Current Insights in Murine Models for Breast Cancer: Present, Past and Future


Cite item

Full Text

Abstract

:Breast cancer is an intricate disease that is increasing at a fast pace, and numerous heterogeneities within it further make it difficult to investigate. We have always used animal models to understand cancer pathology and create an in vivo microenvironment that closely resembles human cancer. They are considered an indispensable part of any clinical investigation regarding cancer. Animal models have a high potency in identifying the relevant biomarkers and genetic pathways involved in the course of disease prognosis. Researchers have previously explored a variety of organisms, including Drosophila melanogaster, zebrafish, and guinea pigs, to analyse breast cancer, but murine models have proven the most comprehensive due to their homologous nature with human chromosomes, easy availability, simple gene editing, and high adaptability. The available models have their pros and cons, and it depends on the researcher to select the one most relevant to their research question. Chemically induced models are cost-effective and simple to create. Transplantation models such as allografts and xenografts can mimic the human breast cancer environment reliably. Genetically engineered mouse models (GEMMs) help to underpin the genetic alterations involved and test novel immunotherapies. Virus-mediated models and gene knockout models have also provided new findings regarding breast cancer progression and metastasis. These mouse models have also enabled the visualization of breast cancer metastases. It is also imperative to consider the cost-effectiveness of these models. Despite loopholes, mouse models have evolved and are required for disease analysis.

About the authors

Mansi Jain

Department of Biotechnology, GLA University

Email: info@benthamscience.net

Anjana Goel

Department of Biotechnology, GLA University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49. doi: 10.3322/caac.21660 PMID: 33538338
  2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin 2023; 73(1): 17-48. doi: 10.3322/caac.21763 PMID: 36633525
  3. Turashvili G, Brogi E. Tumor heterogeneity in breast cancer. Front Med 2017; 4: 227. doi: 10.3389/fmed.2017.00227 PMID: 29276709
  4. Polyak K. Heterogeneity in breast cancer. J Clin Invest 2011; 121(10): 3786-8. doi: 10.1172/JCI60534 PMID: 21965334
  5. Lüönd F, Tiede S, Christofori G. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. Br J Cancer 2021; 125(2): 164-75. doi: 10.1038/s41416-021-01328-7 PMID: 33824479
  6. Guo L, Kong D, Liu J, et al. Breast cancer heterogeneity and its implication in personalized precision therapy. Exp Hematol Oncol 2023; 12(1): 3. doi: 10.1186/s40164-022-00363-1 PMID: 36624542
  7. Denayer T, Stöhr T, Roy MV. Animal models in translational medicine: Validation and prediction. Eur J Mol Clin Med 2014; 2(1): 5-11. doi: 10.1016/j.nhtm.2014.08.001
  8. Anastasiadi Z, Lianos GD, Ignatiadou E, Harissis HV, Mitsis M. Breast cancer in young women: An overview. Updates Surg 2017; 69(3): 313-7. doi: 10.1007/s13304-017-0424-1 PMID: 28260181
  9. Li Z, Zheng W, Wang H, et al. Application of animal models in cancer research: Recent progress and future prospects. Cancer Manag Res 2021; 13: 2455-75. doi: 10.2147/CMAR.S302565 PMID: 33758544
  10. Mendes N, Dias Carvalho P, Martins F, et al. Animal models to study cancer and its microenvironment. Adv Exp Med Biol 2020; 1219: 389-401. doi: 10.1007/978-3-030-34025-4_20 PMID: 32130710
  11. Zeng L, Li W, Chen CS. Breast cancer animal models and applications. Zool Res 2020; 41(5): 477-94. doi: 10.24272/j.issn.2095-8137.2020.095 PMID: 32629551
  12. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74. doi: 10.1016/j.cell.2011.02.013 PMID: 21376230
  13. Ruggeri BA, Camp F, Miknyoczki S. Animal models of disease: Pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochem Pharmacol 2014; 87(1): 150-61. doi: 10.1016/j.bcp.2013.06.020 PMID: 23817077
  14. Cagan RL, Zon LI, White RM. Modeling cancer with flies and fish. Dev Cell 2019; 49(3): 317-24. doi: 10.1016/j.devcel.2019.04.013 PMID: 31063751
  15. Kucinska M, Murias M, Nowak-Sliwinska P. Beyond mouse cancer models: Three-dimensional human-relevant in vitro and non- mammalian in vivo models for photodynamic therapy. Mutat Res Rev Mutat Res 2017; 773: 242-62. doi: 10.1016/j.mrrev.2016.09.002 PMID: 28927532
  16. Hason M, Bartůněk P. Zebrafish models of cancer-new insights on modeling human cancer in a non-mammalian vertebrate. Genes 2019; 10(11): 935. doi: 10.3390/genes10110935 PMID: 31731811
  17. Choi TY, Choi TI, Lee YR, Choe SK, Kim CH. Zebrafish as an animal model for biomedical research. Exp Mol Med 2021; 53(3): 310-7. doi: 10.1038/s12276-021-00571-5 PMID: 33649498
  18. Drabsch Y, He S, Zhang L, Snaar-Jagalska BE, ten Dijke P. Transforming growth factor-β signalling controls human breast cancer metastasis in a zebrafish xenograft model. Breast Cancer Res 2013; 15(6): R106. doi: 10.1186/bcr3573 PMID: 24196484
  19. Mondal P, Bailey KL, Cartwright SB, Band V, Carlson MA. Large animal models of breast cancer. Front Oncol 2022; 12: 788038. doi: 10.3389/fonc.2022.788038 PMID: 35186735
  20. Jagadesan S, Mondal P, Carlson MA, Guda C. Evaluation of five mammalian models for human disease research using genomic and bioinformatic approaches. Biomedicines 2023; 11(8): 2197. doi: 10.3390/biomedicines11082197 PMID: 37626695
  21. de Jong M, Maina T. Of mice and humans: Are they the same?-Implications in cancer translational research. J Nucl Med 2010; 51(4): 501-4. doi: 10.2967/jnumed.109.065706 PMID: 20237033
  22. Breschi A, Gingeras TR, Guigó R. Comparative transcriptomics in human and mouse. Nat Rev Genet 2017; 18(7): 425-40. doi: 10.1038/nrg.2017.19 PMID: 28479595
  23. Waterston RH, Lindblad-Toh K, Birney E, et al. Initial sequencing and comparative analysis of the mouse genome. Nature 2002; 420(6915): 520-62. doi: 10.1038/nature01262 PMID: 12466850
  24. Liu Y, Yin T, Feng Y, et al. Mammalian models of chemically induced primary malignancies exploitable for imaging-based preclinical theragnostic research. Quant Imaging Med Surg 2015; 5(5): 708-29. PMID: 26682141
  25. Brennecke P, Arlt MJE, Campanile C, et al. CXCR4 antibody treatment suppresses metastatic spread to the lung of intratibial human osteosarcoma xenografts in mice. Clin Exp Metastasis 2014; 31(3): 339-49. doi: 10.1007/s10585-013-9632-3 PMID: 24390633
  26. House CD, Hernandez L, Annunziata CM. Recent technological advances in using mouse models to study ovarian cancer. Front Oncol 2014; 4: 26. doi: 10.3389/fonc.2014.00026 PMID: 24592355
  27. Hidalgo M, Amant F, Biankin AV, et al. Patient-derived xenograft models: An emerging platform for translational cancer research. Cancer Discov 2014; 4(9): 998-1013. doi: 10.1158/2159-8290.CD-14-0001 PMID: 25185190
  28. Kersten K, de Visser KE, van Miltenburg MH, Jonkers J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med 2017; 9(2): 137-53. doi: 10.15252/emmm.201606857 PMID: 28028012
  29. Hanahan D, Wagner EF, Palmiter RD. The origins of oncomice: A history of the first transgenic mice genetically engineered to develop cancer. Genes Dev 2007; 21(18): 2258-70. doi: 10.1101/gad.1583307 PMID: 17875663
  30. Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: Progress, promise and challenges. Nat Rev Immunol 2012; 12(11): 786-98. doi: 10.1038/nri3311 PMID: 23059428
  31. Chuprin J, Buettner H, Seedhom MO, et al. Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol 2023; 20(3): 192-206. doi: 10.1038/s41571-022-00721-2 PMID: 36635480
  32. Onaciu A, Munteanu R, Munteanu VC, et al. Spontaneous and induced animal models for cancer research. Diagnostics (Basel) 2020; 10(9): 660. doi: 10.3390/diagnostics10090660 PMID: 32878340
  33. Costa E, Ferreira-Gonçalves T, Chasqueira G, Cabrita AS, Figueiredo IV, Reis CP. Experimental models as refined translational tools for breast cancer research. Sci Pharm 2020; 88(3): 32. doi: 10.3390/scipharm88030032
  34. Long Y, Xie B, Shen HC, Wen D. Translation potential and challenges of in vitro and murine models in cancer clinic. Cells 2022; 11(23): 3868. doi: 10.3390/cells11233868 PMID: 36497126
  35. Connolly KA, Fitzgerald B, Damo M, Joshi NS. Novel mouse models for cancer immunology. Annu Rev Cancer Biol 2022; 6(1): 269-91. doi: 10.1146/annurev-cancerbio-070620-105523 PMID: 36875867
  36. Yoshida GJ. Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol 2020; 13(1): 4. doi: 10.1186/s13045-019-0829-z PMID: 31910904
  37. Manning HC, Buck JR, Cook RS. Mouse models of breast cancer: Platforms for discovering precision imaging diagnostics and future cancer medicine. J Nucl Med 2016; 57(Suppl 1) (Suppl. 1): 60S-8S. doi: 10.2967/jnumed.115.157917 PMID: 26834104
  38. DeRose YS, Gligorich KM, Wang G, et al. Patient-derived models of human breast cancer: Protocols for in vitro and in vivo applications in tumor biology and translational medicine. Curr Protoc Pharmacol 2013; Chapter 14: Unit 14.23. doi: 10.1002/0471141755.ph1423s60 PMID: 23456611
  39. Chulpanova DS, Kitaeva KV, Rutland CS, Rizvanov AA, Solovyeva VV. Mouse tumor models for advanced cancer immunotherapy. Int J Mol Sci 2020; 21(11): 4118. doi: 10.3390/ijms21114118 PMID: 32526987
  40. Kaplan-Lefko PJ, Chen TM, Ittmann MM, et al. Pathobiology of autochthonous prostate cancer in a pre-clinical transgenic mouse model. Prostate 2003; 55(3): 219-37. doi: 10.1002/pros.10215 PMID: 12692788
  41. Begley DA, Krupke DM, Sundberg JP, et al. The Mouse Models of Human Cancer database (MMHCdb). Dis Model Mech 2023; 16(4): dmm050001. doi: 10.1242/dmm.050001 PMID: 36967676
  42. Kerdelhué B, Forest C, Coumoul X. Dimethyl-Benz(a)anthracene: A mammary carcinogen and a neuroendocrine disruptor. Biochim Open 2016; 3: 49-55. doi: 10.1016/j.biopen.2016.09.003 PMID: 29450131
  43. Sewduth RN, Georgelou K. Relevance of carcinogen-induced preclinical cancer models. J Xenobiot 2024; 14(1): 96-109. doi: 10.3390/jox14010006 PMID: 38249103
  44. Steele VE, Lubet RA. The use of animal models for cancer chemoprevention drug development. Semin Oncol 2010; 37(4): 327-38. doi: 10.1053/j.seminoncol.2010.05.010 PMID: 20816503
  45. Miller JL, Bartlett AP, Harman RM, Majhi PD, Jerry DJ, Van de Walle GR. Induced mammary cancer in rat models: Pathogenesis, genetics, and relevance to female breast cancer. J Mammary Gland Biol Neoplasia 2022; 27(2): 185-210. doi: 10.1007/s10911-022-09522-w PMID: 35904679
  46. Jaganathan H, Gage J, Leonard F, et al. Three-dimensional in vitro co-culture model of breast tumor using magnetic levitation. Sci Rep 2014; 4(1): 6468. doi: 10.1038/srep06468 PMID: 25270048
  47. Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC. In vitro tumor models: Advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol 2016; 4: 12. doi: 10.3389/fbioe.2016.00012 PMID: 26904541
  48. Subia B, Dahiya UR, Mishra S, et al. Breast tumor-on-chip models: From disease modeling to personalized drug screening. J Control Release 2021; 331: 103-20. doi: 10.1016/j.jconrel.2020.12.057 PMID: 33417986
  49. Tsai HF, Trubelja A, Shen AQ, Bao G. Tumour-on-a-chip: Microfluidic models of tumour morphology, growth and microenvironment. J R Soc Interface 2017; 14(131): 20170137. doi: 10.1098/rsif.2017.0137 PMID: 28637915
  50. Boix-Montesinos P, Soriano-Teruel PM, Armiñán A, Orzáez M, Vicent MJ. The past, present, and future of breast cancer models for nanomedicine development. Adv Drug Deliv Rev 2021; 173: 306-30. doi: 10.1016/j.addr.2021.03.018 PMID: 33798642
  51. Welsh J. Animal models for studying prevention and treatment of breast cancer. Animal models for the study of human disease. Academic Press 2013; pp. 997-1018. doi: 10.1016/B978-0-12-415894-8.00040-3
  52. Hallett RM, Kondratyev MK, Giacomelli AO, et al. Small molecule antagonists of the Wnt/β-catenin signaling pathway target breast tumor-initiating cells in a Her2/Neu mouse model of breast cancer. PLoS One 2012; 7(3): e33976. doi: 10.1371/journal.pone.0033976 PMID: 22470504
  53. Olson B, Li Y, Lin Y, Liu ET, Patnaik A. Mouse models for cancer immunotherapy research. Cancer Discov 2018; 8(11): 1358-65. doi: 10.1158/2159-8290.CD-18-0044 PMID: 30309862
  54. Bazm MA, Naseri L, Khazaei M. Methods of inducing breast cancer in animal models: A systematic review. World Cancer Res J 2018; 5(4): e1182.
  55. Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res 2011; 13(4): 215. doi: 10.1186/bcr2889 PMID: 21884641
  56. Cho SY, Kang W, Han JY, et al. An integrative approach to precision cancer medicine using patient-derived xenografts. Mol Cells 2016; 39(2): 77-86. doi: 10.14348/molcells.2016.2350 PMID: 26831452
  57. Murayama T, Gotoh N. Patient-derived xenograft models of breast cancer and their application. Cells 2019; 8(6): 621. doi: 10.3390/cells8060621 PMID: 31226846
  58. Souto EP, Dobrolecki LE, Villanueva H, Sikora AG, Lewis MT. In vivo modeling of human breast cancer using cell line and patient-derived xenografts. J Mammary Gland Biol Neoplasia 2022; 27(2): 211-30. doi: 10.1007/s10911-022-09520-y PMID: 35697909
  59. Whittle JR, Lewis MT, Lindeman GJ, Visvader JE. Patient- derived xenograft models of breast cancer and their predictive power. Breast Cancer Res 2015; 17(1): 17. doi: 10.1186/s13058-015-0523-1 PMID: 25849559
  60. Chia K, Freelander A, Kumar S, et al. Estrogen receptor positive breast cancer patient–derived xenograft models in translational research. Curr Opin Endocr Metab Res 2020; 15: 31-6. doi: 10.1016/j.coemr.2020.10.004
  61. Mattar M, McCarthy CR, Kulick AR, Qeriqi B, Guzman S, de Stanchina E. Establishing and maintaining an extensive library of patient-derived xenograft models. Front Oncol 2018; 8: 19. doi: 10.3389/fonc.2018.00019 PMID: 29515970
  62. Dobrolecki LE, Airhart SD, Alferez DG, et al. Patient-derived xenograft (PDX) models in basic and translational breast cancer research. Cancer Metastasis Rev 2016; 35(4): 547-73. doi: 10.1007/s10555-016-9653-x PMID: 28025748
  63. Zhang X, Lewis MT. Establishment of patient-derived xenograft (PDX) models of human breast cancer. Curr Protoc Mouse Biol 2013; 3(1): 21-9. doi: 10.1002/9780470942390.mo120140 PMID: 26069021
  64. Singhal SS, Garg R, Mohanty A, et al. Recent advancement in breast cancer research: Insights from model organisms-mouse models to zebrafish. Cancers 2023; 15(11): 2961. doi: 10.3390/cancers15112961 PMID: 37296923
  65. Rashid OM, Takabe K. Animal models for exploring the pharmacokinetics of breast cancer therapies. Expert Opin Drug Metab Toxicol 2015; 11(2): 221-30. doi: 10.1517/17425255.2015.983073 PMID: 25416501
  66. Vandamme T. Use of rodents as models of human diseases. J Pharm Bioallied Sci 2014; 6(1): 2-9. doi: 10.4103/0975-7406.124301 PMID: 24459397
  67. Park MK, Lee CH, Lee H. Mouse models of breast cancer in preclinical research. Lab Anim Res 2018; 34(4): 160-5. doi: 10.5625/lar.2018.34.4.160 PMID: 30671101
  68. Taneja P, Frazier DP, Kendig RD, et al. MMTV mouse models and the diagnostic values of MMTV-like sequences in human breast cancer. Expert Rev Mol Diagn 2009; 9(5): 423-40. doi: 10.1586/erm.09.31 PMID: 19580428
  69. Abdolahi S, Ghazvinian Z, Muhammadnejad S, Saleh M, Asadzadeh Aghdaei H, Baghaei K. Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J Transl Med 2022; 20(1): 206. doi: 10.1186/s12967-022-03405-8 PMID: 35538576
  70. Regua AT, Arrigo A, Doheny D, Wong GL, Lo HW. Transgenic mouse models of breast cancer. Cancer Lett 2021; 516: 73-83. doi: 10.1016/j.canlet.2021.05.027 PMID: 34090924
  71. Day CP, Merlino G, Van Dyke T. Preclinical mouse cancer models: A maze of opportunities and challenges. Cell 2015; 163(1): 39-53. doi: 10.1016/j.cell.2015.08.068 PMID: 26406370
  72. Hill W, Caswell DR, Swanton C. Capturing cancer evolution using genetically engineered mouse models (GEMMs). Trends Cell Biol 2021; 31(12): 1007-18. doi: 10.1016/j.tcb.2021.07.003 PMID: 34400045
  73. Du Z, Li Y. RCAS-TVA in the mammary gland: An in vivo oncogene screen and a high fidelity model for breast transformation? Cell Cycle 2007; 6(7): 823-6. doi: 10.4161/cc.6.7.4074 PMID: 17377492
  74. Reddy JP, Li Y. The RCAS-TVA system for introduction of oncogenes into selected somatic mammary epithelial cells in vivo. J Mammary Gland Biol Neoplasia 2009; 14(4): 405-9. doi: 10.1007/s10911-009-9157-1 PMID: 19936988
  75. Meraz IM, Majidi M, Meng F, et al. An improved patient-derived xenograft humanized mouse model for evaluation of lung cancer immune responses. Cancer Immunol Res 2019; 7(8): 1267-79. doi: 10.1158/2326-6066.CIR-18-0874 PMID: 31186248
  76. Lin S, Huang G, Cheng L, et al. Establishment of peripheral blood mononuclear cell-derived humanized lung cancer mouse models for studying efficacy of PD-L1/PD-1 targeted immunotherapy. MAbs 2018; 10(8): 1301-11. doi: 10.1080/19420862.2018.1518948 PMID: 30204048
  77. Kim IS, Baek SH. Mouse models for breast cancer metastasis. Biochem Biophys Res Commun 2010; 394(3): 443-7. doi: 10.1016/j.bbrc.2010.03.070 PMID: 20230796
  78. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 2011; 331(6024): 1559-64. doi: 10.1126/science.1203543 PMID: 21436443
  79. Fantozzi A, Christofori G. Mouse models of breast cancer metastasis. Breast Cancer Res 2006; 8(4): 212. doi: 10.1186/bcr1530 PMID: 16887003
  80. Chakrabarti R, Kang Y. Transplantable mouse tumor models of breast cancer metastasis. Methods Mol Biol 2015; 1267: 367-80. doi: 10.1007/978-1-4939-2297-0_18 PMID: 25636479
  81. Roarty K, Echeverria GV. Laboratory models for investigating breast cancer therapy resistance and metastasis. Front Oncol 2021; 11: 645698. doi: 10.3389/fonc.2021.645698 PMID: 33777805
  82. Welch DR. Technical considerations for studying cancer metastasis in vivo. Clin Exp Metastasis 1997; 15(3): 272-306. doi: 10.1023/A:1018477516367 PMID: 9174129
  83. Fidler IJ, Nicolson GL. Organ selectivity for implantation survival and growth of B16 melanoma variant tumor lines. J Natl Cancer Inst 1976; 57(5): 1199-202. doi: 10.1093/jnci/57.5.1199 PMID: 1003551
  84. Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 1992; 52(6): 1399-405. PMID: 1540948
  85. Gawrzak S, Rinaldi L, Gregorio S, et al. Publisher correction: MSK1 regulates luminal cell differentiation and metastatic dormancy in ER+ breast cancer. Nat Cell Biol 2018; 20(8): 990. doi: 10.1038/s41556-018-0052-0 PMID: 29674681
  86. Pavlovic M, Arnal-Estapé A, Rojo F, et al. Enhanced MAF oncogene expression and breast cancer bone metastasis. J Natl Cancer Inst 2015; 107(12): djv256. doi: 10.1093/jnci/djv256 PMID: 26376684
  87. Minn AJ, Gupta GP, Siegel PM, et al. Genes that mediate breast cancer metastasis to lung. Nature 2005; 436(7050): 518-24. doi: 10.1038/nature03799 PMID: 16049480
  88. Khanna C, Hunter K. Modeling metastasis in vivo. Carcinogenesis 2004; 26(3): 513-23. doi: 10.1093/carcin/bgh261 PMID: 15358632
  89. Bos PD, Zhang XHF, Nadal C, et al. Genes that mediate breast cancer metastasis to the brain. Nature 2009; 459(7249): 1005-9. doi: 10.1038/nature08021 PMID: 19421193
  90. Yang Y, Yang HH, Hu Y, et al. Immunocompetent mouse allograft models for development of therapies to target breast cancer metastasis. Oncotarget 2017; 8(19): 30621-43. doi: 10.18632/oncotarget.15695 PMID: 28430642
  91. Gómez-Cuadrado L, Tracey N, Ma R, Qian B, Brunton VG. Mouse models of metastasis: Progress and prospects. Dis Model Mech 2017; 10(9): 1061-74. doi: 10.1242/dmm.030403 PMID: 28883015
  92. Hiroshima Y, Maawy A, Zhang Y, et al. Patient-derived mouse models of cancer need to be orthotopic in order to evaluate targeted anti-metastatic therapy. Oncotarget 2016; 7(44): 71696-702. doi: 10.18632/oncotarget.12322 PMID: 27765934
  93. Julien S, Merino-Trigo A, Lacroix L, et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin Cancer Res 2012; 18(19): 5314-28. doi: 10.1158/1078-0432.CCR-12-0372 PMID: 22825584
  94. Puig I, Chicote I, Tenbaum SP, et al. A personalized preclinical model to evaluate the metastatic potential of patient-derived colon cancer initiating cells. Clin Cancer Res 2013; 19(24): 6787-801. doi: 10.1158/1078-0432.CCR-12-1740 PMID: 24170545
  95. Cogels MM, Rouas R, Ghanem GE, et al. Humanized mice as a valuable pre-clinical model for cancer immunotherapy research. Front Oncol 2021; 11: 784947. doi: 10.3389/fonc.2021.784947 PMID: 34869042

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers