Design and Development of Ophthalmic Liposomes from the QbD Perspective


Citar

Texto integral

Resumo

:Due to significant lachrymation, drug washing out, and poor adhesion to the lipophilic outer layer of the precorneal and cornea membrane, topical ophthalmic solution drops have poor ocular bioavailability. The rate of transcorneal absorption is impacted in the case of hydrophilic drug molecules as brimonidine tartrate, timolol maleate, cyclosporine, etc. Ophthalmic solution administered in many doses is less patient-compliant. The limitation of multiple-dose and its negative effects can be overcome by the development of delayed- release liposomes. Liposomes are regulatory-approved novel drug delivery systems. Its vesicular form aids in delaying medication release, and its lipidic makeup enables it to stick to the cornea's lipophilic layer. As a result, it will prevent precorneal clearing, extend corneal contact time, and provide sufficient transcorneal absorption. The aim of this review article is to portray the benefits of liposomes for ophthalmic drug delivery and its formulation development in the light of QbD. The review discusses the composition, preparatory methods and quality aspects of ophthalmic liposomes. It then accordingly reasonably proposes the quality target product profile, critical quality attributes, critical material attributes and critical process parameters, involved in liposome development for ophthalmic drug delivery. This review shall help formulation scientists to formulate ophthalmic liposomes of desirable quality.

Sobre autores

Kaustubh Pawar

Progressive Education Society’s Modern College of Pharmacy, Savitribai Phule Pune University

Autor responsável pela correspondência
Email: info@benthamscience.net

Karimunnisa Shaikh

Progressive Education Society’s Modern College of Pharmacy, Savitribai Phule Pune University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. López-Cano JJ, González-Cela-Casamayor MA, Andrés-Guerrero V, Herrero-Vanrell R, Molina-Martínez IT. Liposomes as vehicles for topical ophthalmic drug delivery and ocular surface protection. Expert Opin Drug Deliv 2021; 18(7): 819-47. doi: 10.1080/17425247.2021.1872542 PMID: 33412914
  2. Shen J, Lu GW, Hughes P. Targeted ocular drug delivery with pharmacokinetic/pharmacodynamic considerations. Pharm Res 2018; 35(11): 217. doi: 10.1007/s11095-018-2498-y PMID: 30255364
  3. Pahuja P, Arora S, Pawar P. Ocular drug delivery system: A reference to natural polymers. Expert Opin Drug Deliv 2012; 9(7): 837-61. doi: 10.1517/17425247.2012.690733 PMID: 22703523
  4. Bravo-Osuna I, Andrés-Guerrero V, Pastoriza Abal P, Molina- Martínez IT, Herrero-Vanrell R. Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases. Drug Deliv Transl Res 2016; 6(6): 686-707. doi: 10.1007/s13346-016-0336-5 PMID: 27766598
  5. Moisseiev E, Loewenstein A. Drug delivery to the posterior segment of the eye. Dev Ophthalmol 2017; 58: 87-101. doi: 10.1159/000455276 PMID: 28351054
  6. Mannermaa E, Vellonen KS, Urtti A. Drug transport in corneal epithelium and blood–retina barrier: Emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev 2006; 58(11): 1136-63. doi: 10.1016/j.addr.2006.07.024 PMID: 17081648
  7. Park DJJ. Topographic anatomy of the eye, Duane’s foundations of clinical ophthalmology. Lippincott Williams & Wilkins 2006.
  8. Gote V, Sikder S, Sicotte J, Pal D. Ocular drug delivery: Ppresent innovations and future challenges. J Pharmacol Exp Ther 2019; 370(3): 602-24. doi: 10.1124/jpet.119.256933 PMID: 31072813
  9. Davies NM. Biopharmaceutical considerations in topical ocular drug delivery. Clin Exp Pharmacol Physiol 2000; 27(7): 558-62. doi: 10.1046/j.1440-1681.2000.03288.x PMID: 10874518
  10. Rabinovich-Guilatt L, Couvreur P, Lambert G, Dubernet C. Cationic vectors in ocular drug delivery. J Drug Target 2004; 12(9-10): 623-33. doi: 10.1080/10611860400015910 PMID: 15621688
  11. Gaudana R, Ananthula HK, Parenky A. Ocular drug delivery. Aaps J 2010; 12(3): 348-60. doi: 10.1208/s12248-010-9183-3
  12. Bennett L. Drug delivery to specific compartments of the eye. Ocular Drug Delivery: Advances, Challenges and Applications. Springer International Publishing 2016; pp. 37-52.
  13. Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: Impacts of membranes and barriers. Expert Opin Drug Deliv 2008; 5(5): 567-81. doi: 10.1517/17425247.5.5.567 PMID: 18491982
  14. Rodrigues GA, Lutz D, Shen J, et al. Topical drug delivery to the posterior segment of the eye: Addressing the challenge of preclinical to clinical translation. Pharm Res 2018; 35(12): 245. doi: 10.1007/s11095-018-2519-x PMID: 30374744
  15. Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017; 9(4): 12. doi: 10.3390/pharmaceutics9020012 PMID: 28346375
  16. Bhattacharjee A, Das PJ, Adhikari P, et al. Novel drug delivery systems for ocular therapy: With special reference to liposomal ocular delivery. Eur J Ophthalmol 2019; 29(1): 113-26. doi: 10.1177/1120672118769776 PMID: 29756507
  17. Liposome Drug Products. 2018. Guidance for Industry. US-FDA CDER. Liposome Drug Products: Chemistry, Manufacturing, and Controls; Human Pharmacokinetics and Bioavailability; and Labeling Documentation ⋅ FDA. 2018. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/liposome-drug-products-chemistry-manufacturing-and-controls-human-pharmacokinetics-and
  18. Torchilin V. Liposomes: A Practical Approach. Kettering, UK: Oxford University Press 2003; pp. 77-101. doi: 10.1093/oso/9780199636556.001.0001
  19. Agarwal R, Iezhitsa I, Agarwal P, et al. Liposomes in topical ophthalmic drug delivery: An update. Drug Deliv 2016; 23(4): 1075-91. doi: 10.3109/10717544.2014.943336 PMID: 25116511
  20. Cheng T, Li J, Cheng Y, Zhang X, Qu Y. Triamcinolone acetonide-chitosan coated liposomes efficiently treated retinal edema as eye drops. Exp Eye Res 2019; 188: 107805. doi: 10.1016/j.exer.2019.107805 PMID: 31526807
  21. Li J, Cheng T, Tian Q, et al. A more efficient ocular delivery system of triamcinolone acetonide as eye drop to the posterior segment of the eye. Drug Deliv 2019; 26(1): 188-98. doi: 10.1080/10717544.2019.1571122 PMID: 30835587
  22. Tan G, Yu S, Pan H, et al. Bioadhesive chitosan-loaded liposomes: A more efficient and higher permeable ocular delivery platform for timolol maleate. Int J Biol Macromol 2017; 94(Pt A): 355-63. doi: 10.1016/j.ijbiomac.2016.10.035 PMID: 27760378
  23. Fan M, Xu S, Xia S, Zhang X. Effect of different preparation methods on physicochemical properties of salidroside liposomes. J Agric Food Chem 2007; 55(8): 3089-95. doi: 10.1021/jf062935q PMID: 17373810
  24. Strauss G, Ingenito EP. Stabilization of liposome bilayers to freezing and thawing: Effects of cryoprotective agents and membrane proteins. Cryobiology 1980; 17(5): 508-15. doi: 10.1016/0011-2240(80)90062-0 PMID: 7438768
  25. Gouveia SM, Tiffany JM. Human tear viscosity: An interactive role for proteins and lipids. Biochim Biophys Acta Proteins Proteomics 2005; 1753(2): 155-63. doi: 10.1016/j.bbapap.2005.08.023 PMID: 16236563
  26. Soriano-Romaní L, Vicario-de-la-Torre M, Crespo-Moral M, et al. Novel anti-inflammatory liposomal formulation for the pre-ocular tear film: In vitro and ex vivo functionality studies in corneal epithelial cells. Exp Eye Res 2017; 154: 79-87. doi: 10.1016/j.exer.2016.11.010 PMID: 27840060
  27. Natarajan JV, Ang M, Darwitan A, Chattopadhyay S, Wong TT, Venkatraman SS. Nanomedicine for glaucoma: Liposomes provide sustained release of latanoprost in the eye. Int J Nanomed 2012; 7: 123-31. PMID: 22275828
  28. Rathod S, Deshpande SG. Design and evaluation of liposomal formulation of pilocarpine nitrate. Indian J Pharm Sci 2010; 72(2): 155-60. doi: 10.4103/0250-474X.65014 PMID: 20838517
  29. Law SL, Huang KJ, Chiang CH. Acyclovir-containing liposomes for potential ocular delivery. J Control Release 2000; 63(1-2): 135-40. doi: 10.1016/S0168-3659(99)00192-3 PMID: 10640587
  30. Schaeffer HE, Krohn DL. Liposomes in topical drug delivery. Investig Ophthalmol. Vis Sci 1982; 22: 220-7.
  31. Taniguchi K, Yamamoto Y, Itakura K, Miichi H, Hayashi S. Assessment of ocular irritability of liposome preparations. J Pharmacobiodyn 1988; 11(9): 607-11. doi: 10.1248/bpb1978.11.607 PMID: 3216282
  32. Klymchenko AS, Oncul S, Didier P, et al. Visualization of lipid domains in giant unilamellar vesicles using an environment-sensitive membrane probe based on 3-hydroxyflavone. Biochim Biophys Acta Biomembr 2009; 1788(2): 495-9. doi: 10.1016/j.bbamem.2008.10.019 PMID: 19027712
  33. Mishra GP, Bagui M, Tamboli V, Mitra AK. Recent applications of liposomes in ophthalmic drug delivery. J Drug Deliv 2011; 2011: 1-14. doi: 10.1155/2011/863734 PMID: 21490757
  34. Bibi S, Kaur R, Henriksen-Lacey M, et al. Microscopy imaging of liposomes: From coverslips to environmental SEM. Int J Pharm 2011; 417(1-2): 138-50. doi: 10.1016/j.ijpharm.2010.12.021 PMID: 21182914
  35. Robson AL, Dastoor PC, Flynn J, et al. Advantages and limitations of current imaging techniques for characterizing liposome morphology. Front Pharmacol 2018; 9: 80. doi: 10.3389/fphar.2018.00080 PMID: 29467660
  36. Mehanna MM, El-Kader NA, Samaha MW. Liposomes as potential carriers for ketorolac ophthalmic delivery: Formulation and stability issues. Braz J Pharm Sci 2017; 53(2): 1-10. doi: 10.1590/s2175-97902017000216127
  37. Lin J, Wu H, Wang Y, Lin J, Chen Q, Zhu X. Preparation and ocular pharmacokinetics of hyaluronan acid-modified mucoadhesive liposomes. Drug Deliv 2016; 23(4): 1144-51. doi: 10.3109/10717544.2014.991952 PMID: 25533876
  38. Taha EI, El-Anazi MH, El-Bagory IM, Bayomi MA. Design of liposomal colloidal systems for ocular delivery of ciprofloxacin. Saudi Pharm J 2014; 22(3): 231-9. doi: 10.1016/j.jsps.2013.07.003 PMID: 25061409
  39. Chetoni P, Monti D, Tampucci S, et al. Liposomes as a potential ocular delivery system of distamycin A. Int J Pharm 2015; 492(1-2): 120-6. doi: 10.1016/j.ijpharm.2015.05.055 PMID: 26183332
  40. Soriano-Romaní L, Álvarez-Trabado J, López-García A, Molina- Martínez I, Herrero-Vanrell R, Diebold Y. Improved in vitro corneal delivery of a thrombospondin-1-derived peptide using a liposomal formulation. Exp Eye Res 2018; 167: 118-21. doi: 10.1016/j.exer.2017.12.002 PMID: 29246497
  41. Dai Y, Zhou R, Liu L, Lu Y, Qi J, Wu W. Liposomes containing bile salts as novel ocular delivery systems for tacrolimus (FK506): In vitro characterization and improved corneal permeation. Int J Nanomed 2013; 8: 1921-33. PMID: 23690687
  42. de Sá FAP, Taveira SF, Gelfuso GM, Lima EM, Gratieri T. Liposomal voriconazole (VOR) formulation for improved ocular delivery. Colloids Surf B Biointerfaces 2015; 133: 331-8. doi: 10.1016/j.colsurfb.2015.06.036 PMID: 26123854
  43. Khalil M, Hashmi U, Riaz R, Rukh Abbas S. Chitosan coated liposomes (CCL) containing triamcinolone acetonide for sustained delivery: A potential topical treatment for posterior segment diseases. Int J Biol Macromol 2020; 143: 483-91. doi: 10.1016/j.ijbiomac.2019.10.256 PMID: 31759018
  44. Li N, Zhuang C, Wang M, Sun X, Nie S, Pan W. Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery. Int J Pharm 2009; 379(1): 131-8. doi: 10.1016/j.ijpharm.2009.06.020 PMID: 19559775
  45. Li N, Zhuang CY, Wang M, Sui CG, Pan WS. Low molecular weight chitosan-coated liposomes for ocular drug delivery: In vitro and in vivo studies. Drug Deliv 2012; 19(1): 28-35. doi: 10.3109/10717544.2011.621994 PMID: 22070752
  46. Zhang J, Wang S. Topical use of Coenzyme Q10-loaded liposomes coated with trimethyl chitosan: Tolerance, precorneal retention and anti-cataract effect. Int J Pharm 2009; 372(1-2): 66-75. doi: 10.1016/j.ijpharm.2009.01.001 PMID: 19437594
  47. Yu S, Wang QM, Wang X, et al. Liposome incorporated ion sensitive in situ gels for opthalmic delivery of timolol maleate. Int J Pharm 2015; 480(1-2): 128-36. doi: 10.1016/j.ijpharm.2015.01.032 PMID: 25615987
  48. Quinteros D, Vicario-de-la-Torre M, Andrés-Guerrero V, et al. Hybrid formulations of liposomes and bioadhesive polymers improve the hypotensive effect of the melatonin analogue 5-MCA- NAT in rabbit eyes. PLoS One 2014; 9(10): e110344. doi: 10.1371/journal.pone.0110344 PMID: 25329636
  49. Shen Y, Tu J. Preparation and ocular pharmacokinetics of ganciclovir liposomes. AAPS J 2007; 9(3): E371-7. doi: 10.1208/aapsj0903044 PMID: 18170984
  50. Gomez-Ballesteros M, Lopez-Cano JJ, Bravo-Osuna I. Osmoprotectants in hybrid liposome/HPMC systems as potential glaucoma treatment Polymers 2019; 11(6): 929.
  51. Hosny KM. Ciprofloxacin as ocular liposomal hydrogel. AAPS PharmSciTech 2010; 11(1): 241-6. doi: 10.1208/s12249-009-9373-4 PMID: 20151337
  52. Feghhi M, Sharif Makhmalzadeh B, Farrahi F, Akmali M, Hasanvand N. Anti-microbial effect and in vivo ocular delivery of ciprofloxacin-loaded liposome through rabbit’s eye. Curr Eye Res 2020; 45(10): 1245-51. doi: 10.1080/02713683.2020.1728777 PMID: 32045531
  53. Ghareb M DF. Development and in vitro/in vivo evaluation of liposomal gels for the sustained ocular delivery of latanoprost. J Clin Exp Ophthalmol 2015; 6(1): 2. doi: 10.4172/2155-9570.1000390
  54. Dong Y, Dong P, Huang D, et al. Fabrication and characterization of silk fibroin-coated liposomes for ocular drug delivery. Eur J Pharm Biopharm 2015; 91: 82-90. doi: 10.1016/j.ejpb.2015.01.018 PMID: 25643990
  55. Hathout RM, Mansour S, Mortada ND, Guinedi AS. Liposomes as an ocular delivery system for acetazolamide: In vitro and in vivo studies. AAPS PharmSciTech 2007; 8(1): E1-E12. doi: 10.1208/pt0801001 PMID: 17408209
  56. Zhang J, Liang X, Li X, et al. Ocular delivery of cyanidin-3-glycoside in liposomes and its prevention of selenite-induced oxidative stress. Drug Dev Ind Pharm 2016; 42(4): 546-53. doi: 10.3109/03639045.2015.1088867 PMID: 26393779
  57. Shimokawa T, Fukuta T, Inagi T, Kogure K. Protective effect of high-affinity liposomes encapsulating astaxanthin against corneal disorder in the in vivo rat dry eye disease model. J Clin Biochem Nutr 2020; 66(3): 224-32. doi: 10.3164/jcbn.19-102 PMID: 32523249
  58. Mehanna MM, Elmaradny HA, Samaha MW. Mucoadhesive liposomes as ocular delivery system: Physical, microbiological, and in vivo assessment. Drug Dev Ind Pharm 2010; 36(1): 108-18. doi: 10.3109/03639040903099751 PMID: 19656004
  59. Chen H, Pan H, Li P, et al. The potential use of novel chitosan- coated deformable liposomes in an ocular drug delivery system. Colloids Surf B Biointerfaces 2016; 143: 455-62. doi: 10.1016/j.colsurfb.2016.03.061 PMID: 27037783
  60. Elsana H, Olusanya TOB, Carr-wilkinson J, Darby S, Faheem A, Elkordy AA. Evaluation of novel cationic gene based liposomes with cyclodextrin prepared by thin film hydration and microfluidic systems. Sci Rep 2019; 9(1): 15120. doi: 10.1038/s41598-019-51065-4 PMID: 31641141
  61. Gonzalez Gomez A, Syed S, Marshall K, Hosseinidoust Z. Liposomal nanovesicles for efficient encapsulation of staphylococcal antibiotics. ACS Omega 2019; 4(6): 10866-76. doi: 10.1021/acsomega.9b00825 PMID: 31460184
  62. Elbialy NS, Abdol-Azim BM, Shafaa MW, El Shazly LH, El Shazly AH, Khalil WA. Enhancement of the ocular therapeutic effect of prednisolone acetate by liposomal entrapment. J Biomed Nanotechnol 2013; 9(12): 2105-16. doi: 10.1166/jbn.2013.1711 PMID: 24266264
  63. Assil KK, Frucht-Perry J, Ziegler E, Schanzlin DJ, Schneiderman T, Weinreb RN. Tobramycin liposomes. Single subconjunctival therapy of pseudomonal keratitis. Invest Ophthalmol Vis Sci 1991; 32(13): 3216-20. PMID: 1748553
  64. Briuglia ML, Rotella C, McFarlane A, Lamprou DA. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res 2015; 5(3): 231-42. doi: 10.1007/s13346-015-0220-8 PMID: 25787731
  65. Ren T, Lin X, Zhang Q, et al. Encapsulation of azithromycin ion pair in liposome for enhancing ocular delivery and therapeutic efficacy on dry eye. Mol Pharm 2018; 15(11): 4862-71. doi: 10.1021/acs.molpharmaceut.8b00516 PMID: 30251864
  66. Altamirano-Vallejo JC, Navarro-Partida J, Gonzalez-De la Rosa A, et al. Characterization and pharmacokinetics of triamcinolone acetonide-loaded liposomes topical formulations. J Ocul Pharmacol Ther 2018; 34(5): 416-25. doi: 10.1089/jop.2017.0099 PMID: 29584529
  67. Gonzalez-De la Rosa A, Navarro-Partida J, Altamirano-Vallejo JC, et al. Novel triamcinolone acetonide-loaded liposomes topical formulation for the treatment of cystoid macular edema after cataract surgery: A pilot study. J Ocul Pharmacol Ther 2019; 35(2): 106-15. doi: 10.1089/jop.2018.0101 PMID: 30614750
  68. Moustafa MA, Elnaggar YSR, El-Refaie WM, Abdallah OY. Hyalugel-integrated liposomes as a novel ocular nanosized delivery system of fluconazole with promising prolonged effect. Int J Pharm 2017; 534(1-2): 14-24. doi: 10.1016/j.ijpharm.2017.10.007 PMID: 28987453
  69. D’Souza GGM. Liposomes: Methods and protocols. Methods in Molecular Biology. Humana New York 2017; p. 1522.
  70. Silvius JR. Thermotropic phase transitions of pure lipids in model membranes and their modifications by membrane proteins. Lipid-Protein Interactions. New York: John Wiley & Sons, Inc. 1982.
  71. Marsh D. Thermodynamics of phospholipid self-assembly. Biophys J 2012; 102(5): 1079-87. doi: 10.1016/j.bpj.2012.01.049 PMID: 22404930
  72. Angelini G, Campestre C, Boncompagni S, Gasbarri C. Liposomes entrapping β-cyclodextrin/ibuprofen inclusion complex: Role of the host and the guest on the bilayer integrity and microviscosity. Chem Phys Lipids 2017; 209: 61-5. doi: 10.1016/j.chemphyslip.2017.09.004 PMID: 28986064
