Novel Therapies for ANCA-associated Vasculitis: Apilimod Ameliorated Endothelial Cells Injury through TLR4/NF-κB Pathway and NLRP3 Inflammasome


Cite item

Full Text

Abstract

Background:Antineutrophil cytoplasmic antibody-associated vasculitis (AAV) is a rapidly progressive form of glomerulonephritis for which effective therapeutic drugs are currently lacking, and its underlying mechanism remains unclear.

Aims:This study aimed to investigate new treatment options for AAV through a combination of bioinformatics analysis and cell molecular experiments.

Methods:The research utilized integrated bioinformatics analysis to identify genes with differential expression, conduct enrichment analysis, and pinpoint hub genes associated with AAV. Potential therapeutic compounds for AAV were identified using Connectivity Map and molecular docking techniques. In vitro experiments were then carried out to examine the impact and mechanism of apilimod on endothelial cell injury induced by MPO-ANCA-positive IgG.

Results:The findings revealed a set of 374 common genes from differentially expressed genes and key modules of WGCNA, which were notably enriched in immune and inflammatory response processes. A proteinprotein interaction network was established, leading to the identification of 10 hub genes, including TYROBP, PTPRC, ITGAM, KIF20A, CD86, CCL20, GAD1, LILRB2, CD8A, and COL5A2. Analysis from Connectivity Map and molecular docking suggested that apilimod could serve as a potential therapeutic cytokine inhibitor for ANCA-GN based on the hub genes. In vitro experiments demonstrated that apilimod could mitigate tight junction disruption, endothelial cell permeability, LDH release, and endothelial activation induced by MPO-ANCA-positive IgG. Additionally, apilimod treatment led to a significant reduction in the expression of proteins involved in the TLR4/NF-κB and NLRP3 inflammasome-mediated pyroptosis pathways.

Conclusion:This study sheds light on the potential pathogenesis of AAV and highlights the protective role of apilimod in mitigating MPO-ANCA-IgG-induced vascular endothelial cell injury by modulating the TLR4/ NF-kB and NLRP3 inflammasome-mediated pyroptosis pathway. These findings suggest that apilimod may hold promise as a treatment for AAV and warrant further investigation.

About the authors

Siyang Liu

Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology

Email: info@benthamscience.net

Chenlin Cao

Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology

Email: info@benthamscience.net

Yiru Wang

Department of Nephrology, Tongji Hospital, Tongji Medical College,, Huazhong University of Science and Technology

Email: info@benthamscience.net

Liu Hu

Department of Health Management Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology

Email: info@benthamscience.net

Qingquan Liu

Department of Nephrology, Tongji Hospital, Tongji Medical College,, Huazhong University of Science and Technology

Author for correspondence.
Email: info@benthamscience.net

References

  1. Moroni G, Ponticelli C. Rapidly progressive crescentic glomerulonephritis: Early treatment is a must. Autoimmun Rev 2014; 13(7): 723-9. doi: 10.1016/j.autrev.2014.02.007 PMID: 24657897
  2. Kronbichler A, Bajema IM, Bruchfeld A, Mastroianni Kirsztajn G, Stone JH. Diagnosis and management of ANCA-associated vasculitis. Lancet 2024; 403(10427): 683-98. doi: 10.1016/S0140-6736(23)01736-1 PMID: 38368016
  3. Hénique C, Papista C, Guyonnet L, Lenoir O, Tharaux PL. Update on crescentic glomerulonephritis. Semin Immunopathol 2014; 36(4): 479-90. doi: 10.1007/s00281-014-0435-7 PMID: 24948005
  4. Sinico RA, Di Toma L, Radice A. Renal involvement in anti-neutrophil cytoplasmic autoantibody associated vasculitis. Autoimmun Rev 2013; 12(4): 477-82. doi: 10.1016/j.autrev.2012.08.006 PMID: 22921791
  5. Trivioli G, Marquez A, Martorana D, et al. Genetics of ANCA-associated vasculitis: Role in pathogenesis, classification and management. Nat Rev Rheumatol 2022; 18(10): 559-74. doi: 10.1038/s41584-022-00819-y PMID: 36109667
  6. Nakazawa D, Masuda S, Tomaru U, Ishizu A. Pathogenesis and therapeutic interventions for ANCA-associated vasculitis. Nat Rev Rheumatol 2019; 15(2): 91-101. doi: 10.1038/s41584-018-0145-y PMID: 30542206
  7. Kitching AR, Anders HJ, Basu N, et al. ANCA-associated vasculitis. Nat Rev Dis Primers 2020; 6(1): 71. doi: 10.1038/s41572-020-0204-y PMID: 32855422
  8. Lahmer T, Heemann U. Anti-glomerular basement membrane antibody disease: A rare autoimmune disorder affecting the kidney and the lung. Autoimmun Rev 2012; 12(2): 169-73. doi: 10.1016/j.autrev.2012.04.002 PMID: 22546293
  9. Junek ML, Merkel PA, Vilayur E, et al. Risk of relapse of antineutrophil cytoplasmic antibody-associated vasculitis in a randomized controlled trial of plasma exchange and glucocorticoids. Arthritis Rheumatol 2024; art.42843. doi: 10.1002/art.42843 PMID: 38485450
  10. Arnold S, Kitching AR, Witko-Sarsat V, et al. Myeloperoxidase-specific antineutrophil cytoplasmic antibody-associated vasculitis. Lancet Rheumatol 2024; 6(5): e300-13. doi: 10.1016/S2665-9913(24)00025-0 PMID: 38574743
  11. Flossmann O, Berden A, de Groot K, et al. Long-term patient survival in ANCA-associated vasculitis. Ann Rheum Dis 2011; 70(3): 488-94. doi: 10.1136/ard.2010.137778 PMID: 21109517
  12. Monti S, Brandolino F, Milanesi A, Xoxi B, Delvino P, Montecucco C. Novel therapies for ANCA-associated vasculitis. Curr Rheumatol Rep 2021; 23(6): 38. doi: 10.1007/s11926-021-01010-0 PMID: 33909172
  13. Mukhtyar C, Flossmann O, Hellmich B, et al. Outcomes from studies of antineutrophil cytoplasm antibody associated vasculitis: A systematic review by the European League against rheumatism systemic vasculitis task force. Ann Rheum Dis 2008; 67(7): 1004-10. doi: 10.1136/ard.2007.071936 PMID: 17911225
  14. Steinberg AD, Steinberg SC. Long‐term preservation of renal function in patients with lupus nephritis receiving treatment that includes cyclophosphamide versus those treated with prednisone only. Arthritis Rheum 1991; 34(8): 945-50. doi: 10.1002/art.1780340803 PMID: 1859488
  15. Prendecki M, McAdoo SP. New therapeutic targets in antineutrophil cytoplasm antibody-associated vasculitis. Arthritis Rheumatol 2021; 73(3): 361-70. doi: 10.1002/art.41407 PMID: 32562366
  16. Vasilevich AS, Carlier A, de Boer J, Singh S. How not to drown in data: A guide for biomaterial engineers. Trends Biotechnol 2017; 35(8): 743-55. doi: 10.1016/j.tibtech.2017.05.007 PMID: 28693857
  17. Parkinson H, Sarkans U, Shojatalab M, et al. ArrayExpress-a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 2004; 33(Database issue): D553-5. doi: 10.1093/nar/gki056 PMID: 15608260
  18. Brix SR, Stege G, Disteldorf E, et al. CC chemokine ligand 18 in ANCA-associated crescentic GN. J Am Soc Nephrol 2015; 26(9): 2105-17. doi: 10.1681/ASN.2014040407 PMID: 25762060
