Intelligent Systems based on Cyclodextrins for the Treatment of Breast Cancer


Цитировать

Полный текст

Аннотация

:The incidence of breast cancer has been increasing over the last four decades, although the mortality rate has decreased. Endocrine therapy and chemotherapy are the most used options for cancer treatment but several obstacles are still attributed to these therapies. Smart materials, such as nanocarriers for targeting, delivery and release of active ingredients, sensitive to intrinsic-stimuli (pH-responsive, redox-responsive, enzyme- responsive, and thermo-responsive) and extrinsic-stimuli (ultrasound-responsive, magnetic-responsive, light-responsive) have been studied as a novel strategy in breast cancer therapy. Cyclodextrins (CDs) are used in the design of these stimuli-responsive drug carrier and delivery systems, either through inclusion complexes with hydrophobic molecules or covalent bonds with large structures to generate new materials. The present work aims to gather and integrate recent data from in vitro and in vivo preclinical studies of CD-based stimuli- responsive systems to contribute to the research in treating breast cancer. All drug carriers showed high in vitro release rates in the presence of a stimulus. The stimuli-responsive nanoplatforms presented biocompatibility and satisfactory results of IC50, inhibition of cell viability and antitumor activity against several breast cancer cell lines. Additionally, these systems led to a significant reduction in drug dosages, which encouraged possible clinical studies for better alternatives to traditional antitumor therapies.

Об авторах

Adenia Nunes

Center for Biological and Health Sciences, State University of Paraíba

Email: info@benthamscience.net

José de Oliveira Alves Júnior

Center for Biological and Health Sciences, State University of Paraíba

Email: info@benthamscience.net

Valéria Haydée

Chemistry Department, National University of the South, INQUISUR (UNS-CONICET)

Email: info@benthamscience.net

João Júnior

Center for Biological and Health Sciences, State University of Paraíba

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Abuçafy MP, da Silva BL, Oshiro-Junior JA, et al. Advances in the use of MOFs for cancer diagnosis and treatment: An overview. Curr Pharm Des 2020; 26(33): 4174-84. doi: 10.2174/1381612826666200406153949 PMID: 32250216
  2. Metawea ORM, Teleb M, Haiba NS, et al. Folic acid-poly(N-isopropylacrylamide-maltodextrin) nanohydrogels as novel thermo-/pH-responsive polymer for resveratrol breast cancer targeted therapy. Eur Polym J 2023; 182: 111721. doi: 10.1016/j.eurpolymj.2022.111721
  3. Costa KMN, de Melo DF, da Silva Soares IL, et al. Immunotherapy for Breast Cancer. Handbook of Cancer and Immunology. 1-30.
  4. Darvishi N, Rahimi K, Mansouri K, et al. MiR-646 prevents proliferation and progression of human breast cancer cell lines by suppressing HDAC2 expression. Mol Cell Probes 2020; 53: 101649. doi: 10.1016/j.mcp.2020.101649 PMID: 32777446
  5. Giaquinto AN, Sung H, Miller KD, et al. Breast cancer statistics, 2022. CA Cancer J Clin 2022; 72(6): 524-41. doi: 10.3322/caac.21754 PMID: 36190501
  6. Costa KMN, Araújo CBB, Barros ALS, et al. Nanostructured lipid carrier as a strategy for the treatment of breast cancer. Interdisciplinary Cancer Research. Cham: Springer 2022; pp. 1-27. doi: 10.1007/16833_2022_13
  7. Finlay-Schultz J, Jacobsen BM, Riley D, et al. New generation breast cancer cell lines developed from patient-derived xenografts. Breast Cancer Res 2020; 22(1): 68. doi: 10.1186/s13058-020-01300-y PMID: 32576280
  8. Molani Gol R, Kheirouri S. The effects of quercetin on the apoptosis of human breast cancer cell lines MCF-7 and MDA-MB-231: A systematic review. Nutr Cancer 2022; 74(2): 405-22. doi: 10.1080/01635581.2021.1897631 PMID: 33682528
  9. Smolarz B, Nowak AZ, Romanowicz H. Breast cancer-epidemiology, classification, pathogenesis and treatment (review of literature). Cancers 2022; 14(10): 2569. doi: 10.3390/cancers14102569 PMID: 35626173
  10. Ashique S, Bhowmick M, Pal R, et al. Multi drug resistance in colorectal cancer approaches to overcome, advancements and future success. Adv Canc Biol Metast 2024; 10: 100114.
  11. Hani U, Gowda BHJ, Haider N, et al. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review. AAPS PharmSciTech 2023; 24(8): 233. doi: 10.1208/s12249-023-02670-0 PMID: 37973643
  12. Ashique S, Sandhu NK, Chawla V, Chawla PA. Targeted drug delivery: Trends and perspectives. Curr Drug Deliv 2021; 18(10): 1435-55. doi: 10.2174/1567201818666210609161301 PMID: 34151759
  13. Mazidi Z, Javanmardi S, Naghib SM, Mohammadpour Z. Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials. Chem Eng J 2022; 433: 134569. doi: 10.1016/j.cej.2022.134569
  14. Shaik BB, Katari NK, Jonnalagadda SB. Internal stimuli-responsive nanocarriers for controlled anti-cancer drug release: A review. Ther Deliv 2023; 14(9): 595-613. doi: 10.4155/tde-2023-0041 PMID: 37877308
  15. Oshiro-Júnior JA, Rodero C, Hanck-Silva G, et al. Stimuli-responsive drug delivery nanocarriers in the treatment of breast cancer. Curr Med Chem 2020; 27(15): 2494-513. doi: 10.2174/0929867325666181009120610 PMID: 30306849
  16. Zhang YM, Liu YH, Liu Y. Cyclodextrin-based multistimuli-responsive supramolecular assemblies and their biological functions. Adv Mater 2020; 32(3): 1806158. doi: 10.1002/adma.201806158 PMID: 30773709
  17. Costa KM, de Sousa LB, de Melo DF, da Silva Lima DP, de Lima Damasceno BP, Oshiro-Júnior JA. siRNA loaded in drug delivery nanosystems as a strategy for breast cancer treatment. Interdiscip Cancer Res 2022; pp 1-21. doi: 10.1007/16833_2022_88
  18. Tian B, Liu Y, Liu J. Smart stimuli-responsive drug delivery systems based on cyclodextrin: A review. Carbohydr Polym 2021; 251: 116871. doi: 10.1016/j.carbpol.2020.116871 PMID: 33142550
  19. Wu D, Shi X, Zhao F, et al. An injectable and tumor-specific responsive hydrogel with tissue-adhesive and nanomedicine-releasing abilities for precise locoregional chemotherapy. Acta Biomater 2019; 96: 123-36. doi: 10.1016/j.actbio.2019.06.033 PMID: 31247382
  20. Wei R, Liu S, Zhang S, Min L, Zhu S. Cellular and extracellular components in tumor microenvironment and their application in early diagnosis of cancers. Anal Cell Pathol 2020; 2020: 1-13. doi: 10.1155/2020/6283796 PMID: 32377504
  21. Tian B, Hua S, Liu J. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review. Carbohydr Polym 2020; 232: 115805. doi: 10.1016/j.carbpol.2019.115805 PMID: 31952603
  22. Topuz F, Uyar T. Advances in the development of cyclodextrin-based nanogels/microgels for biomedical applications: Drug delivery and beyond. Carbohydr Polym 2022; 297: 120033. doi: 10.1016/j.carbpol.2022.120033 PMID: 36184144
  23. Hao Z, Yi Z, Bowen C, Yaxing L, Sheng Z. Preparing γ-cyclodextrin-immobilized starch and the study of its removal properties to dyestuff from wastewater. Pol J Environ Stud 2019; 28(3): 1701-11. doi: 10.15244/pjoes/90028
  24. Wankar J, Kotla NG, Gera S, Rasala S, Pandit A, Rochev YA. Recent advances in host-guest self-assembled cyclodextrin carriers: Implications for responsive drug delivery and biomedical engineering. Adv Funct Mater 2020; 30(44): 1909049. doi: 10.1002/adfm.201909049
  25. Silvestre ALP, Oshiro-Júnior JA, Garcia C, et al. Monoclonal antibodies carried in drug delivery nanosystems as a strategy for cancer treatment. Curr Med Chem 2021; 28(2): 401-18. doi: 10.2174/1875533XMTAzfNzkzy PMID: 31965938
  26. Boczar D, Michalska K. Cyclodextrin inclusion complexes with antibiotics and antibacterial agents as drug-delivery systems : A pharmaceutical perspective. Pharmaceutics 2022; 14(7): 1389. doi: 10.3390/pharmaceutics14071389 PMID: 35890285
  27. Xu W, Li X, Wang L, et al. Design of cyclodextrin-based functional systems for biomedical applications. Front Chem 2021; 9: 635507. doi: 10.3389/fchem.2021.635507 PMID: 33681149
  28. Krabicová I, Appleton SL, Tannous M, et al. History of cyclodextrin nanosponges. Polymers 2020; 12(5): 1122. doi: 10.3390/polym12051122 PMID: 32423091
  29. Dodero A, Schlatter G, Hébraud A, Vicini S, Castellano M. Polymer-free cyclodextrin and natural polymer-cyclodextrin electrospun nanofibers: A comprehensive review on current applications and future perspectives. Carbohydr Polym 2021; 264: 118042. doi: 10.1016/j.carbpol.2021.118042 PMID: 33910745
  30. Qiu J, Kong L, Cao X, et al. Enhanced delivery of therapeutic siRNA into glioblastoma cells using dendrimer-entrapped gold nanoparticles conjugated with β-cyclodextrin. Nanomaterials 2018; 8(3): 131. doi: 10.3390/nano8030131 PMID: 29495429
  31. Liu J, Liang H, Li M, et al. Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy. Biomaterials 2018; 157: 107-24. doi: 10.1016/j.biomaterials.2017.12.003 PMID: 29268142
  32. Chen G, Qian Y, Zhang H, et al. Advances in cancer theranostics using organic-inorganic hybrid nanotechnology. Appl Mater Today 2021; 23: 101003. doi: 10.1016/j.apmt.2021.101003
  33. Mousazadeh H, Bonabi E, Zarghami N. Stimulus-responsive drug/gene delivery system based on polyethylenimine cyclodextrin nanoparticles for potential cancer therapy. Carbohydr Polym 2022; 276: 118747. doi: 10.1016/j.carbpol.2021.118747 PMID: 34823779
  34. Kasinathan K, Marimuthu K, Murugesan B, et al. Cyclodextrin functionalized multi-layered MoS2 nanosheets and its biocidal activity against pathogenic bacteria and MCF-7 breast cancer cells: Synthesis, characterization and in-vitro biomedical evaluation. J Mol Liq 2021; 323: 114631. doi: 10.1016/j.molliq.2020.114631
  35. Rastegari B, Karbalaei-Heidari HR, Zeinali S, Sheardown H. The enzyme-sensitive release of prodigiosin grafted β-cyclodextrin and chitosan magnetic nanoparticles as an anticancer drug delivery system: Synthesis, characterization and cytotoxicity studies. Colloids Surf B Biointerfaces 2017; 158: 589-601. doi: 10.1016/j.colsurfb.2017.07.044 PMID: 28750341
  36. Wu Y, Xu Z, Sun W, et al. Co-responsive smart cyclodextrin-gated mesoporous silica nanoparticles with ligand-receptor engagement for anti-cancer treatment. Mater Sci Eng C 2019; 103: 109831. doi: 10.1016/j.msec.2019.109831 PMID: 31349481
  37. Liu J, Luo Z, Zhang J, et al. Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy. Biomaterials 2016; 83: 51-65. doi: 10.1016/j.biomaterials.2016.01.008 PMID: 26773665
  38. Malanga M, Seggio M, Kirejev V, et al. A phototherapeutic fluorescent β-cyclodextrin branched polymer delivering nitric oxide. Biomater Sci 2019; 7(6): 2272-6. doi: 10.1039/C9BM00395A PMID: 31033967
  39. Ding H, Tan P, Fu S, et al. Preparation and application of pH-responsive drug delivery systems. J Control Release 2022; 348: 206-38. doi: 10.1016/j.jconrel.2022.05.056 PMID: 35660634
  40. Dan Z, Cao H, He X, et al. A pH-responsive host-guest nanosystem loading succinobucol suppresses lung metastasis of breast cancer. Theranostics 2016; 6(3): 435-45. doi: 10.7150/thno.13896 PMID: 26909117
  41. Bhattacharya S, Prajapati BG, Singh S. A critical review on the dissemination of PH and stimuli-responsive polymeric nanoparticular systems to improve drug delivery in cancer therapy. Crit Rev Oncol Hematol 2023; 185: 103961. doi: 10.1016/j.critrevonc.2023.103961 PMID: 36921781
  42. Rashidzadeh H, Ramazani A, Tabatabaei Rezaei SJ, et al. Targeted co-delivery of methotrexate and chloroquine via a pH/enzyme-responsive biocompatible polymeric nanohydrogel for colorectal cancer treatment. J Biomater Sci Polym Ed 2023; 34(13): 1824-42. doi: 10.1080/09205063.2023.2187986 PMID: 36869798
  43. Shen Y, Li M, Liu T, et al. A dual-functional HER2 aptamer-conjugated, pH-activated mesoporous silica nanocarrier-based drug delivery system provides in vitro synergistic cytotoxicity in HER2-positive breast cancer cells. Int J Nanomed 2019; 14: 4029-44. doi: 10.2147/IJN.S201688 PMID: 31213813
  44. Rahmani A, Rahimi F, Iranshahi M, et al. Co-delivery of doxorubicin and conferone by novel pH-responsive β-cyclodextrin grafted micelles triggers apoptosis of metastatic human breast cancer cells. Sci Rep 2021; 11(1): 21425. doi: 10.1038/s41598-021-00954-8 PMID: 34728703
  45. Karimi S, Namazi H. Synthesis of folic acid-conjugated glycodendrimer with magnetic β-cyclodextrin core as a pH-responsive system for tumor-targeted co-delivery of doxorubicin and curcumin. Colloids Surf A Physicochem Eng Asp 2021; 627: 127205. doi: 10.1016/j.colsurfa.2021.127205
  46. Mihanfar A, Targhazeh N, Sadighparvar S, Darband SG, Majidinia M, Yousefi B. Doxorubicin loaded magnetism nanoparticles based on cyclodextrin dendritic-graphene oxide inhibited MCF-7 cell proliferation. Biomol Concepts 2021; 12(1): 8-15. doi: 10.1515/bmc-2021-0002 PMID: 33878249
  47. Abed HF, Abuwatfa WH, Husseini GA. Redox-responsive drug delivery systems: A chemical perspective. Nanomaterials 2022; 12(18): 3183. doi: 10.3390/nano12183183 PMID: 36144971
  48. Rao NV, Ko H, Lee J, Park JH. Recent progress and advances in stimuli-responsive polymers for cancer therapy. Front Bioeng Biotechnol 2018; 6: 110. doi: 10.3389/fbioe.2018.00110 PMID: 30159310
  49. Li R, Peng F, Cai J, Yang D, Zhang P. Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects. Asi J Pharmac Sci 2020; 15(3): 311-25. doi: 10.1016/j.ajps.2019.06.003 PMID: 32636949
  50. Liu J, Chang B, Li Q, et al. Redox-responsive dual drug delivery nanosystem suppresses cancer repopulation by abrogating doxorubicin-promoted cancer stemness, metastasis, and drug resistance. Adv Sci 2019; 6(7): 1801987. doi: 10.1002/advs.201801987 PMID: 31139556
  51. Nieto C, Vega MA, Rodríguez V, Pérez-Esteban P, Martín del Valle EM. Biodegradable gellan gum hydrogels loaded with paclitaxel for HER2+ breast cancer local therapy. Carbohydr Polym 2022; 294: 119732. doi: 10.1016/j.carbpol.2022.119732 PMID: 35868800
  52. Gallego-Yerga L, de la Torre C, Sansone F, et al. Synthesis, self-assembly and anticancer drug encapsulation and delivery properties of cyclodextrin-based giant amphiphiles. Carbohydr Polym 2021; 252: 117135. doi: 10.1016/j.carbpol.2020.117135 PMID: 33183594
  53. Degirmenci A, Ipek H, Sanyal R, Sanyal A. Cyclodextrin-containing redox-responsive nanogels: Fabrication of a modular targeted drug delivery system. Eur Polym J 2022; 181: 111645. doi: 10.1016/j.eurpolymj.2022.111645
  54. Ehsanimehr S, Moghadam PN, Dehaen W, Shafiei-Irannejad V. Redox and pH-responsive NCC/L-cysteine/CM-β-CD/FA contains disulfide bond-bridged as nanocarriers for biosafety and anti-tumor efficacy system. Stärke 2021; 73(9-10): 2100061. doi: 10.1002/star.202100061
  55. Mu J, Lin J, Huang P, Chen X. Development of endogenous enzyme-responsive nanomaterials for theranostics. Chem Soc Rev 2018; 47(15): 5554-73. doi: 10.1039/C7CS00663B PMID: 29856446
  56. Shahriari M, Zahiri M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Enzyme responsive drug delivery systems in cancer treatment. J Control Release 2019; 308: 172-89. doi: 10.1016/j.jconrel.2019.07.004 PMID: 31295542
  57. Lee J, Oh ET, Yoon H, et al. Mesoporous nanocarriers with a stimulus-responsive cyclodextrin gatekeeper for targeting tumor hypoxia. Nanoscale 2017; 9(20): 6901-9. doi: 10.1039/C7NR00808B PMID: 28503686
  58. Namgung R, Mi Lee Y, Kim J, et al. Poly-cyclodextrin and poly-paclitaxel nano-assembly for anticancer therapy. Nat Commun 2014; 5(1): 3702. doi: 10.1038/ncomms4702 PMID: 24805848
  59. Katz J, Finlay TH, Banerjee S, Levitz M. An estrogen-dependent esterase activity in MCF-7 cells. J Steroid Biochem 1987; 26(6): 687-92. doi: 10.1016/0022-4731(87)91040-5 PMID: 3613568
  60. Wang Z, Yang C, Zhang H, et al. In situ transformable supramolecular nanomedicine targeted activating hippo pathway for triple-negative breast cancer growth and metastasis inhibition. ACS Nano 2022; 16(9): 14644-57. doi: 10.1021/acsnano.2c05263 PMID: 36048539
  61. Pramod PS, Shah R, Jayakannan M. Dual stimuli polysaccharide nanovesicles for conjugated and physically loaded doxorubicin delivery in breast cancer cells. Nanoscale 2015; 7(15): 6636-52. doi: 10.1039/C5NR00799B PMID: 25797322
  62. Roozbehi S, Dadashzadeh S, Sajedi RH. An enzyme-mediated controlled release system for curcumin based on cyclodextrin/cyclodextrin degrading enzyme. Enzyme Microb Technol 2021; 144: 109727. doi: 10.1016/j.enzmictec.2020.109727 PMID: 33541570
  63. Nasrollahi S, Golalizadeh L, Sajedi RH, Taghdir M, Asghari SM, Rassa M. Substrate preference of a Geobacillus maltogenic amylase: A kinetic and thermodynamic analysis. Int J Biol Macromol 2013; 60: 1-9. doi: 10.1016/j.ijbiomac.2013.04.063 PMID: 23639697
  64. Yallapu MM, Jaggi M, Chauhan SC. β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf B Biointerfaces 2010; 79(1): 113-25. doi: 10.1016/j.colsurfb.2010.03.039 PMID: 20456930
  65. Gourevich D, Dogadkin O, Volovick A, et al. Ultrasound-mediated targeted drug delivery with a novel cyclodextrin-based drug carrier by mechanical and thermal mechanisms. J Control Release 2013; 170(3): 316-24. doi: 10.1016/j.jconrel.2013.05.038 PMID: 23770006
  66. Ghamkhari A, Abbasi F, Abbasi E, Ghorbani M. A novel thermo-responsive system based on β-cyclodextrin-nanocomposite for improving the docetaxel activity. Int J Polym Mater 2021; 70(12): 830-40. doi: 10.1080/00914037.2020.1765357
  67. Kushwaha SKS, Rai AK, Singh S. Formulation of thermosensitive hydrogel containing cyclodextrin for controlled drug delivery of camptothecin. Trop J Pharm Res 2014; 13(7): 1007. doi: 10.4314/tjpr.v13i7.1
  68. Khan S, Minhas MU, Ahmad M, Sohail M. Self-assembled supramolecular thermoreversible β-cyclodextrin/ethylene glycol injectable hydrogels with difunctional Pluronic® 127 as controlled delivery depot of curcumin. Development, characterization and in vitro evaluation. J Biomater Sci Polym Ed 2018; 29(1): 1-34. doi: 10.1080/09205063.2017.1396707 PMID: 29059021
  69. Adeli F, Abbasi F, Babazadeh M, Davaran S. Thermo/pH dual-responsive micelles based on the host-guest interaction between benzimidazole-terminated graft copolymer and β-cyclodextrin-functionalized star block copolymer for smart drug delivery. J Nanobiotechnology 2022; 20(1): 91. doi: 10.1186/s12951-022-01290-3 PMID: 35193612
  70. Awad NS, Paul V, AlSawaftah NM, et al. Ultrasound-responsive nanocarriers in cancer treatment: A review. ACS Pharmacol Transl Sci 2021; 4(2): 589-612. doi: 10.1021/acsptsci.0c00212 PMID: 33860189
  71. Ayana G, Ryu J, Choe S. Ultrasound-responsive nanocarriers for breast cancer chemotherapy. Micromachines 2022; 13(9): 1508. doi: 10.3390/mi13091508 PMID: 36144131
  72. Shi J, Chen Z, Wang B, Wang L, Lu T, Zhang Z. Reactive oxygen species-manipulated drug release from a smart envelope-type mesoporous titanium nanovehicle for tumor sonodynamic-chemotherapy. ACS Appl Mater Interfaces 2015; 7(51): 28554-65. doi: 10.1021/acsami.5b09937 PMID: 26587885
  73. Zhao Y, Zhu Y, Fu J, Wang L. Effective cancer cell killing by hydrophobic nanovoid-enhanced cavitation under safe low-energy ultrasound. Chem Asian J 2014; 9(3): 790-6. doi: 10.1002/asia.201301333 PMID: 24339016
  74. Wang J, Jiao Y, Shao Y. Mesoporous silica nanoparticles for dual-mode chemo-sonodynamic therapy by low-energy ultrasound. Materials 2018; 11(10): 2041. doi: 10.3390/ma11102041 PMID: 30347751
  75. Nikolova MP, Kumar EM, Chavali MS. Updates on responsive drug delivery based on liposome vehicles for cancer treatment. Pharmaceutics 2022; 14(10): 2195. doi: 10.3390/pharmaceutics14102195 PMID: 36297630
  76. Yao X, Mu J, Zeng L, et al. Stimuli-responsive cyclodextrin-based nanoplatforms for cancer treatment and theranostics. Mater Horiz 2019; 6(5): 846-70. doi: 10.1039/C9MH00166B
  77. Wu H, Song L, Chen L, et al. Injectable magnetic supramolecular hydrogel with magnetocaloric liquid-conformal property prevents post-operative recurrence in a breast cancer model. Acta Biomater 2018; 74: 302-11. doi: 10.1016/j.actbio.2018.04.052 PMID: 29729897
  78. Solanki A, Sanghvi S, Devkar R, Thakore S. β-Cyclodextrin based magnetic nanoconjugates for targeted drug delivery in cancer therapy. RSC Adv 2016; 6(101): 98693-707. doi: 10.1039/C6RA18030B
  79. Jeon H, Kim J, Lee YM, et al. Poly-paclitaxel/cyclodextrin-SPION nano-assembly for magnetically guided drug delivery system. J Control Release 2016; 231: 68-76. doi: 10.1016/j.jconrel.2016.01.006 PMID: 26780174
  80. Saneja A, Kumar R, Arora D, Kumar S, Panda AK, Jaglan S. Recent advances in near-infrared light-responsive nanocarriers for cancer therapy. Drug Discov Today 2018; 23(5): 1115-25. doi: 10.1016/j.drudis.2018.02.005 PMID: 29481876
  81. Zhao W, Zhao Y, Wang Q, Liu T, Sun J, Zhang R. Remote light-responsive nanocarriers for controlled drug delivery: Advances and perspectives. Small 2019; 15(45): 1903060. doi: 10.1002/smll.201903060 PMID: 31599125
  82. Silva JM, Silva E, Reis RL. Light-triggered release of photocaged therapeutics: Where are we now? J Control Release 2019; 298: 154-76. doi: 10.1016/j.jconrel.2019.02.006 PMID: 30742854
  83. Corma A, Botella P, Rivero-Buceta E. Silica-based stimuli-responsive systems for antitumor drug delivery and controlled release. Pharmaceutics 2022; 14(1): 110. doi: 10.3390/pharmaceutics14010110 PMID: 35057006
  84. Ha W, Zhao XB, Jiang K, et al. A three-dimensional graphene oxide supramolecular hydrogel for infrared light-responsive cascade release of two anticancer drugs. Chem Commun 2016; 52(100): 14384-7. doi: 10.1039/C6CC08123A PMID: 27886300
  85. Liu C, Guo X, Ruan C, et al. An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy. Acta Biomater 2019; 96: 281-94. doi: 10.1016/j.actbio.2019.07.024 PMID: 31319202
  86. Ruan C, Liu C, Hu H, et al. NIR-II light-modulated thermosensitive hydrogel for light-triggered cisplatin release and repeatable chemo-photothermal therapy. Chem Sci 2019; 10(17): 4699-706. doi: 10.1039/C9SC00375D PMID: 31123581
  87. Wang M, Wang T, Wang D, Jiang W, Fu J. Acid and light stimuli-responsive mesoporous silica nanoparticles for controlled release. J Mater Sci 2019; 54(8): 6199-211. doi: 10.1007/s10853-019-03325-x
  88. Chen M, Pérez RL, Du P, et al. Tumor-targeting NIRF NanoGUMBOS with cyclodextrin-enhanced chemo/photothermal antitumor activities. ACS Appl Mater Interfaces 2019; 11(31): 27548-57. doi: 10.1021/acsami.9b08047 PMID: 31310100
  89. Fang Z, Shen Y, Gao D. Stimulus-responsive nanocarriers for targeted drug delivery. New J Chem 2021; 45(10): 4534-44. doi: 10.1039/D0NJ05169A
  90. Ahmadi S, Rabiee N, Bagherzadeh M, et al. Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today 2020; 34: 100914. doi: 10.1016/j.nantod.2020.100914 PMID: 32788923
  91. Li L, Lei D, Zhang J, et al. Dual-responsive alginate hydrogel constructed by sulfhdryl dendrimer as an intelligent system for drug delivery. Molecules 2022; 27(1): 281. doi: 10.3390/molecules27010281 PMID: 35011513
  92. Aldrich S. Sigma Aldrich. γ-Ciclodextrina. Merck. 2021. Available from: https://www.sigmaaldrich.com/BR/pt/product/sigma/c4892
  93. Aldrich S. α-Cyclodextrin. 2021. Available from: https://www.sigmaaldrich.com/BR/pt/substance/acyclodextrin9728410016203
  94. Aldrich S. Caraway, Cycloheptaamylose, Cyclomaltoheptaose, Schardinger β-Dextrin, β-Cyclodextrin. 2021. Available from: https://www.sigmaaldrich.com/US/en/substance/bcyclodextrin1134987585399
  95. Kiss E, Szabó VA, Horváth P. Simple circular dichroism method for selection of the optimal cyclodextrin for drug complexation. J Incl Phenom Macrocycl Chem 2019; 95(3-4): 223-33. doi: 10.1007/s10847-019-00938-2
  96. Crini G. Review: A history of cyclodextrins. Chem Rev 2014; 114(21): 10940-75. doi: 10.1021/cr500081p PMID: 25247843
  97. Ahmadi A, Ayoubi-Chianeh M, Kassaee MZ, Bayat F. Inclusion complexes of atorvastatin calcium (ATV-Ca) and rosuvastatin calcium (ROV-Ca) drugs with α-CD, β -CD, γ-CD, HP-β-CD, M-β-CD, and maltodextrin along with their characterizations through experimental and computational methods. Can J Chem Eng 2023; 101(7): 4200-16. doi: 10.1002/cjce.24769
  98. Arti S, Kaur K, Kaur J, Ghosh TK, Banipal TS, Banipal PK. Host-guest interaction of trimethoprim drug with cyclodextrins in aqueous solutions: Calorimetric, spectroscopic, volumetric and theoretical approach. J Mol Liq 2021; 329: 115431. doi: 10.1016/j.molliq.2021.115431
  99. Deng J, Chen QJ, Li W, et al. Toward improvements for carrying capacity of the cyclodextrin-based nanosponges: Recent progress from a material and drug delivery. J Mater Sci 2021; 56(10): 5995-6015. doi: 10.1007/s10853-020-05646-8
  100. Cal K, Centkowska K. Use of cyclodextrins in topical formulations: Practical aspects. Eur J Pharm Biopharm 2008; 68(3): 467-78. doi: 10.1016/j.ejpb.2007.08.002 PMID: 17826046
  101. Marques HMC. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragrance J 2010; 25(5): 313-26. doi: 10.1002/ffj.2019
  102. Wang X, Qiu Y, Wang M, et al. Endocytosis and organelle targeting of nanomedicines in cancer therapy. Int J Nanomedicine 2020; 15: 9447-67. doi: 10.2147/IJN.S274289 PMID: 33268987
  103. Wang R, Wang X, Jia X, Wang H, Li W, Li J. Impacts of particle size on the cytotoxicity, cellular internalization, pharmacokinetics and biodistribution of betulinic acid nanosuspensions in combined chemotherapy. Int J Pharm 2020; 588: 119799. doi: 10.1016/j.ijpharm.2020.119799 PMID: 32828973
  104. Cavalcanti IDL, Soares JCS, Medeiros SMFRS, Cavalcanti IMF, Lira Nogueira MCB. Can antioxidant vitamins avoid the cardiotoxicity of doxorubicin in treating breast cancer? PharmaNutrition 2021; 16: 100259. doi: 10.1016/j.phanu.2021.100259
  105. Costa KMN, Barros RM, Jorge EO, et al. Doxorubicin-loaded nanostructured lipid carriers functionalized with folic acid against MCF-7 breast cancer cell line. J Nanopart Res 2023; 25(4): 56. doi: 10.1007/s11051-023-05704-7
  106. Hernandes EP, Lazarin-Bidóia D, Bini RD, Nakamura CV, Cótica LF, de Oliveira Silva Lautenschlager S. Doxorubicin-loaded iron oxide nanoparticles induce oxidative stress and cell cycle arrest in breast cancer cells. Antioxidants 2023; 12(2): 237. doi: 10.3390/antiox12020237 PMID: 36829796
  107. Unger JM, Vaidya R, Hershman DL, Minasian LM, Fleury ME. Systematic review and meta-analysis of the magnitude of structural, clinical, and physician and patient barriers to cancer clinical trial participation 2019; 111: 245-55.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024