  73. Lu W-L, Qi X-R. Liposome-based drug delivery systems. Biomaterial Engineering. Springer. US 2021. doi: 10.1007/978-3-662-49320-5
  74. Thassu D, Deleers M, Pathak Y. Nanoparticulate drug delivery systems. New York: Informa 2007; p. 89. doi: 10.1201/9781420008449
  75. Handel T. Methods in enzymology. Netherlands: Elsevier 2005; p. 97.
  76. Cortesi R, Esposito E, Gambarin S, Telloli P, Menegatti E, Nastruzzi C. Preparation of liposomes by reverse-phase evaporation using alternative organic solvents. J Microencapsul 1999; 16(2): 251-6. doi: 10.1080/026520499289220 PMID: 10080118
  77. Otake K, Shimomura T, Goto T, et al. Preparation of liposomes using an improved supercritical reverse phase evaporation method. Langmuir 2006; 22(6): 2543-50. doi: 10.1021/la051654u PMID: 16519453
  78. Kirby C, Gregoriadis G. Dehydration-rehydration vesicles: A simple method for high yield drug entrapment in liposomes. Nat Biotechnol 1984; 2(11): 979-84. doi: 10.1038/nbt1184-979
  79. Rewar S, Singh CJ, Bansal BK. A vital role of liposome’s on controlled and novel drug delivery. Int J Pharm Biol Arch 2014; 5: 51-63.
  80. Jaafar-Maalej C, Diab R, Andrieu V, Elaissari A, Fessi H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res 2010; 20(3): 228-43. doi: 10.3109/08982100903347923 PMID: 19899957
  81. Dua JS. Liposome: Methods of preparation and applications. Int J Pharm Stud Res 2013; 14-20.
  82. Mendez R, Banerjee S. Sonication-based basic protocol for liposome synthesis. Methods Mol Biol 2017; 1609: 255-60. doi: 10.1007/978-1-4939-6996-8_21 PMID: 28660588
  83. Lapinski MM, Castro-Forero A, Greiner AJ, Ofoli RY, Blanchard GJ. Comparison of liposomes formed by sonication and extrusion: Rotational and translational diffusion of an embedded chromophore. Langmuir 2007; 23(23): 11677-83. doi: 10.1021/la7020963 PMID: 17939695
  84. Weissig V. Liposomes, methods in molecular biology. New York: Springer 2010; p. 29.
  85. Weissig V. Liposomes, methods in molecular biology. New York: Springer 2010; p. 445.
  86. Magotoshi M, Abu-Zaid SS, Noriaki T. Size and permeability of liposomes extruded through polycarbonate membranes. Int J Pharm 1983; 17(2-3): 215-24. doi: 10.1016/0378-5173(83)90034-0
  87. van Swaay D, deMello A. Microfluidic methods for forming liposomes. Lab Chip 2013; 13(5): 752-67. doi: 10.1039/c2lc41121k PMID: 23291662
  88. Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature 2014; 507(7491): 181-9. doi: 10.1038/nature13118 PMID: 24622198
  89. Williams MS, Longmuir KJ, Yager P. A practical guide to the staggered herringbone mixer. Lab Chip 2008; 8(7): 1121-9. doi: 10.1039/b802562b PMID: 18584088
  90. Cheung CCL, Al-Jamal WT. Sterically stabilized liposomes production using staggered herringbone micromixer: Effect of lipid composition and PEG-lipid content. Int J Pharm 2019; 566: 687-96. doi: 10.1016/j.ijpharm.2019.06.033 PMID: 31212051
  91. Carugo D, Bottaro E, Owen J, Stride E, Nastruzzi C. Liposome production by microfluidics: Potential and limiting factors. Sci Rep 2016; 6(1): 25876. doi: 10.1038/srep25876 PMID: 27194474
  92. Li H, Liu Y, Zhang Y, et al. Liposomes as a novel ocular delivery system for brinzolamide: In vitro and in vivo studies. AAPS PharmSciTech 2016; 17(3): 710-7. doi: 10.1208/s12249-015-0382-1 PMID: 26335415
  93. Abdel-Rhaman MS, Soliman W, Habib F, Fathalla D. A new long-acting liposomal topical antifungal formula: Human clinical study. Cornea 2012; 31(2): 126-9. doi: 10.1097/ICO.0b013e318221cf12 PMID: 22138587
  94. Mehanna MM, Elmaradny HA, Samaha MW. Ciprofloxacin liposomes as vesicular reservoirs for ocular delivery: Formulation, optimization, and in vitro characterization. Drug Dev Ind Pharm 2009; 35(5): 583-93. doi: 10.1080/03639040802468024 PMID: 19031311

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024