Therapeutic Potential of Sodium-glucose Co-transporter-2 Inhibitors and Glucagon-like Peptide-1 Receptor Agonists for Patients with Acute Coronary Syndrome: A Review of Clinical Evidence


Cite item

Full Text

Abstract

:Atherosclerotic Cardiovascular Disease (ASCVD) is still one of the leading causes of death globally, with Coronary Artery Disease (CAD) being the most prevalent form of ASCVD. Patients with type 2 Diabetes Mellitus (DM) experience an increased risk for ASCVD during the disease course, with CAD being the most common cause of death among affected individuals, resulting in shorter life expectancy and increased morbidity among survivors. Recently, 2 novel classes of anti-diabetic drugs, namely Sodium-Glucose Co-Transporter- 2 (SGLT-2) inhibitors and Glucagon-Like Peptide-1 (GLP-1) receptor agonists, have shown impressive cardio-renal benefits for patients with type 2 DM, while they might decrease cardio-renal risk even in the absence of baseline DM. However, there is no evidence to date regarding their safety and efficacy in the setting of an acute coronary syndrome (ACS) event, regardless of concomitant DM. This study aims to provide a detailed, updated presentation of currently available clinical evidence concerning the potential role of SGLT-2 inhibitors and GLP-1 receptor agonists in the setting of an ACS, and to highlight whether those drug classes could be utilized as adjuncts to standard-of-care treatment in this specific patient population, along with a presentation of the potential short- and long-term cardiovascular benefits.

About the authors

Paschalis Karakasis

Second Department of Cardiology, General Hospital "Hippokration", Aristotle University of Thessaloniki

Email: info@benthamscience.net

Dimitrios Patoulias

Second Propedeutic Department of Internal Medicine, General Hospital "Hippokration", Aristotle University of Thessaloniki

Author for correspondence.
Email: info@benthamscience.net

George Kassimis

Second Department of Cardiology, General Hospital "Hippokration", Aristotle University of Thessaloniki

Email: info@benthamscience.net

Theocharis Koufakis

Second Propedeutic Department of Internal Medicine, General Hospital "Hippokration", Aristotle University of Thessaloniki

Email: info@benthamscience.net

Aleksandra Klisic

Faculty of Medicine, Primary Health Care Center, University of Montenegro,

Email: info@benthamscience.net

Michael Doumas

Second Propedeutic Department of Internal Medicine, General Hospital "Hippokration", Aristotle University of Thessaloniki

Email: info@benthamscience.net

Nikolaos Fragakis

Second Department of Cardiology, General Hospital "Hippokration", Aristotle University of Thessaloniki

Email: info@benthamscience.net

Manfredi Rizzo

School of Medicine, Department of Health Promotion, Mother and Child Care (Promise), Internal Medicine and Medical Specialties, University of Palermo

Email: info@benthamscience.net

References

  1. Mensah GA, Fuster V, Murray CJL, Roth GA. Global burden of cardiovascular diseases and risks, 1990-2022. J Am Coll Cardiol 2023; 82(25): 2350-473. doi: 10.1016/j.jacc.2023.11.007 PMID: 38092509
  2. Byrne RA, Rossello X, Coughlan JJ, et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur Heart J 2023; 44(38): 3720-826. doi: 10.1093/eurheartj/ehad191 PMID: 37622654
  3. Kolansky DM. Acute coronary syndromes: Morbidity, mortality, and pharmacoeconomic burden. Am J Manag Care 2009; 15(2) (Suppl.): S36-41. PMID: 19355807
  4. Steen DL, Khan I, Andrade K, Koumas A, Giugliano RP. Event rates and risk factors for recurrent cardiovascular events and mortality in a contemporary post acute coronary syndrome population representing 239 234 patients during 2005 to 2018 in the United States. J Am Heart Assoc 2022; 11(9): e022198. doi: 10.1161/JAHA.121.022198 PMID: 35475346
  5. Dong X, Cai R, Sun J, et al. Diabetes as a risk factor for acute coronary syndrome in women compared with men: A meta-analysis, including 10 856 279 individuals and 106 703 acute coronary syndrome events. Diabetes Metab Res Rev 2017; 33(5): e2887. doi: 10.1002/dmrr.2887 PMID: 28103417
  6. Zhuo X, Zhang C, Feng J, Ouyang S, Niu P, Dai Z. In-hospital, short-term and long-term adverse clinical outcomes observed in patients with type 2 diabetes mellitus vs non-diabetes mellitus following percutaneous coronary intervention. Medicine (Baltimore) 2019; 98(8): e14669. doi: 10.1097/MD.0000000000014669 PMID: 30813214
  7. Avogaro A, Bonora E, Consoli A, Del Prato S, Genovese S, Giorgino F. Glucose-lowering therapy and cardiovascular outcomes in patients with type 2 diabetes mellitus and acute coronary syndrome. Diab Vasc Dis Res 2019; 16(5): 399-414. doi: 10.1177/1479164119845612 PMID: 31044622
  8. Karakasis P, Stalikas N, Patoulias D. Prognostic value of stress hyperglycemia ratio in patients with acute myocardial infarction: A systematic review with Bayesian and frequentist meta-analysis. Trends Cardiovasc Med 2023; S1050-1738(23): 00107-X. doi: 10.1016/j.tcm.2023.11.006
  9. Giugliano D, Longo M, Signoriello S, et al. The effect of DPP-4 inhibitors, GLP-1 receptor agonists and SGLT-2 inhibitors on cardiorenal outcomes: A network meta-analysis of 23 CVOTs. Cardiovasc Diabetol 2022; 21(1): 42. doi: 10.1186/s12933-022-01474-z PMID: 35296336
  10. Zelniker TA, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019; 393(10166): 31-9. doi: 10.1016/S0140-6736(18)32590-X PMID: 30424892
  11. Bethel MA, Patel RA, Merrill P, et al. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: A meta-analysis. Lancet Diabetes Endocrinol 2018; 6(2): 105-13. doi: 10.1016/S2213-8587(17)30412-6 PMID: 29221659
  12. Lee MMY, Kristensen SL, Gerstein HC, McMurray JJV, Sattar N. Cardiovascular and mortality outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A meta-analysis with the FREEDOM cardiovascular outcomes trial. Diabetes Metab Syndr 2022; 16(1): 102382. doi: 10.1016/j.dsx.2021.102382 PMID: 35030451
  13. Marx N, Federici M, Schütt K, et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J 2023; 44(39): 4043-140. doi: 10.1093/eurheartj/ehad192 PMID: 37622663
  14. Davies MJ, Aroda VR, Collins BS, et al. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2022; 65(12): 1925-66. doi: 10.1007/s00125-022-05787-2 PMID: 36151309
  15. ElSayed NA, Aleppo G, Bannuru RR, et al. Cardiovascular disease and risk management: Standards of care in diabetes-2024. Diabetes Care 2024; 47 (Suppl. 1): S179-218. doi: 10.2337/dc24-S010 PMID: 38078592
  16. Marx N, Husain M, Lehrke M, Verma S, Sattar N. GLP-1 receptor agonists for the reduction of atherosclerotic cardiovascular risk in patients with type 2 diabetes. Circulation 2022; 146(24): 1882-94. doi: 10.1161/CIRCULATIONAHA.122.059595 PMID: 36508493
  17. Wright AK, Carr MJ, Kontopantelis E, et al. Primary prevention of cardiovascular and heart failure events with SGLT2 inhibitors, GLP-1 receptor agonists, and their combination in type 2 diabetes. Diabetes Care 2022; 45(4): 909-18. doi: 10.2337/dc21-1113 PMID: 35100355
  18. Vaduganathan M, Docherty KF, Claggett BL, et al. SGLT2 inhibitors in patients with heart failure: A comprehensive meta-analysis of five randomised controlled trials. Lancet 2022; 400(10354): 757-67. doi: 10.1016/S0140-6736(22)01429-5 PMID: 36041474
  19. Baigent C, Emberson JR, Haynes R, et al. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: Collaborative meta-analysis of large placebo-controlled trials. Lancet 2022; 400(10365): 1788-801. doi: 10.1016/S0140-6736(22)02074-8 PMID: 36351458
  20. Lincoff AM, Brown-Frandsen K, Colhoun HM, et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N Engl J Med 2023; 389(24): 2221-32. doi: 10.1056/NEJMoa2307563 PMID: 37952131
  21. Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of Sodium Glucose Co-Transporter 2 (SGLT2) inhibitors: A state-of-the-art review. JACC Basic Transl Sci 2020; 5(6): 632-44. doi: 10.1016/j.jacbts.2020.02.004
  22. Cowie MR, Fisher M. SGLT2 inhibitors: Mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol 2020; 17(12): 761-72. doi: 10.1038/s41569-020-0406-8 PMID: 32665641
  23. Salvatore T, Galiero R, Caturano A. An overview of the cardiorenal protective mechanisms of SGLT2 inhibitors. Int J Mol Sci 2022; 23(7): 3651. doi: 10.3390/ijms23073651
  24. Vallon V, Verma S. Effects of SGLT2 inhibitors on kidney and cardiovascular function. Annu Rev Physiol 2021; 83(1): 503-28. doi: 10.1146/annurev-physiol-031620-095920 PMID: 33197224
  25. Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney DZI. Sodium glucose cotransporter-2 inhibition in heart failure. Circulation 2017; 136(17): 1643-58. doi: 10.1161/CIRCULATIONAHA.117.030012 PMID: 29061576
  26. Drucker DJ. The cardiovascular biology of glucagon-like peptide-1. Cell Metab 2016; 24(1): 15-30. doi: 10.1016/j.cmet.2016.06.009 PMID: 27345422
  27. Ussher JR, Drucker DJ. Glucagon-like peptide 1 receptor agonists: Cardiovascular benefits and mechanisms of action. Nat Rev Cardiol 2023; 20(7): 463-74. doi: 10.1038/s41569-023-00849-3 PMID: 36977782
  28. Nauck MA, Meier JJ, Cavender MA, Abd El Aziz M, Drucker DJ. Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Circulation 2017; 136(9): 849-70. doi: 10.1161/CIRCULATIONAHA.117.028136 PMID: 28847797
  29. Pahud de Mortanges A, Sinaci E, Salvador D Jr. GLP-1 receptor agonists and coronary arteries: From mechanisms to events. Front Pharmacol 2022; 13: 856111. doi: 10.3389/fphar.2022.856111
  30. Gallo G, Volpe M. Potential mechanisms of the protective effects of the cardiometabolic drugs type-2 sodium-glucose transporter inhibitors and glucagon-like peptide-1 receptor agonists in heart failure. Int J Mol Sci 2024; 25(5): 2484. doi: 10.3390/ijms25052484
  31. Usman MS, Siddiqi TJ, Memon MM, et al. Sodium-glucose co-transporter 2 inhibitors and cardiovascular outcomes: A systematic review and meta-analysis. Eur J Prev Cardiol 2018; 25(5): 495-502. doi: 10.1177/2047487318755531 PMID: 29372664
  32. Ye G, Wang S, Peng D. Effects of SGLT2 inhibitor on ischemic events stemming from atherosclerotic coronary diseases: A systematic review and meta-analysis with trial sequential analysis of randomized controlled trials. J Cardiovasc Pharmacol 2021; 77(6): 787-95. doi: 10.1097/FJC.0000000000001018 PMID: 33843765
  33. McGuire DK, Shih WJ, Cosentino F, et al. Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes. JAMA Cardiol 2021; 6(2): 148-58. doi: 10.1001/jamacardio.2020.4511 PMID: 33031522
  34. James S, Erlinge D, Storey RF. Dapagliflozin in myocardial infarction without diabetes or heart failure. NEJM Evid 2024; 3(2): EVIDoa2300286.
  35. Harrington J, Udell JA, Jones WS, et al. Baseline characteristics of patients enrolled in the EMPACT-MI trial. Eur J Heart Fail 2023; 25(9): 1708-15. doi: 10.1002/ejhf.2990 PMID: 37622416
  36. Butler J, Jones WS, Udell JA. Empagliflozin after acute myocardial infarction. N Engl J Med 2024; 390(16): 1455-66. doi: 10.1056/NEJMoa2314051
  37. von Lewinski D, Kolesnik E, Tripolt NJ, et al. Empagliflozin in acute myocardial infarction: The EMMY trial. Eur Heart J 2022; 43(41): 4421-32. doi: 10.1093/eurheartj/ehac494 PMID: 36036746
  38. Benedikt M, Mangge H, Aziz F, et al. Impact of the SGLT2-inhibitor empagliflozin on inflammatory biomarkers after acute myocardial infarction – a post-hoc analysis of the EMMY trial. Cardiovasc Diabetol 2023; 22(1): 166. doi: 10.1186/s12933-023-01904-6 PMID: 37407956
  39. von Lewinski D, Kolesnik E, Aziz F, et al. Timing of SGLT2i initiation after acute myocardial infarction. Cardiovasc Diabetol 2023; 22(1): 269. doi: 10.1186/s12933-023-02000-5 PMID: 37777743
  40. Shimizu W, Kubota Y, Hoshika Y, et al. Effects of empagliflozin versus placebo on cardiac sympathetic activity in acute myocardial infarction patients with type 2 diabetes mellitus: The EMBODY trial. Cardiovasc Diabetol 2020; 19(1): 148. doi: 10.1186/s12933-020-01127-z PMID: 32977831
  41. Hoshika Y, Kubota Y, Mozawa K, et al. Effect of empagliflozin versus placebo on plasma volume status in patients with acute myocardial infarction and type 2 diabetes mellitus. Diabetes Ther 2021; 12(8): 2241-8. doi: 10.1007/s13300-021-01103-0 PMID: 34236577
  42. Lan NSR, Yeap BB, Fegan PG, Green G, Rankin JM, Dwivedi G. Empagliflozin and left ventricular diastolic function following an acute coronary syndrome in patients with type 2 diabetes. Int J Cardiovasc Imaging 2021; 37(2): 517-27. doi: 10.1007/s10554-020-02034-w PMID: 32959096
  43. Kwon O, Myong JP, Lee Y, et al. Sodium-glucose cotransporter-2 inhibitors after acute myocardial infarction in patients with type 2 diabetes: A population-based investigation. J Am Heart Assoc 2023; 12(14): e027824. doi: 10.1161/JAHA.122.027824 PMID: 37421263
  44. Chipayo-Gonzales D, Shabbir A, Vergara-Uzcategui C, et al. Treatment with SGLT2 inhibitors in patients with diabetes mellitus and extensive coronary artery disease: Mortality and cardiovascular outcomes. Diabetes Ther 2023; 14(11): 1853-65. doi: 10.1007/s13300-023-01454-w PMID: 37665429
  45. Chang TY, Lu CT, Huang HL, et al. Association of Sodium-Glucose Cotransporter 2 (SGLT2) inhibitor use with cardiovascular and renal outcomes in type 2 diabetes mellitus patients with stabilized acute myocardial infarction: A propensity score matching study. Front Cardiovasc Med 2022; 9: 882181. doi: 10.3389/fcvm.2022.882181 PMID: 35571176
  46. Lyu YS, Oh S, Kim JH, Kim SY, Jeong MH. Comparison of SGLT2 inhibitors with DPP-4 inhibitors combined with metformin in patients with acute myocardial infarction and diabetes mellitus. Cardiovasc Diabetol 2023; 22(1): 185. doi: 10.1186/s12933-023-01914-4 PMID: 37481509
  47. Paolisso P, Bergamaschi L, Gragnano F, et al. Outcomes in diabetic patients treated with SGLT2-Inhibitors with acute myocardial infarction undergoing PCI: The SGLT2-I AMI PROTECT Registry. Pharmacol Res 2023; 187: 106597. doi: 10.1016/j.phrs.2022.106597 PMID: 36470546
  48. Marfella R, Sardu C, D’Onofrio N, et al. SGLT-2 inhibitors and in-stent restenosis-related events after acute myocardial infarction: An observational study in patients with type 2 diabetes. BMC Med 2023; 21(1): 71. doi: 10.1186/s12916-023-02781-2 PMID: 36829203
  49. Cesaro A, Gragnano F, Paolisso P, et al. In-hospital arrhythmic burden reduction in diabetic patients with acute myocardial infarction treated with SGLT2-inhibitors: Insights from the SGLT2-I AMI PROTECT study. Front Cardiovasc Med 2022; 9: 1012220. doi: 10.3389/fcvm.2022.1012220 PMID: 36237914
  50. Kristensen SL, Rørth R, Jhund PS, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol 2019; 7(10): 776-85. doi: 10.1016/S2213-8587(19)30249-9 PMID: 31422062
  51. Sattar N, Lee MMY, Kristensen SL, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol 2021; 9(10): 653-62. doi: 10.1016/S2213-8587(21)00203-5 PMID: 34425083
  52. Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 2015; 373(23): 2247-57. doi: 10.1056/NEJMoa1509225 PMID: 26630143
  53. Lønborg J, Vejlstrup N, Kelbæk H, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J 2012; 33(12): 1491-9. doi: 10.1093/eurheartj/ehr309 PMID: 21920963
  54. Bernink FJP, Timmers L, Diamant M, et al. Effect of additional treatment with EXenatide in patients with an acute myocardial infarction: The EXAMI study. Int J Cardiol 2013; 167(1): 289-90. doi: 10.1016/j.ijcard.2012.09.204 PMID: 23084550
  55. Woo JS, Kim W, Ha SJ, et al. Cardioprotective effects of exenatide in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention: Results of exenatide myocardial protection in revascularization study. Arterioscler Thromb Vasc Biol 2013; 33(9): 2252-60. doi: 10.1161/ATVBAHA.113.301586 PMID: 23868944
  56. Roos ST, Timmers L, Biesbroek PS, et al. No benefit of additional treatment with exenatide in patients with an acute myocardial infarction. Int J Cardiol 2016; 220: 809-14. doi: 10.1016/j.ijcard.2016.06.283 PMID: 27394978
  57. Chen WR, Hu SY, Chen YD, et al. Effects of liraglutide on left ventricular function in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am Heart J 2015; 170(5): 845-54. doi: 10.1016/j.ahj.2015.07.014 PMID: 26542491
  58. Chen WR, Chen YD, Tian F, et al. Effects of liraglutide on reperfusion injury in patients with ST-segment–elevation myocardial infarction. Circ Cardiovasc Imaging 2016; 9(12): e005146. doi: 10.1161/CIRCIMAGING.116.005146 PMID: 27940956
  59. Chen WR, Tian F, Chen YD, et al. Effects of liraglutide on no-reflow in patients with acute ST-segment elevation myocardial infarction. Int J Cardiol 2016; 208: 109-14. doi: 10.1016/j.ijcard.2015.12.009 PMID: 26849684
  60. Chen WR, Shen XQ, Zhang Y, et al. Effects of liraglutide on left ventricular function in patients with non-ST-segment elevation myocardial infarction. Endocrine 2016; 52(3): 516-26. doi: 10.1007/s12020-015-0798-0 PMID: 26573925
  61. del Olmo-García MI, Hervás Marín D, Caudet Esteban J, et al. Glycemic variability in type 2 diabetes mellitus and acute coronary syndrome: Liraglutide compared with insulin glargine: A pilot study. J Int Med Res 2020; 48(6): 0300060520926063. doi: 10.1177/0300060520926063 PMID: 32567433
  62. Umpierrez GE, P Kovatchev B. Glycemic variability: How to measure and its clinical implication for type 2 diabetes. Am J Med Sci 2018; 356(6): 518-27. doi: 10.1016/j.amjms.2018.09.010 PMID: 30447705
  63. Kajiwara M, Tanaka A, Kawasaki T, et al. Safety and efficacy of liraglutide treatment in Japanese type 2 diabetes patients after acute myocardial infarction: A non-randomized interventional pilot trial. J Cardiol 2017; 69(3): 511-7. doi: 10.1016/j.jjcc.2016.10.009 PMID: 27894787
  64. Nozue T, Yamada M, Tsunoda T, et al. Effects of liraglutide, a glucagon-like peptide-1 analog, on left ventricular remodeling assessed by cardiac magnetic resonance imaging in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. Heart Vessels 2016; 31(8): 1239-46. doi: 10.1007/s00380-015-0734-5 PMID: 26293570
  65. Lukic N, Macvanin MT, Gluvic Z, et al. SGLT-2 inhibitors: The next-generation treatment for type 2 diabetes mellitus. Curr Med Chem 2023; 31 doi: 10.2174/0109298673251493231011192520 PMID: 37855338
  66. Janez A, Muzurovic E, Stoian AP, et al. Translating results from the cardiovascular outcomes trials with glucagon-like peptide-1 receptor agonists into clinical practice: Recommendations from a Eastern and Southern Europe diabetes expert group. Int J Cardiol 2022; 365: 8-18. doi: 10.1016/j.ijcard.2022.07.017 PMID: 35905827
  67. Rizzo M, Nikolic D, Patti AM, et al. GLP-1 receptor agonists and reduction of cardiometabolic risk: Potential underlying mechanisms. Biochim Biophys Acta Mol Basis Dis 2018; 1864(9): 2814-21. doi: 10.1016/j.bbadis.2018.05.012 PMID: 29778663
  68. Gómez-Peralta F, Abreu C, Rizzo M. GLP-1 receptor agonists and SGLT2 inhibitors: The need to shed light on their safety risks real dimension and possible mechanisms. J Diabetes Complications 2023; 37(8): 108553. doi: 10.1016/j.jdiacomp.2023.108553 PMID: 37385011
  69. Muzurović E, Yumuk VD, Rizzo M. GLP-1 and dual GIP/GLP-1 receptor agonists in overweight/obese patients for atherosclerotic cardiovascular disease prevention: Where are we now? J Diabetes Complications 2023; 37(12): 108647. doi: 10.1016/j.jdiacomp.2023.108647 PMID: 37952274
  70. Sachinidis A, Nikolic D, Stoian AP, et al. Cardiovascular outcomes trials with incretin-based medications: A critical review of data available on GLP-1 receptor agonists and DPP-4 inhibitors. Metabolism 2020; 111: 154343. doi: 10.1016/j.metabol.2020.154343 PMID: 32810485
  71. Damluji AA, Forman DE, Wang TY, et al. Management of acute coronary syndrome in the older adult population: A scientific statement from the American Heart Association. Circulation 2023; 147(3): e32-62. doi: 10.1161/CIR.0000000000001112 PMID: 36503287
  72. Serpytis R, Majauskiene E, Navickas P, et al. Randomized pilot trial on optimal treatment strategy, myocardial changes, and prognosis of patients with myocardial infarction with nonobstructive coronary arteries (MINOCA). Am J Med 2022; 135(1): 103-9. doi: 10.1016/j.amjmed.2021.08.023 PMID: 34562410

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers