Overview of Spanlastics: A Groundbreaking Elastic Medication Delivery Device with Versatile Prospects for Administration via Various Routes


Цитировать

Полный текст

Аннотация

:When compared to the challenges associated with traditional dosage forms, medication delivery systems based on nanotechnology have been a huge boon. One such candidate for medication delivery is spanlastics, an elastic nanovesicle that can transport a diverse array of medicinal compounds. The use of spanlastics has been associated with an increase in interest in alternative administration methods. The non-ionic surfactant or surfactant blend is the main component of spanlastics. The purpose of this review was primarily to examine the potential of spanlastics as a delivery system for a variety of medication classes administered via diverse routes. Science Direct, Google Scholar, and Pubmed were utilized to search the academic literature for this review. Several studies have demonstrated that spanlastics greatly improve therapeutic effectiveness, increase medication absorption, and decrease drug toxicity. This paper provides a summary of the composition and structure of spanlastics along with their utility in the delivery of various therapeutic agents by adopting different routes. Additionally, it provides an overview of the numerous disorders that may be treated using drugs that are contained in spanlastic vesicles.

Об авторах

Lalit Kumar

Department of Pharmaceutics, GNA School of Pharmacy, GNA University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Ritesh Rana

Department of Pharmaceutical Sciences (Pharmaceutics), Laureate Institute of Pharmacy

Email: info@benthamscience.net

Gauree Kukreti

School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University

Email: info@benthamscience.net

Vikas Aggarwal

Senior Pharmacovigilance Specialist, Continuum India LLP

Email: info@benthamscience.net

Himanshu Chaurasia

Department of Pharmacy, Quantum School of Health Science, Quantum University

Email: info@benthamscience.net

Puneet Sharma

Department of Pharmaceutical Sciences (Pharmaceutics), Himachal Institute of Pharmaceutical Education and Research