  19. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43(7): e47. doi: 10.1093/nar/gkv007 PMID: 25605792
  20. Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284-7. doi: 10.1089/omi.2011.0118 PMID: 22455463
  21. Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-13. doi: 10.1093/nar/gky1131 PMID: 30476243
  22. Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504. doi: 10.1101/gr.1239303 PMID: 14597658
  23. Wang Y, Cao C, Liu S, et al. Identification of potential biomarkers and therapeutic targets for antineutrophil cytoplasmic antibody-associated glomerulonephritis. iScience 2023; 26(11): 108157. doi: 10.1016/j.isci.2023.108157 PMID: 37915598
  24. Liu Q, Huang F, Xu R, Wang Y, Lv Y. Soluble urokinase plasminogen activator receptor contributes to ANCA-positive IgG-mediated glomerular endothelial activation through TLR4 pathway. Curr Pharm Des 2023; 29(2): 149-61. doi: 10.2174/1381612829666221212094441 PMID: 36515042
  25. Blasco A, Natoli T, Endres MG, et al. Improving deconvolution methods in biology through open innovation competitions: An application to the connectivity map. Bioinformatics 2021; 37(18): 2889-95. doi: 10.1093/bioinformatics/btab192 PMID: 33824954
  26. Daina A, Michielin O, Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res 2019; 47(W1): W357-64. doi: 10.1093/nar/gkz382 PMID: 31106366
  27. Croft D, O’Kelly G, Wu G, et al. Reactome: A database of reactions, pathways and biological processes. Nucleic Acids Res 2011; 39(Database): D691-7. doi: 10.1093/nar/gkq1018 PMID: 21067998
  28. Mi H, Ebert D, Muruganujan A, et al. PANTHER version 16: A revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res 2021; 49(D1): D394-403. doi: 10.1093/nar/gkaa1106 PMID: 33290554
  29. Bu D, Luo H, Huo P, et al. KOBAS-i: Intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res 2021; 49(W1): W317-25. doi: 10.1093/nar/gkab447 PMID: 34086934
  30. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61. doi: 10.1002/jcc.21334 PMID: 19499576
  31. Laskowski RA, Swindells MB. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 2011; 51(10): 2778-86. doi: 10.1021/ci200227u PMID: 21919503
  32. Sun XJ, Chen M, Zhao MH. Sphingosine‐1‐phosphate (S1P) enhances glomerular endothelial cells activation mediated by anti‐myeloperoxidase antibody‐positive IgG. J Cell Mol Med 2018; 22(3): 1769-77. doi: 10.1111/jcmm.13458 PMID: 29168342
  33. Wada Y, Lu R, Zhou D, et al. Selective abrogation of Th1 response by STA-5326, a potent IL-12/IL-23 inhibitor. Blood 2007; 109(3): 1156-64. doi: 10.1182/blood-2006-04-019398 PMID: 17053051
  34. Deng H, Wang C, Chang DY, Hu N, Chen M, Zhao MH. High mobility group box-1 contributes to anti-myeloperoxidase antibody-induced glomerular endothelial cell injury through a moesin-dependent route. Arthritis Res Ther 2017; 19(1): 125. doi: 10.1186/s13075-017-1339-4 PMID: 28587670
  35. Almezgagi M, Zhang Y, Hezam K, et al. Diacerein: Recent insight into pharmacological activities and molecular pathways. Biomed Pharmacother 2020; 131: 110594. doi: 10.1016/j.biopha.2020.110594 PMID: 32858499
  36. O’Sullivan KM, Ford SL, Longano A, Kitching AR, Holdsworth SR. Intrarenal Toll-like receptor 4 and Toll-like receptor 2 expression correlates with injury in antineutrophil cytoplasmic antibody-associated vasculitis. Am J Physiol Renal Physiol 2018; 315(5): F1283-94. doi: 10.1152/ajprenal.00040.2018 PMID: 29923769
  37. Panaro M, Gagliardi N, Saponaro C, Calvello R, Mitolo V, Cianciulli A. Toll-like receptor 4 mediates LPS-induced release of nitric oxide and tumor necrosis factor-alpha by embryonal cardiomyocytes: biological significance and clinical implications in human pathology. Curr Pharm Des 2010; 16(7): 766-74. doi: 10.2174/138161210790883624 PMID: 20388086
