25 isoforms in schizophrenia. Schizophr Res 2016; 177(1-3): 44-51. doi: 10.1016/j.schres.2016.03.002 PMID: 26971072
- Ramos-Miguel A, Barakauskas V, Alamri J, et al. The SNAP25 interactome in ventromedial caudate in schizophrenia includes the mitochondrial protein ARF1. Neuroscience 2019; 420: 97-111. doi: 10.1016/j.neuroscience.2018.12.045 PMID: 30610939
- Xu C, Sellgren CM, Fatouros-Bergman H, et al. CSF levels of synaptosomal-associated protein 25 and synaptotagmin-1 in first-episode psychosis subjects. IBRO Rep 2020; 8: 136-42. doi: 10.1016/j.ibror.2020.04.001 PMID: 32490278
- Barakauskas VE, Beasley CL, Barr AM, et al. A novel mechanism and treatment target for presynaptic abnormalities in specific striatal regions in schizophrenia. Neuropsychopharmacology 2010; 35(5): 1226-38. doi: 10.1038/npp.2009.228 PMID: 20072114
- Hirschfeld RM, Vornik LA. Bipolar disorder-costs and comorbidity. Am J Manag Care 2005; 11(3) (Suppl.): S85-90. PMID: 16097719
- Barnett JH, Smoller JW. The genetics of bipolar disorder. Neuroscience 2009; 164(1): 331-43. doi: 10.1016/j.neuroscience.2009.03.080 PMID: 19358880
- Etain B, Dumaine A, Mathieu F, et al. A SNAP25 promoter variant is associated with early-onset bipolar disorder and a high expression level in brain. Mol Psychiatry 2010; 15(7): 748-55. doi: 10.1038/mp.2008.148 PMID: 19125158
- Bozzi Y, Casarosa S, Caleo M. Epilepsy as a neurodevelopmental disorder. Front Psychiatry 2012; 3: 19. doi: 10.3389/fpsyt.2012.00019 PMID: 22457654
- Watanabe S, Yamamori S, Otsuka S, et al. Epileptogenesis and epileptic maturation in phosphorylation site-specific SNAP-25 mutant mice. Epilepsy Res 2015; 115: 30-44. doi: 10.1016/j.eplepsyres.2015.05.004 PMID: 26220374
- Sabers A, Kjær TW. Epilepsy. Ugeskr Laeger 2014; 176(26): V11120634. PMID: 25294573
- Hamdan FF, Myers CT, Cossette P, et al. High rate of recurrent de novo mutations in developmental and epileptic encephalopathies. Am J Hum Genet 2017; 101(5): 664-85. doi: 10.1016/j.ajhg.2017.09.008 PMID: 29100083
- Klöckner C, Sticht H, Zacher P, et al. De novo variants in SNAP25 cause an early-onset developmental and epileptic encephalopathy. Genet Med 2021; 23(4): 653-60. doi: 10.1038/s41436-020-01020-w PMID: 33299146
- Corradini I, Verderio C, Sala M, Wilson MC, Matteoli M. SNAP-25 in neuropsychiatric disorders. Ann N Y Acad Sci 2009; 1152(1): 93-9. doi: 10.1111/j.1749-6632.2008.03995.x PMID: 19161380
- Hawi Z, Matthews N, Wagner J, et al. DNA variation in the SNAP25 gene confers risk to ADHD and is associated with reduced expression in prefrontal cortex. PLoS One 2013; 8(4): e60274. doi: 10.1371/journal.pone.0060274 PMID: 23593184
- Puentes-Rozo PJ, Acosta-López JE, Cervantes-Henríquez ML, et al. Genetic variation underpinning ADHD risk in a caribbean community. Cells 2019; 8(8): 907. doi: 10.3390/cells8080907 PMID: 31426340
- Herken H, Erdal ME, Kenar ANİ, et al. Association of SNAP-25 gene Dde l and Mnl l polymorphisms with adult attention deficit hyperactivity disorder. Psychiatry Investig 2014; 11(4): 476-80. doi: 10.4306/pi.2014.11.4.476 PMID: 25395980
- Forero DA, Arboleda GH, Vasquez R, Arboleda H. Candidate genes involved in neural plasticity and the risk for attention-deficit hyperactivity disorder: A meta-analysis of 8 common variants. J Psychiatry Neurosci 2009; 34(5): 361-6. PMID: 19721846
- Li J, Yan WJ, Wu Y, Tian XX, Zhang YW. Synaptosomal-associated protein 25 gene polymorphisms affect treatment efficiency of methylphenidate in children with attention-deficit hyperactivity disorder: An fNIRS study. Front Behav Neurosci 2022; 15: 793643. doi: 10.3389/fnbeh.2021.793643 PMID: 35069142
- Thapar A, Rutter M. Genetic advances in autism. J Autism Dev Disord 2021; 51(12): 4321-32. doi: 10.1007/s10803-020-04685-z PMID: 32940822
- Bolognesi E, Guerini FR, Carta A, et al. The role of SNAP-25 in autism spectrum disorders onset patterns. Int J Mol Sci 2023; 24(18): 14042. doi: 10.3390/ijms241814042 PMID: 37762342
- LeBlanc JJ, Fagiolini M. Autism: A "critical period" disorder? Neural Plast 2011; 2011: 1-17. doi: 10.1155/2011/921680 PMID: 21826280
- Lenart J, Bratek E, Lazarewicz JW, Zieminska E. Changes in the expression of snap-25 protein in the brain of juvenile rats in two models of autism. J Mol Neurosci 2020; 70(9): 1313-20. doi: 10.1007/s12031-020-01543-6 PMID: 32367505
- Braida D, Guerini FR, Ponzoni L, et al. Association between SNAP-25 gene polymorphisms and cognition in autism: Functional consequences and potential therapeutic strategies. Transl Psychiatry 2015; 5(1): e500. doi: 10.1038/tp.2014.136 PMID: 25629685
- Choi MG, Kim MJ, Kim DG, Yu R, Jang YN, Oh WJ. Sequestration of synaptic proteins by alpha-synuclein aggregates leading to neurotoxicity is inhibited by small peptide. PLoS One 2018; 13(4): e0195339. doi: 10.1371/journal.pone.0195339 PMID: 29608598
- Condliffe SB, Corradini I, Pozzi D, Verderio C, Matteoli M. Endogenous SNAP-25 regulates native voltage-gated calcium channels in glutamatergic neurons. J Biol Chem 2010; 285(32): 24968-76. doi: 10.1074/jbc.M110.145813 PMID: 20522554
Arquivos suplementares