Email: info@benthamscience.net

Vuluchala Jyothiraditya

Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences,

Email: info@benthamscience.net

Список литературы

  1. Khan MS, Roberts MS. Challenges and innovations of drug delivery in older age. Adv Drug Deliv Rev 2018; 135: 3-38. doi: 10.1016/j.addr.2018.09.003 PMID: 30217519
  2. Al Ragib A, Chakma R, Dewan K, Islam T, Kormoker T, Idris AM. Current advanced drug delivery systems: Challenges and potentialities. J Drug Deliv Sci Technol 2022; 76: 103727. doi: 10.1016/j.jddst.2022.103727
  3. Pavuluri S, Sheth RA. Overcoming biophysical barriers with innovative therapeutic delivery approaches. Cancer Gene Ther 2022; 29(12): 1847-53. doi: 10.1038/s41417-022-00529-3 PMID: 36076063
  4. Chamundeeswari M, Jeslin J, Verma ML. Nanocarriers for drug delivery applications. Environ Chem Lett 2019; 17(2): 849-65. doi: 10.1007/s10311-018-00841-1
  5. Valent P, Groner B, Schumacher U, et al. Paul Ehrlich (1854-1915) and his contributions to the foundation and birth of translational medicine. J Innate Immun 2016; 8(2): 111-20. doi: 10.1159/000443526 PMID: 26845587
  6. Akram MW, Jamshaid H, Rehman FU, Zaeem M, Khan J, Zeb A. Transfersomes: A revolutionary nanosystem for efficient transdermal drug delivery. AAPS PharmSciTech 2021; 23(1): 7. doi: 10.1208/s12249-021-02166-9 PMID: 34853906
  7. Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: A review on niosomal research in the last decade. J Drug Deliv Sci Technol 2020; 56: 101581. doi: 10.1016/j.jddst.2020.101581
  8. Alhammid SNA, Kassab HJ, Hussein LS, Haiss MA, Alkufi Hk. Spanlastics nanovesicles: An emerging and innovative approach for drug delivery. Maaen J Med Sci 2023; 2(3): 9.
  9. Ansari MD, Saifi Z, Pandit J, et al. Spanlastics a novel nanovesicular carrier: Its potential application and emerging trends in therapeutic delivery. AAPS PharmSciTech 2022; 23(4): 112. doi: 10.1208/s12249-022-02217-9 PMID: 35411425
  10. Verma S, Utreja P. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asian J Pharm Sci 2019; 14(2): 117-29. doi: 10.1016/j.ajps.2018.05.007 PMID: 32104444
  11. Sharma A, Pahwa S, Bhati S, Kudeshia P. Spanlastics: A modern approach for nanovesicular drug delivery system. Int J Pharm Sci Res 2020; 11: 1057-65.
  12. Sarolia J, Baldha R, Chakraborthy GS, Rathod S. The effect of edge activator on the evolution and application of a nonionic surfactant: The elastic vesicular system. J Surfactants Deterg 2023; 26(6): 747-59. doi: 10.1002/jsde.12694
  13. Ashique S, Sandhu NK, Chawla V, Chawla PA. Targeted drug delivery: Trends and perspectives. Curr Drug Deliv 2021; 18(10): 1435-55. doi: 10.2174/1567201818666210609161301 PMID: 34151759
  14. Bąk U, Krupa A. Challenges and opportunities for celecoxib repurposing. Pharm Res 2023; 40(10): 2329-45. doi: 10.1007/s11095-023-03571-4 PMID: 37552383
  15. Chauhan MK, Khanna G. Recent advance of nanotechnology for the treatment of ocular disease. World J Pharm Res 2018; 7(15): 239-57.
  16. Ag Seleci D, Seleci M, Walter JG, Stahl F, Scheper T. Niosomes as nanoparticular drug carriers: Fundamentals and recent applications. J Nanomater 2016; 2016: 1-13. doi: 10.1155/2016/7372306
  17. Carter KC, Puig-Sellart M. Nanocarriers made from non-ionic surfactants or natural polymers for pulmonary drug delivery. Curr Pharm Des 2016; 22(22): 3324-31. doi: 10.2174/1381612822666160418121700 PMID: 27087597
  18. Chauhan MK, Verma A. Spanlastics-future of drug delivery and targeting. World J Pharm Res 2017; 6(12): 429-46.
  19. Yasamineh S, Yasamineh P, Ghafouri Kalajahi H, et al. A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system. Int J Pharm 2022; 624: 121878. doi: 10.1016/j.ijpharm.2022.121878 PMID: 35636629
  20. Morales JO, Peters JI, Williams RO III. Surfactants: Their critical role in enhancing drug delivery to the lungs. Ther Deliv 2011; 2(5): 623-41. doi: 10.4155/tde.11.15 PMID: 22833979
  21. Kaur P, Garg T, Rath G, Murthy RSR, Goyal AK. Surfactant-based drug delivery systems for treating drug-resistant lung cancer. Drug Deliv 2016; 23(3): 717-28. doi: 10.3109/10717544.2014.935530 PMID: 25013959
  22. Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery-an overview. Acta Pharm Sin B 2011; 1(4): 208-19. doi: 10.1016/j.apsb.2011.09.002
  23. Ge X, Wei M, He S, Yuan WE. Advances of non-ionic surfactant vesicles (Niosomes) and their application in drug delivery. Pharmaceutics 2019; 11(2): 55. doi: 10.3390/pharmaceutics11020055 PMID: 30700021
  24. Rathod S, Arya S, Shukla R, et al. Investigations on the role of edge activator upon structural transitions in Span vesicles. Colloids Surf A Physicochem Eng Asp 2021; 627: 127246. doi: 10.1016/j.colsurfa.2021.127246
  25. Songkro S. An overview of skin penetration enhancers: penetration enhancing activity, skin irritation potential and mechanism of action. Songklanakarin J Sci Technol 2009; 31(3)
  26. Liu L. Penetration of surfactants into skin. J Cosmet Sci 2020; 71(2): 91-109. PMID: 32271711
  27. Som I, Bhatia K, Yasir M. Status of surfactants as penetration enhancers in transdermal drug delivery. J Pharm Bioallied Sci 2012; 4(1): 2-9. doi: 10.4103/0975-7406.92724 PMID: 22368393
  28. Haque T, Talukder MMU. Chemical enhancer: A simplistic way to modulate barrier function of the stratum corneum. Adv Pharm Bull 2018; 8(2): 169-79. doi: 10.15171/apb.2018.021 PMID: 30023318
  29. Pilch E, Musiał W. Liposomes with an ethanol fraction as an application for drug delivery. Int J Mol Sci 2018; 19(12): 3806. doi: 10.3390/ijms19123806 PMID: 30501085
  30. Parashar T, Sachan R, Singh V, et al. Ethosomes: A recent vesicle of transdermal drug delivery system. Int J Res Dev Pharm Life Sci 2013; 2(2): 285-92.
  31. Mohanty D, Mounika A, Bakshi V, Akiful Haque M, Keshari Sahoo C. Ethosomes: A novel approach for transdermal drug delivery. Int J Chemtech Res 2018; 11(8): 219-26. doi: 10.20902/IJCTR.2018.110826
  32. Jain S, Tiwary AK, Sapra B, Jain NK. Formulation and evaluation of ethosomes for transdermal delivery of lamivudine. AAPS PharmSciTech 2007; 8(4): 249. doi: 10.1208/pt0804111 PMID: 18181532
  33. Sudhakar K, Mishra V, Jain S, Rompicherla NC, Malviya N, Tambuwala MM. Development and evaluation of the effect of ethanol and surfactant in vesicular carriers on Lamivudine permeation through the skin. Int J Pharm 2021; 610: 121226. doi: 10.1016/j.ijpharm.2021.121226 PMID: 34710540
  34. Hmingthansanga V, Singh N, Banerjee S, Manickam S, Velayutham R, Natesan S. Improved topical drug delivery: Role of permeation enhancers and advanced approaches. Pharmaceutics 2022; 14(12): 2818. doi: 10.3390/pharmaceutics14122818 PMID: 36559311
  35. Mary DCruz CE, Bhide PJ, Kumar L, Shirodkar RK. Novel nano spanlastic carrier system for buccal delivery of lacidipine. J Drug Deliv Sci Technol 2022; 68: 103061. doi: 10.1016/j.jddst.2021.103061
  36. ElMeshad AN, Mohsen AM. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. Drug Deliv 2016; 23(7): 2115-23. doi: 10.3109/10717544.2014.942811 PMID: 25080226
  37. Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Duodenum-triggered delivery of pravastatin sodium via enteric surface-coated nanovesicular spanlastic dispersions: Development, characterization and pharmacokinetic assessments. Int J Pharm 2015; 483(1-2): 77-88. doi: 10.1016/j.ijpharm.2015.02.012 PMID: 25666025
  38. Abdelbari MA, El-mancy SS, Elshafeey AH, Abdelbary AA. Implementing spanlastics for improving the ocular delivery of clotrimazole: In vitro characterization, ex vivo permeability, microbiological assessment and in vivo safety study. Int J Nanomed 2021; 16: 6249-61. doi: 10.2147/IJN.S319348 PMID: 34531656
  39. Abdelmonem R, el Nabarawi M, Attia A. Development of novel bioadhesive granisetron hydrochloride spanlastic gel and insert for brain targeting and study their effects on rats. Drug Deliv 2018; 25(1): 70-7. doi: 10.1080/10717544.2017.1413447 PMID: 29228824
  40. Agrawal R, Sandhu SK, Sharma I, Kaur IP. Development and evaluation of curcumin-loaded elastic vesicles as an effective topical anti-inflammatory formulation. AAPS PharmSciTech 2015; 16(2): 364-74. doi: 10.1208/s12249-014-0232-6 PMID: 25319056
  41. Tundisi LL, Ataide JA, Costa JSR, et al. Nanotechnology as a tool to overcome macromolecules delivery issues. Colloids Surf B Biointerfaces 2023; 222: 113043. doi: 10.1016/j.colsurfb.2022.113043 PMID: 36455361
  42. Malik S, Muhammad K, Waheed Y. Emerging applications of nanotechnology in healthcare and medicine. Molecules 2023; 28(18): 6624. doi: 10.3390/molecules28186624 PMID: 37764400
  43. ElShagea HN, Makar RR, Salama AH, Elkasabgy NA, Basalious EB. Ultradeformable nanocarriers for efficient transdermal drug delivery. Bull Fac Pharm Cairo Univ 2023; 61(1): 9.
  44. Yoshida T, Kojima H. Oral drug delivery systems applied to launched products: Value for the patients and industrial considerations. Mol Pharm 2023; 20(11): 5312-31. doi: 10.1021/acs.molpharmaceut.3c00482 PMID: 37856863
  45. Siafaka PI, Özcan Bülbül E, Okur ME, Karantas ID, Üstündağ Okur N. The application of nanogels as efficient drug delivery platforms for dermal/transdermal delivery. Gels 2023; 9(9): 753. doi: 10.3390/gels9090753 PMID: 37754434
  46. Qushawy M, Alenzi AM, Albalawi SA, Alghamdi SG, Albalawi RF, Albalawi HS. Review on different vesicular drug delivery systems (VDDSs) and their applications. Recent Pat Nanotechnol 2023; 17(1): 18-32. doi: 10.2174/1872210516666220228150624 PMID: 35227188
  47. Alaaeldin E, Mostafa M, Mansour HF, Soliman GM. Spanlastics as an efficient delivery system for the enhancement of thymoquinone anticancer efficacy: Fabrication and cytotoxic studies against breast cancer cell lines. J Drug Deliv Sci Technol 2021; 65: 102725. doi: 10.1016/j.jddst.2021.102725
  48. Mazyed EA, Helal DA, Elkhoudary MM, Abd Elhameed AG, Yasser M. Formulation and optimization of nanospanlastics for improving the bioavailability of green tea epigallocatechin gallate. Pharmaceuticals 2021; 14(1): 68. doi: 10.3390/ph14010068 PMID: 33467631
  49. Younis MM, Fadel NAEF, Darwish AB, Mohsen AM. Nanospanlastics as a novel approach for improving the oral delivery of resveratrol in lipopolysaccharide-induced endotoxicity in mice. J Pharm Innov 2023; 18(3): 1264-78. doi: 10.1007/s12247-023-09711-y
  50. Fatouh AM, Elshafeey AH, Abdelbary A. Liver targeting of ledipasvir via galactosylated chitosan–coated spanlastics: Chemical synthesis, statistical optimization, in vitro, and pharmacokinetic evaluation. Drug Deliv Transl Res 2022; 12(5): 1161-74. doi: 10.1007/s13346-021-00993-8 PMID: 33948896
  51. Sallam NM, Sanad RAB, Ahmed MM, Khafagy ELS, Ghorab M, Gad S. Impact of the mucoadhesive lyophilized wafer loaded with novel carvedilol nano-spanlastics on biochemical markers in the heart of spontaneously hypertensive rat models. Drug Deliv Transl Res 2021; 11(3): 1009-36. doi: 10.1007/s13346-020-00814-4 PMID: 32607938
  52. Bharatha S, Srinivas P. Melphalan spanlastics for oral administration- formulation and development. World J Pharm Res 2016; 5: 430-40.
  53. Zaid Alkilani A, Hamed R, Musleh B, Sharaire Z. Breaking boundaries: The advancements in transdermal delivery of antibiotics. Drug Deliv 2024; 31(1): 2304251. doi: 10.1080/10717544.2024.2304251 PMID: 38241087
  54. Yu Z, Meng X, Zhang S, Chen Y, Zhang Z, Zhang Y. Recent progress in transdermal nanocarriers and their surface modifications. Molecules 2021; 26(11): 3093. doi: 10.3390/molecules26113093 PMID: 34064297
  55. Kurmi BD, Tekchandani P, Paliwal R, Paliwal SR. Transdermal drug delivery: Opportunities and challenges for controlled delivery of therapeutic agents using nanocarriers. Curr Drug Metab 2017; 18(5): 481-95. doi: 10.2174/1389200218666170222150555 PMID: 28228076
  56. Amjadi M, Mostaghaci B, Sitti M. Recent advances in skin penetration enhancers for transdermal gene and drug delivery. Curr Gene Ther 2017; 17(2): 139-46. PMID: 28494734
  57. Ansari MD, khan I, Solanki P, et al. Fabrication and optimization of raloxifene loaded spanlastics vesicle for transdermal delivery. J Drug Deliv Sci Technol 2022; 68: 103102. doi: 10.1016/j.jddst.2022.103102
  58. Zaki RM, Ibrahim MA, Alshora DH, El Ela AESA. Formulation and evaluation of transdermal gel containing tacrolimus-loaded spanlastics: In vitro, ex vivo and in vivo studies. Polymers 2022; 14(8): 1528. doi: 10.3390/polym14081528 PMID: 35458277
  59. Elsaied EH, Dawaba HM, Ibrahim ESA, Afouna MI. Spanlastics gel-A novel drug carrier for transdermal delivery of glimepiride. J Liposome Res 2023; 33(1): 102-14. doi: 10.1080/08982104.2022.2100902 PMID: 35862551
  60. Fahmy AM, El-Setouhy DA, Habib BA, Tayel SA. Enhancement of transdermal delivery of haloperidol via spanlastic dispersions: entrapment efficiency vs. particle size. AAPS PharmSciTech 2019; 20(3): 95. doi: 10.1208/s12249-019-1306-2 PMID: 30694404
  61. Farghaly DA, Aboelwafa AA, Hamza MY, Mohamed MI. Topical delivery of fenoprofen calcium via elastic nano-vesicular spanlastics: Optimization using experimental design and in vivo evaluation. AAPS PharmSciTech 2017; 18(8): 2898-909. doi: 10.1208/s12249-017-0771-8 PMID: 28429293
  62. El Menshawe SF, Nafady MM, Aboud HM, Kharshoum RM, Elkelawy AMMH, Hamad DS. Transdermal delivery of fluvastatin sodium via tailored spanlastic nanovesicles: Mitigated Freund’s adjuvant-induced rheumatoid arthritis in rats through suppressing p38 MAPK signaling pathway. Drug Deliv 2019; 26(1): 1140-54. doi: 10.1080/10717544.2019.1686087 PMID: 31736366
  63. Elhabak M, Ibrahim S, Abouelatta SM. Topical delivery of l-ascorbic acid spanlastics for stability enhancement and treatment of UVB induced damaged skin. Drug Deliv 2021; 28(1): 445-53. doi: 10.1080/10717544.2021.1886377 PMID: 33620008
  64. El Hosary R, Teaima MH, El-Nabarawi M, et al. Topical delivery of extracted curcumin as curcumin loaded spanlastics anti-aging gel: Optimization using experimental design and ex-vivo evaluation. Saudi Pharm J 2024; 32(1): 101912. doi: 10.1016/j.jsps.2023.101912 PMID: 38178851
  65. Safhi AY, Naveen NR, Rolla KJ, et al. Enhancement of antifungal activity and transdermal delivery of 5-flucytosine via tailored spanlastic nanovesicles: Statistical optimization, in-vitro characterization, and in-vivo biodistribution study. Front Pharmacol 2023; 14: 1321517. doi: 10.3389/fphar.2023.1321517 PMID: 38125883
  66. Bachu R, Chowdhury P, Al-Saedi Z, Karla P, Boddu S. Ocular drug delivery barriers-role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics 2018; 10(1): 28. doi: 10.3390/pharmaceutics10010028 PMID: 29495528
  67. Tsai CH, Wang PY, Lin IC, Huang H, Liu GS, Tseng CL. Ocular drug delivery: Role of degradable polymeric nanocarriers for ophthalmic application. Int J Mol Sci 2018; 19(9): 2830. doi: 10.3390/ijms19092830 PMID: 30235809
  68. Gorantla S, Rapalli VK, Waghule T, et al. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC Advances 2020; 10(46): 27835-55. doi: 10.1039/D0RA04971A PMID: 35516960
  69. Ahmed S, Amin MM, Sayed S. Ocular drug delivery: A comprehensive review. AAPS PharmSciTech 2023; 24(2): 66. doi: 10.1208/s12249-023-02516-9 PMID: 36788150
  70. Kakkar S, Kaur IP. Spanlastics-A novel nanovesicular carrier system for ocular delivery. Int J Pharm 2011; 413(1-2): 202-10. doi: 10.1016/j.ijpharm.2011.04.027 PMID: 21540093
  71. Aziz D, Mohamed SA, Tayel S, Makhlouf A. Enhanced ocular anti-aspergillus activity of tolnaftate employing novel cosolvent-modified spanlastics: Formulation, statistical optimization, kill kinetics, ex vivo trans-corneal permeation, in vivo histopathological and susceptibility study. Pharmaceutics 2022; 14(8): 1746. doi: 10.3390/pharmaceutics14081746 PMID: 36015372
  72. Ibrahim SS, Abd-allah H. Spanlastic nanovesicles for enhanced ocular delivery of vanillic acid: Design, in vitro characterization, and in vivo anti-inflammatory evaluation. Int J Pharm 2022; 625: 122068. doi: 10.1016/j.ijpharm.2022.122068 PMID: 35926753
  73. Agha OA, Girgis GNS, El-Sokkary MMA, Soliman OAEA. Spanlastic-laden in situ gel as a promising approach for ocular delivery of Levofloxacin: In-vitro characterization, microbiological assessment, corneal permeability and in-vivo study. Int J Pharm X 2023; 6: 100201. doi: 10.1016/j.ijpx.2023.100201 PMID: 37560488
  74. Yasser M, El Naggar EE, Elfar N, Teaima MH, El-Nabarawi MA, Elhabal SF. Formulation, optimization and evaluation of ocular gel containing nebivolol Hcl-loaded ultradeformable spanlastics nanovesicles: In vitro and in vivo studies. Int J Pharm X 2024; 7: 100228. doi: 10.1016/j.ijpx.2023.100228 PMID: 38317829
  75. Liu Y, Wang Y, Yang J, Zhang H, Gan L. Cationized hyaluronic acid coated spanlastics for cyclosporine A ocular delivery: Prolonged ocular retention, enhanced corneal permeation and improved tear production. Int J Pharm 2019; 565: 133-42. doi: 10.1016/j.ijpharm.2019.05.018 PMID: 31075435
  76. Aggarwal P, Chand B. Development and optimization of econazole spanlastics for fungal keratitis. World J Pharm Res 2018; 7(13): 1221-42.
  77. Abdel-Rashid RS, Helal DA, Omar MM, El Sisi AM. Nanogel loaded with surfactant based nanovesicles for enhanced ocular delivery of acetazolamide. Int J Nanomed 2019; 14: 2973-83. doi: 10.2147/IJN.S201891 PMID: 31118616
  78. Emad NA, Ahmed B, Alhalmi A, Alzobaidi N, Al-Kubati SS. Recent progress in nanocarriers for direct nose to brain drug delivery. J Drug Deliv Sci Technol 2021; 64: 102642. doi: 10.1016/j.jddst.2021.102642
  79. Aderibigbe BA, Naki T. Chitosan-based nanocarriers for nose to brain delivery. Appl Sci 2019; 9(11): 2219. doi: 10.3390/app9112219
  80. Rabiee N, Ahmadi S, Afshari R, et al. Polymeric nanoparticles for nasal drug delivery to the brain: relevance to Alzheimer’s disease. Adv Ther 2021; 4(3): 2000076. doi: 10.1002/adtp.202000076
  81. Kashyap K, Shukla R. Drug delivery and targeting to the brain through nasal route: Mechanisms, applications and challenges. Curr Drug Deliv 2019; 16(10): 887-901. doi: 10.2174/1567201816666191029122740 PMID: 31660815
  82. Muzammil S, Mazhar A, Yeni DK, et al. Nanospanlastic as a promising nanovesicle for drug delivery. In: Systems of Nanovesicular Drug Delivery. Academic Press 2022; pp. 337-52. doi: 10.1016/B978-0-323-91864-0.00007-3
  83. Saleh A, Khalifa M, Shawky S, Bani-Ali A, Eassa H. Zolmitriptan intranasal spanlastics for enhanced migraine treatment; Formulation parameters optimized via quality by design approach. Sci Pharm 2021; 89(2): 24. doi: 10.3390/scipharm89020024
  84. Abdelmonem R, El-Enin HAA, Abdelkader G, Abdel-Hakeem M. Formulation and characterization of lamotrigine nasal insert targeted brain for enhanced epilepsy treatment. Drug Deliv 2023; 30(1): 2163321. doi: 10.1080/10717544.2022.2163321 PMID: 36579655
  85. Gupta I, Adin SN, Rashid MA, Alhamhoom Y, Aqil M, Mujeeb M. Spanlastics as a potential approach for enhancing the nose-to-brain delivery of piperine: In vitro prospect and in vivo therapeutic efficacy for the management of epilepsy. Pharmaceutics 2023; 15(2): 641. doi: 10.3390/pharmaceutics15020641 PMID: 36839963
  86. Ali MM, Shoukri RA, Yousry C. Thin film hydration versus modified spraying technique to fabricate intranasal spanlastic nanovesicles for rasagiline mesylate brain delivery: Characterization, statistical optimization, and in vivo pharmacokinetic evaluation. Drug Deliv Transl Res 2023; 13(4): 1153-68. doi: 10.1007/s13346-022-01285-5 PMID: 36585559
  87. Priyanka S, Nithya R. Lisinopril dihydrate loaded nano-spanlastic bio-adhesive gel for intranasal delivery: 23 factorial optimization, fabrication and ex-vivo studies for enhanced mucosal permeation. J Res Pharm 2022; 26(4): 884-99. doi: 10.29228/jrp.187
  88. Alharbi WS, Hareeri RH, Bazuhair M, et al. Spanlastics as a potential platform for enhancing the brain delivery of flibanserin: In vitro response-surface optimization and in vivo pharmacokinetics assessment. Pharmaceutics 2022; 14(12): 2627. doi: 10.3390/pharmaceutics14122627 PMID: 36559120
  89. Abdelrahman FE, Elsayed I, Gad MK, Elshafeey AH, Mohamed MI. Response surface optimization, ex vivo and in vivo investigation of nasal spanlastics for bioavailability enhancement and brain targeting of risperidone. Int J Pharm 2017; 530(1-2): 1-11. doi: 10.1016/j.ijpharm.2017.07.050 PMID: 28733244
  90. Mahtab A, Anwar M, Mallick N, Naz Z, Jain GK, Ahmad FJ. Transungual delivery of ketoconazole nanoemulgel for the effective management of onychomycosis. AAPS PharmSciTech 2016; 17(6): 1477-90. doi: 10.1208/s12249-016-0488-0 PMID: 26857516
  91. Gratieri T, Krawczyk-Santos AP, da Rocha PBR, et al. SLN- and NLC-encapsulating antifungal agents: Skin drug delivery and their unexplored potential for treating onychomycosis. Curr Pharm Des 2018; 23(43): 6684-95. doi: 10.2174/1381612823666171115112745 PMID: 29141535
  92. Bseiso EA, Nasr M, Sammour OA, Abd El Gawad NA. Novel nail penetration enhancer containing vesicles "nPEVs" for treatment of onychomycosis. Drug Deliv 2016; 23(8): 2813-9. doi: 10.3109/10717544.2015.1099059 PMID: 26447337
  93. Tampucci S, Terreni E, Zucchetti E, Burgalassi S, Chetoni P, Monti D. Formulations based on natural ingredients for the treatment of nail diseases. Curr Pharm Des 2020; 26(5): 556-65. doi: 10.2174/1381612826666200122150248 PMID: 31969086
  94. Morgado LF, Trávolo ARF, Muehlmann LA, et al. Photodynamic therapy treatment of onychomycosis with aluminium-phthalocyanine chloride nanoemulsions: A proof of concept clinical trial. J Photochem Photobiol B 2017; 173: 266-70. doi: 10.1016/j.jphotobiol.2017.06.010 PMID: 28622558
  95. El-sherif NI, Shamma RN, Abdelbary G. In-situ gels and nail lacquers as potential delivery systems for treatment of onychomycosis. A comparative study. J Drug Deliv Sci Technol 2018; 43: 253-61. doi: 10.1016/j.jddst.2017.10.018
  96. Almuqbil RM, Sreeharsha N, Nair AB. Formulation-by-design of efinaconazole spanlastic nanovesicles for transungual delivery using statistical risk management and multivariate analytical techniques. Pharmaceutics 2022; 14(7): 1419. doi: 10.3390/pharmaceutics14071419 PMID: 35890316
  97. Sheehan K, Sheth S, Mukherjea D, Rybak LP, Ramkumar V. Trans-tympanic drug delivery for the treatment of ototoxicity. J Vis Exp 2018; (133): 56564. PMID: 29608150
  98. Zhang Z, Li X, Zhang W, Kohane DS. Drug delivery across barriers to the middle and inner ear. Adv Funct Mater 2021; 31(44): 2008701. doi: 10.1002/adfm.202008701 PMID: 34795553
  99. Hoskison E, Daniel M, Al-Zahid S, Shakesheff KM, Bayston R, Birchall JP. Drug delivery to the ear. Ther Deliv 2013; 4(1): 115-24. doi: 10.4155/tde.12.130 PMID: 23323784
  100. Khoo X, Simons EJ, Chiang HH, et al. Formulations for trans-tympanic antibiotic delivery. Biomaterials 2013; 34(4): 1281-8. doi: 10.1016/j.biomaterials.2012.10.025 PMID: 23146430
  101. Al-mahallawi AM, Khowessah OM, Shoukri RA. Enhanced non invasive trans-tympanic delivery of ciprofloxacin through encapsulation into nano-spanlastic vesicles: Fabrication, in-vitro characterization, and comparative ex-vivo permeation studies. Int J Pharm 2017; 522(1-2): 157-64. doi: 10.1016/j.ijpharm.2017.03.005 PMID: 28279741
  102. Li G, Yang L, Hua Z, Yanan W, Jinlong Y. Cationic hyaluronic acid coated spanlastics and preparation and application thereof. US Patent 20220192980A1, 2022.
  103. Kaur IP. Pharmaceutical nanoelastic vesicular systems. Indian Patent 274013, 2010.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024