  38. Schreiber A, Luft FC, Kettritz R. Phagocyte NADPH oxidase restrains the inflammasome in ANCA-induced GN. J Am Soc Nephrol 2015; 26(2): 411-24. doi: 10.1681/ASN.2013111177 PMID: 25012177
  39. Kronbichler A, Lee KH, Denicolò S, et al. Immunopathogenesis of ANCA-associated vasculitis. Int J Mol Sci 2020; 21(19): 7319. doi: 10.3390/ijms21197319 PMID: 33023023
  40. Al Barashdi MA, Ali A, McMullin MF, Mills K. Protein tyrosine phosphatase receptor type C (PTPRC or CD45). J Clin Pathol 2021; 74(9): 548-52. doi: 10.1136/jclinpath-2020-206927 PMID: 34039664
  41. Hu Q, Zhang S, Yang Y, et al. Extracellular vesicle ITGAM and ITGB2 mediate severe acute pancreatitis-related acute lung injury. ACS Nano 2023; 17(8): 7562-75. doi: 10.1021/acsnano.2c12722 PMID: 37022097
  42. Li J, Zhao R, Jiang Y, et al. Bilberry anthocyanins improve neuroinflammation and cognitive dysfunction in APP/PSEN1 mice via the CD33/TREM2/TYROBP signaling pathway in microglia. Food Funct 2020; 11(2): 1572-84. doi: 10.1039/C9FO02103E PMID: 32003387
  43. Kennedy A, Waters E, Rowshanravan B, et al. Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation. Nat Immunol 2022; 23(9): 1365-78. doi: 10.1038/s41590-022-01289-w PMID: 35999394
  44. Meitei HT, Jadhav N, Lal G. CCR6-CCL20 axis as a therapeutic target for autoimmune diseases. Autoimmun Rev 2021; 20(7): 102846. doi: 10.1016/j.autrev.2021.102846 PMID: 33971346
  45. Li DP, Huang L, Kan RR, et al. LILRB2/PirB mediates macrophage recruitment in fibrogenesis of nonalcoholic steatohepatitis. Nat Commun 2023; 14(1): 4436. doi: 10.1038/s41467-023-40183-3 PMID: 37481670
  46. Geetha D, Jefferson JA. ANCA-associated vasculitis: Core curriculum 2020. Am J Kidney Dis 2020; 75(1): 124-37. doi: 10.1053/j.ajkd.2019.04.031 PMID: 31358311
  47. Pendergraft WF, Alcorta DA, Segelmark M, et al. ANCA antigens, proteinase 3 and myeloperoxidase, are not expressed in endothelial cells. Kidney Int 2000; 57(5): 1981-90. doi: 10.1046/j.1523-1755.2000.00048.x PMID: 10792617
  48. Nagao T, Suzuki K, Utsunomiya K, et al. Direct activation of glomerular endothelial cells by anti-moesin activity of anti-myeloperoxidase antibody. Nephrol Dial Transplant 2011; 26(9): 2752-60. doi: 10.1093/ndt/gfr032 PMID: 21378392
  49. Furthmayr H, Lankes W, Amieva M. Moesin, a new cytoskeletal protein and constituent of filopodia: Its role in cellular functions. Kidney Int 1992; 41(3): 665-70. doi: 10.1038/ki.1992.102 PMID: 1573844
  50. Sun XJ, Chen M, Zhao MH. Thrombin contributes to anti-myeloperoxidase antibody positive IgG-mediated glomerular endothelial cells activation through SphK1-S1P-S1PR3 signaling. Front Immunol 2019; 10: 237. doi: 10.3389/fimmu.2019.00237 PMID: 30891029
  51. Bala MM, Malecka-Massalska TJ, Koperny M, Zajac JF, Jarczewski JD, Szczeklik W. Anti-cytokine targeted therapies for ANCA-associated vasculitis. Cochrane Database Syst Rev 2020; 9(9): CD008333. PMID: 32990324
  52. Burakoff R, Barish CF, Riff D, et al. A phase 1/2A trial of STA 5326, an oral interleukin-12/23 inhibitor, in patients with active moderate to severe Crohnʼs disease. Inflamm Bowel Dis 2006; 12(7): 558-65. doi: 10.1097/01.ibd.0000225337.14356.31 PMID: 16804392
  53. Keino H. Therapeutic effect of the low molecular weight inhibitor of the NF-kappaB signaling pathway on experimental autoimmune uveoretinitis. Nippon Ganka Gakkai Zasshi 2010; 114(11): 944-54. PMID: 21141074
  54. Sun H, Zhu X, Cai W, Qiu L. Hypaphorine attenuates lipopolysaccharide-induced endothelial inflammation via regulation of TLR4 and PPAR-γ dependent on PI3K/Akt/mTOR signal pathway. Int J Mol Sci 2017; 18(4): 844. doi: 10.3390/ijms18040844 PMID: 28420166
  55. Zhao Y, Zhu M, Chen W, et al. TFPIα alleviated vascular endothelial cell injury by inhibiting autophagy and the class III PI3K/Beclin-1 pathway. Thromb Res 2020; 195: 151-7. doi: 10.1016/j.thromres.2020.07.017 PMID: 32702563
  56. Cai X, Xu Y, Cheung AK, et al. PIKfyve, a class III PI kinase, is the target of the small molecular IL-12/IL-23 inhibitor apilimod and a player in Toll-like receptor signaling. Chem Biol 2013; 20(7): 912-21. doi: 10.1016/j.chembiol.2013.05.010 PMID: 23890009
  57. Vijay K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int Immunopharmacol 2018; 59: 391-412. doi: 10.1016/j.intimp.2018.03.002 PMID: 29730580
  58. Rocha DM, Caldas AP, Oliveira LL, Bressan J, Hermsdorff HH. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis 2016; 244: 211-5. doi: 10.1016/j.atherosclerosis.2015.11.015 PMID: 26687466
  59. Summers SA, van der Veen BS, O’Sullivan KM, et al. Intrinsic renal cell and leukocyte-derived TLR4 aggravate experimental anti-MPO glomerulonephritis. Kidney Int 2010; 78(12): 1263-74. doi: 10.1038/ki.2010.327 PMID: 20844472
  60. Sanz AB, Sanchez-Niño MD, Ramos AM, et al. NF-kappaB in renal inflammation. J Am Soc Nephrol 2010; 21(8): 1254-62. doi: 10.1681/ASN.2010020218 PMID: 20651166
  61. Choi M, Schreiber A, Eulenberg-Gustavus C, Scheidereit C, Kamps J, Kettritz R. Endothelial NF-κB blockade abrogates ANCA-induced GN. J Am Soc Nephrol 2017; 28(11): 3191-204. doi: 10.1681/ASN.2016060690 PMID: 28687535
  62. Martin-Rodriguez S, Caballo C, Gutierrez G, et al. TLR 4 and NALP 3 inflammasome in the development of endothelial dysfunction in uraemia. Eur J Clin Invest 2015; 45(2): 160-9. doi: 10.1111/eci.12392 PMID: 25496217
  63. Fernández-Pisonero I, Dueñas AI, Barreiro O, Montero O, Sánchez-Madrid F, García-Rodríguez C. Lipopolysaccharide and sphingosine-1-phosphate cooperate to induce inflammatory molecules and leukocyte adhesion in endothelial cells. J Immunol 2012; 189(11): 5402-10. doi: 10.4049/jimmunol.1201309 PMID: 23089395
  64. Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015; 526(7575): 660-5. doi: 10.1038/nature15514 PMID: 26375003
  65. Bauernfeind FG, Horvath G, Stutz A, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 2009; 183(2): 787-91. doi: 10.4049/jimmunol.0901363 PMID: 19570822
  66. Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov 2018; 17(8): 588-606. doi: 10.1038/nrd.2018.97 PMID: 30026524
  67. Dong W, Zhu Q, Yang B, et al. Polychlorinated biphenyl quinone induces caspase 1-mediated pyroptosis through induction of pro-inflammatory HMGB1-TLR4-NLRP3-GSDMD signal axis. Chem Res Toxicol 2019; 32(6): 1051-7. doi: 10.1021/acs.chemrestox.8b00376 PMID: 30977640
  68. Sborgi L, Rühl S, Mulvihill E, et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J 2016; 35(16): 1766-78. doi: 10.15252/embj.201694696 PMID: 27418190
  69. Chen X, He W, Hu L, et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res 2016; 26(9): 1007-20. doi: 10.1038/cr.2016.100 PMID: 27573174
  70. Martinon F, Burns K, Tschopp J. The inflammasome. Mol Cell 2002; 10(2): 417-26. doi: 10.1016/S1097-2765(02)00599-3 PMID: 12191486
  71. Wang LY, Sun XJ, Chen M, Zhao MH. The expression of NOD2, NLRP3 and NLRC5 and renal injury in anti-neutrophil cytoplasmic antibody-associated vasculitis. J Transl Med 2019; 17(1): 197. doi: 10.1186/s12967-019-1949-5 PMID: 31186034
  72. Tashiro M, Sasatomi Y, Watanabe R, et al. IL-1β promotes tubulointerstitial injury in MPO-ANCA-associated glomerulonephritis. Clin Nephrol 2016; 86(10): 190-9. doi: 10.5414/CN108902 PMID: 27616759
  73. Bai B, Yang Y, Wang Q, et al. NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis 2020; 11(9): 776. doi: 10.1038/s41419-020-02985-x PMID: 32948742
  74. Li Z, Guo J, Bi L. Role of the NLRP3 inflammasome in autoimmune diseases. Biomed Pharmacother 2020; 130: 110542. doi: 10.1016/j.biopha.2020.110542 PMID: 32738636
  75. Antonelou M, Michaëlsson E, Evans RDR, et al. Therapeutic myeloperoxidase inhibition attenuates neutrophil activation, ANCA-mediated endothelial damage, and crescentic GN. J Am Soc Nephrol 2020; 31(2): 350-64. doi: 10.1681/ASN.2019060618 PMID: 31879336

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers