Multi-stimuli-responsive Hydrogels for Therapeutic Systems: An Overview on Emerging Materials, Devices, and Drugs


Cite item

Full Text

Abstract

:The rising interest in hydrogels nowadays is due to their usefulness in physiological conditions as multi-stimuli-responsive hydrogels. To reply to the prearranged stimuli, including chemical triggers, light, magnetic field, electric field, ionic strength, temperature, pH, and glucose levels, dual/multi-stimuli-sensitive gels/hydrogels display controllable variations in mechanical characteristics and swelling. Recent attention has focused on injectable hydrogel-based drug delivery systems (DDS) because of its promise to offer regulated, controlled, and targeted medication release to the tumor site. These technologies have great potential to improve treatment outcomes and lessen side effects from prolonged chemotherapy exposure.

About the authors

Hamid Garshasbi

Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST)

Email: info@benthamscience.net

Sina Soleymani

Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST)

Email: info@benthamscience.net

Seyed Naghib

Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST)

Author for correspondence.
Email: info@benthamscience.net

M.R. Mozafari

Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO

Email: info@benthamscience.net

References

  1. Li M, Li W, Guan Q, et al. Sweat-resistant bioelectronic skin sensor. Device 2023; 1(1): 100006.
  2. Li M, Li W, Cai W, et al. A self-healing hydrogel with pressure sensitive photoluminescence for remote force measurement and healing assessment. Mater Horiz 2019; 6(4): 703-10. doi: 10.1039/C8MH01441H
  3. Li W, Liu H, Mi Y, et al. Robust and conductive hydrogel based on mussel adhesive chemistry for remote monitoring of body signals. Friction 2022; 10(1): 80-93. doi: 10.1007/s40544-020-0416-x
  4. Schwartz M. Smart materials. CRC Press 2008. doi: 10.1201/9781420043730
  5. Galaev I, Mattiasson B. Smart polymers: Applications in biotechnology and biomedicine. CRC Press 2007. doi: 10.1201/9781420008623
  6. Sun Z, Song C, Wang C, Hu Y, Wu J. Hydrogel-based controlled drug delivery for cancer treatment: A review. Mol Pharm 2020; 17(2): acs.molpharmaceut.9b01020. doi: 10.1021/acs.molpharmaceut.9b01020 PMID: 31877054
  7. Chopra H, Gandhi S, Gautam RK, Kamal MA. Bacterial nanocellulose based wound dressings: Current and future prospects. Curr Pharm Des 2022; 28(7): 570-80. doi: 10.2174/1381612827666211021162828 PMID: 34674616
  8. Adepu S, Ramakrishna S. Controlled drug delivery systems: Current status and future directions. Molecules 2021; 26(19): 5905. doi: 10.3390/molecules26195905 PMID: 34641447
  9. Zielińska A, Eder P, Rannier L, et al. Hydrogels for modified-release drug delivery systems. Curr Pharm Des 2022; 28(8): 609-18. doi: 10.2174/1381612828666211230114755 PMID: 34967292
  10. Bansal KK, Wilen CE, Rosenholm JM. Synthetic polymers in translational nanomedicine: From concept to prospective products. Curr Pharm Des 2023; 29(29): 2277-80. doi: 10.2174/0113816128276471231010045123 PMID: 37828666
  11. Deng Z, Yu R, Guo B. Stimuli-responsive conductive hydrogels: Design, properties, and applications. Mater Chem Front 2021; 5(5): 2092-123. doi: 10.1039/D0QM00868K
  12. Vianey G-BB, Eli O-GB, Guillermina F-F, Enrique M-A, Alejandra A-C, Laura J-A. Multimeric system of RGD-Grafted PMMA- nanoparticles as a targeted drug-delivery system for paclitaxel. Curr Pharm Des 2017; 23(23): 3415-22. doi: 10.2174/1381612823666170407143525 PMID: 28403791
  13. Saleem Z, Rehman K, Hamid Akash MS. Role of drug delivery system in improving the bioavailability of resveratrol. Curr Pharm Des 2022; 28: 106.
  14. Handa M, Singh A, Flora SJS, Shukla R. Stimuli-responsive polymeric nanosystems for therapeutic applications. Curr Pharm Des 2022; 28(11): 910-21. doi: 10.2174/1381612827666211208150210 PMID: 34879797
  15. Singh R, Jadhav K, Vaghasiya K, Ray E, Shukla R, Verma RK. New generation smart drug delivery systems for rheumatoid arthritis. Curr Pharm Des 2023; 29(13): 984-1001. doi: 10.2174/1381612829666230406102935 PMID: 37038685
  16. Diavati S, Sagris M, Terentes-Printzios D, Vlachopoulos C. Anticoagulation treatment in venous thromboembolism: Options and optimal duration. Curr Pharm Des 2022; 28(4): 296-305. doi: 10.2174/1381612827666211111150705 PMID: 34766887
  17. Patel P, Kumar K, Jain VK, Popli H, Yadav AK, Jain K. Nanotheranostics for diagnosis and treatment of breast cancer. Curr Pharm Des 2023; 29(10): 732-47.
  18. Alshememry AK, El-Tokhy SS, Unsworth LD. Using properties of tumor microenvironments for controlling local, on-demand delivery from biopolymer-based nanocarriers. Curr Pharm Des 2017; 23(35): 5358-91. PMID: 28530543
  19. Girija AR, Balasubramanian S, Cowin AJ. Nanomaterials-based drug delivery approaches for wound healing. Curr Pharm Des 2022; 28(9): 711-26. doi: 10.2174/1381612828666220328121211 PMID: 35345993
  20. El-Husseiny HM, Mady EA, Hamabe L, et al. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Mater Today Bio 2022; 13: 100186. doi: 10.1016/j.mtbio.2021.100186 PMID: 34917924
  21. Parashar P, Kanoujia J, Kishore A. Progress in polymeric micelles as viable wagons for brain targeting. Curr Pharm Des 2023; 29(2): 116-25. doi: 10.2174/1381612829666221223101753 PMID: 36567302
  22. Salatin S, Farhoudi M, Sadigh-Eteghad S, Farjami A. Nanoparticle and stem cell combination therapy for the management of stroke. Curr Pharm Des 2023; 29(1): 15-29. doi: 10.2174/1381612829666221213113119 PMID: 36515043
  23. Goh WX, Kok YY, Wong CY. Comparison of cell-based and nanoparticle-based therapeutics in treating atherosclerosis. Curr Pharm Des 2023; 29(35): 2827-40. doi: 10.2174/0113816128272185231024115046 PMID: 37936453
  24. Severino P, da Silva CF, Andrade LN, de Lima Oliveira D, Campos J, Souto EB. Alginate nanoparticles for drug delivery and targeting. Curr Pharm Des 2019; 25(11): 1312-34. doi: 10.2174/1381612825666190425163424 PMID: 31465282
  25. Aguilar MR, San Román J. Smart polymers and their applications. Woodhead Publishing 2019. doi: 10.1016/B978-0-08-102416-4.00001-6
  26. Xu MM, Liu RJ, Yan Q. Biological stimuli-responsive polymer systems: Design, construction and controlled self-assembly. Chin J Polym Sci 2018; 36(3): 347-65. doi: 10.1007/s10118-018-2080-4
  27. Ghizal R, Fatima GR, Srivastava S. Smart polymers and their applications. Int J Eng Technol Manag Appl Sci 2014; 2: 104-15.
  28. Saravanakumar K, Ali DM, Kathiresan K, Wang MH. Antimicrobial, anticancer drug carrying properties of biopolymers-based nanocomposites- A mini review. Curr Pharm Des 2019; 24(32): 3859-66. doi: 10.2174/1381612825666181120161300 PMID: 30465496
  29. Alimohammadi M, Faramarzi F, Mafi A, et al. Efficacy and safety of atezolizumab monotherapy or combined therapy with chemotherapy in patients with metastatic triple-negative breast cancer: A systematic review and meta-analysis of randomized controlled trials. Curr Pharm Des 2023; 29(31): 2461-76. doi: 10.2174/0113816128270102231016110637 PMID: 37921135
  30. Pandya M, Chatterjee B, Ganti S. Self-emulsifying drug delivery system for oral anticancer therapy: Constraints and recent development. Curr Pharm Des 2022; 28(31): 2538-53. doi: 10.2174/03666220606143443 PMID: 35670356
  31. Katiyar S, Yadav D. Correlation of oxidative stress with melasma: An overview. Curr Pharm Des 2022; 28(3): 225-31. doi: 10.2174/1381612827666211104154928 PMID: 34736377
  32. Prakash Jain J, Yenet Ayen W, Kumar N. Self assembling polymers as polymersomes for drug delivery. Curr Pharm Des 2011; 17(1): 65-79. doi: 10.2174/138161211795049822 PMID: 21342115
  33. Rahimi Mamaghani K, Naghib SM, Zahedi A, Zeinali Kalkhoran AH, Rahmanian M. Fast synthesis of methacrylated graphene oxide: A graphene-functionalised nanostructure. Micro Nano Lett 2018; 13(2): 195-7. doi: 10.1049/mnl.2017.0461
  34. Qureshi D, Nayak SK, Maji S, Anis A, Kim D, Pal K. Environment sensitive hydrogels for drug delivery applications. Eur Polym J 2019; 120: 109220. doi: 10.1016/j.eurpolymj.2019.109220
  35. Akram MU, Abbas N, Farman M, et al. Tumor micro-environment sensitive release of doxorubicin through chitosan based polymeric nanoparticles: An in-vitro study. Chemosphere 2023; 313: 137332. doi: 10.1016/j.chemosphere.2022.137332 PMID: 36427576
  36. Gupta A, Dhiman A, Sood A, Bharadwaj R, Silverman N, Agrawal G. Dextran/eudragit S-100 based redox sensitive nanoparticles for colorectal cancer therapy. Nanoscale 2023; 15(7): 3273-83. doi: 10.1039/D3NR00248A PMID: 36723053
  37. Chaudhuri A, Sandha KK, Agrawal AK, Gupta PN. Introduction to smart polymers and their application. Smart Polymeric Nano- Constructs in Drug Delivery. Academic Press 2023; pp. 1-46. doi: 10.1016/B978-0-323-91248-8.00002-7
  38. Kumar N, Sauraj, Kumar A. 21: Environmentally sensitive nanocomposite hydrogels for biomedical applications. Functional Nanocomposite Hydrogels. Elsevier 2023; pp. 517-40. doi: 10.1016/B978-0-323-99638-9.00021-6
  39. Wang Z, Sun J, Huang X, Lv K, Geng Y. A temperature-sensitive polymer with thinner effect as a rheology modifier in deepwater water-based drilling fluids. J Mol Liq 2024; 393: 123536. doi: 10.1016/j.molliq.2023.123536
  40. Song Z, Hu J, Liu P, Sun Y. Synthesis and performance evaluation of alginate-coated temperature-sensitive polymer gel microspheres. Gels 2023; 9(6): 480. doi: 10.3390/gels9060480 PMID: 37367150
  41. Zhu X, Wang X, Zhou G, et al. Temperature-sensitive polymer-based iron complexes: Construction, characterization and properties in dye degradation by activated H2O2. J Inorg Organomet Polym Mater 2023; 33(10): 3237-46. doi: 10.1007/s10904-023-02752-3
  42. Shen Y, Zhu Y, Gao Z, et al. Nano-SiO2 grafted with temperature-sensitive polymer as plugging agent for water-based drilling fluids. Arab J Sci Eng 2023; 48(7): 9401-11. doi: 10.1007/s13369-022-07486-x
  43. Yu S, Reddy O, Abaci A, et al. Novel BODIPY-based photobase generators for photoinduced polymerization. ACS Appl Mater Interfaces 2023; 15(38): 45281-9. doi: 10.1021/acsami.3c09326 PMID: 37708358
  44. Li J, Zhu Y, Chang L. Study on the preparation and color-changing properties of smart fabric based on temperature-sensitive/light-sensitive dual-response. Mater Res Express 2023; 10(4): 045702. doi: 10.1088/2053-1591/accb2c
  45. Noon A, Hammoud F, Graff B, et al. Photoinitiation mechanisms of novel phenothiazine-based oxime and oxime esters acting as visible light sensitive type I and multicomponent photoinitiators. Adv Mater Technol 2023; 8(16): 2300205. doi: 10.1002/admt.202300205
  46. Jeong BH, Park J, Kim D, Lee J, Jung IH, Park HJ. Visible light-sensitive artificial photonic synapse. Adv Opt Mater 2024; 12(4): 2301652. doi: 10.1002/adom.202301652
  47. Xing J, Yang B, Dang W, Li J, Bai B. Preparation of photo/electro-sensitive hydrogel and its adsorption/desorption behavior to acid fuchsine. Water Air Soil Pollut 2020; 231(5): 231. doi: 10.1007/s11270-020-04582-2
  48. Liao J, Hou B, Huang H. Preparation, properties and drug controlled release of chitin-based hydrogels: An updated review. Carbohydr Polym 2022; 283: 119177. doi: 10.1016/j.carbpol.2022.119177 PMID: 35153022
  49. Shen B, Peng W, Su B, et al. Elastic–electric coefficient-sensitive hydrogel sensors toward sweat detection. Anal Chem 2022; 94(3): 1910-7. doi: 10.1021/acs.analchem.1c05363 PMID: 35006670
  50. Yang Y, He Z, Jiao P, Ren H. Bioinspired soft robotics: How do we learn from creatures? IEEE Rev Biomed Eng 2022. PMID: 36166519
  51. Zhang Z, Wang Y, Zhu X, Li Y, Gu H. Notice of retraction: preparation and electromechanical performance analysis of self-healing electrostrictive polymer. 2020 IEEE 3rd International Conference on Dielectrics (ICD). IEEE, 2020: pp. 321-324.
  52. Song X, Song Y, Cui X, et al. Intrinsic healable mechanochromic materials via incorporation of spiropyran mechanophore into polymer main chain. Polymer 2022; 250: 124878. doi: 10.1016/j.polymer.2022.124878
  53. Zhou Y, Lv W, Peng X, et al. Simulated microgravity attenuates skin wound healing by inhibiting dermal fibroblast migration via F-actin/YAP signaling pathway. J Cell Physiol 2023; 238(12): 2751-64. doi: 10.1002/jcp.31126 PMID: 37795566
  54. Greco F, Mattoli V. Introduction to active smart materials for biomedical applications BT - Piezoelectric nanomaterials for biomedical applications. Springer Berlin Heidelberg, Berlin. Heidelberg 2012; pp. 1-27. doi: 10.1007/978-3-642-28044-3_1
  55. Cabane E, Zhang X, Langowska K, Palivan CG, Meier W. Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases 2012; 7(1): 9. doi: 10.1007/s13758-011-0009-3 PMID: 22589052
  56. Wang D, Jin Y, Zhu X, Yan D. Synthesis and applications of stimuli-responsive hyperbranched polymers. Prog Polym Sci 2017; 64: 114-53. doi: 10.1016/j.progpolymsci.2016.09.005
  57. Schattling P, Jochum FD, Theato P. Multi-stimuli responsive polymers the all-in-one talents. Polym Chem 2014; 5(1): 25-36. doi: 10.1039/C3PY00880K
  58. Thakur VK, Thakur MK. Handbook of polymers for pharmaceutical technologies. Wiley Online Library 2015.
  59. Mahajan A, Aggarwal G. Smart polymers: Innovations in novel drug delivery. Int JDrug Develop Res 2011; 3: 16-30.
  60. Mathew AP, Uthaman S, Cho KH, Cho CS, Park IK. Injectable hydrogels for delivering biotherapeutic molecules. Int J Biol Macromol 2018; 110: 17-29. doi: 10.1016/j.ijbiomac.2017.11.113 PMID: 29169942
  61. Shahid N, Erum A, Hanif S, Malik NS, Tulain UR, Syed MA. Nanocomposite hydrogels-a promising approach towards enhanced bioavailability and controlled drug delivery. Curr Pharm Des 2024; 30(1): 48-62. doi: 10.2174/0113816128283466231219071151 PMID: 38155469
  62. Alka , Verma A, Mishra N, et al. Polymeric gel scaffolds and biomimetic environments for wound healing. Curr Pharm Des 2023; 29(40): 3221-39. doi: 10.2174/1381612829666230816100631 PMID: 37584354
  63. Younas F, Zaman M, Aman W, Farooq U, Raja MAG, Amjad MW. Thiolated polymeric hydrogels for biomedical applications: A review. Curr Pharm Des 2023; 29(40): 3172-86. doi: 10.2174/1381612829666230825100859 PMID: 37622704
  64. Sithole MN, Mndlovu H, du Toit LC, et al. Advances in stimuli-responsive hydrogels for tissue engineering and regenerative medicine applications: A review towards improving structural design for 3D printing. Curr Pharm Des 2023; 29(40): 3187-205. doi: 10.2174/0113816128246888230920060802 PMID: 37779402
  65. Jiang Z, Song Z, Cao C, et al. Multiple natural polymers in drug and gene delivery systems. Curr Med Chem 2024; 31(13): 1691-715. doi: 10.2174/0929867330666230316094540 PMID: 36927424
  66. Deen G, Loh X. Stimuli-responsive cationic hydrogels in drug delivery applications. Gels 2018; 4(1): 13. doi: 10.3390/gels4010013 PMID: 30674789
  67. Marques AC, Costa PJ, Velho S, Amaral MH. Stimuli-responsive hydrogels for intratumoral drug delivery. Drug Discov Today 2021; 26(10): 2397-405. doi: 10.1016/j.drudis.2021.04.012 PMID: 33892147
  68. Pattanashetti NA, Heggannavar GB, Kariduraganavar MY. Smart biopolymers and their biomedical applications. Procedia Manuf 2017; 12: 263-79. doi: 10.1016/j.promfg.2017.08.030
  69. Aguilar MR, Elvira C, Gallardo A, Vazquez B, Román JS. Smart polymers and their applications as biomaterials. Topics Tissue Eng 2007; 3: 1-27.
  70. Hu J, Lu J. Smart polymers for textile applications. Woodhead Publishing 2014; pp. 437-75. doi: 10.1533/9780857097026.2.4377
  71. Wei M, Gao Y, Li X, Serpe MJ. Stimuli-responsive polymers and their applications. Polym Chem 2017; 8(1): 127-43. doi: 10.1039/C6PY01585A
  72. Kasiński A, Zielińska-Pisklak M, Oledzka E, Sobczak M. Smart hydrogels synthetic stimuli-responsive antitumor drug release systems. Int J Nanomed 2020; 15: 4541-72. doi: 10.2147/IJN.S248987 PMID: 32617004
  73. Hong M, Chen EYX. Future directions for sustainable polymers. Trends Chem 2019; 1(2): 148-51. doi: 10.1016/j.trechm.2019.03.004
  74. Namazi H. Polymers in our daily life. Bioimpacts 2017; 7(2): 73-4. doi: 10.15171/bi.2017.09 PMID: 28752070
  75. Chen W, Ma M, Lai Q, Zhang Y, Liu Z. DPP-Cu2+ complexes gated mesoporous silica nanoparticles for ph and redox dual stimuli-responsive drug delivery. Curr Med Chem 2023; 30(28): 3249-60. doi: 10.2174/0929867329666221011110504 PMID: 36221869
  76. Suhail M, Chiu IH, Liu JY, et al. Fabrication and in vitro evaluation of carbopol/polyvinyl alcohol-based ph-sensitive hydrogels for controlled drug delivery. Curr Pharm Des 2023; 29(31): 2489-500. doi: 10.2174/0113816128268132231016061548 PMID: 37881070
  77. Dou J, Yu S, Reddy O, Zhang Y. Novel ABA block copolymers: Preparation, temperature sensitivity, and drug release. RSC Advances 2022; 13(1): 129-39. doi: 10.1039/D2RA05831F PMID: 36605663
  78. Ofridam F, Tarhini M, Lebaz N, Gagnière É, Mangin D, Elaissari A. pH-sensitive polymers: Classification and some fine potential applications. Polym Adv Technol 2021; 32(4): 1455-84. doi: 10.1002/pat.5230
  79. Xie Y, Tuguntaev RG, Mao C, et al. Stimuli-responsive polymeric nanomaterials for rheumatoid arthritis therapy. Biophys Rep 2020; 6(5): 193-210. doi: 10.1007/s41048-020-00117-8 PMID: 37288306
  80. Shymborska Y, Budkowski A, Raczkowska J, et al. Switching it Up: The promise of stimuli-responsive polymer systems in biomedical science. Chem Rec 2024; 24(2): e202300217. doi: 10.1002/tcr.202300217 PMID: 37668274
  81. Song P, Song N, Li L, Wu M, Lu Z, Zhao X. Angiopep-2-modified carboxymethyl chitosan-based pH/reduction dual-stimuli-responsive nanogels for enhanced targeting glioblastoma. Biomacromolecules 2021; 22(7): 2921-34. doi: 10.1021/acs.biomac.1c00314 PMID: 34180218
  82. Laftah WA, Hashim S, Ibrahim AN. Polymer hydrogels: A review. Polym Plast Technol Eng 2011; 50(14): 1475-86. doi: 10.1080/03602559.2011.593082
  83. Nurpeissova ZA, Alimkhanova SG, Mangazbayeva RA, Shaikhutdinov YM, Mun GA, Khutoryanskiy VV. Redox- and glucose-responsive hydrogels from poly(vinyl alcohol) and 4-mercaptophenylboronic acid. Eur Polym J 2015; 69: 132-9. doi: 10.1016/j.eurpolymj.2015.06.003
  84. Ilic-Stojanovic S, Nikolic L, Nikolic V, Petrovic S, Stankovic M, Mladenovic-Ranisavljevic I. Stimuli-sensitive hydrogels for pharmaceutical and medical applications. Facta Universit Series: Phys Chem Technol 2011; 9(1): 37-56. doi: 10.2298/FUPCT1101037I
  85. Ebara M, Kotsuchibashi Y, Narain R, et al. Smart biomaterials. Springer 2014. doi: 10.1007/978-4-431-54400-5
  86. Chaterji S, Kwon IK, Park K. Smart polymeric gels: Redefining the limits of biomedical devices. Prog Polym Sci 2007; 32(8-9): 1083-122. doi: 10.1016/j.progpolymsci.2007.05.018 PMID: 18670584
  87. Gharehdaghi Z, Rahimi R, Naghib SM, Molaabasi F. Cu (II)-porphyrin metal–organic framework/graphene oxide: Synthesis, characterization, and application as a pH-responsive drug carrier for breast cancer treatment. J Biol Inorg Chem 2021; 26(6): 689-704. doi: 10.1007/s00775-021-01887-3 PMID: 34420089
  88. Mazidi Z, Javanmardi S, Naghib SM, Mohammadpour Z. Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials. Chem Eng J 2022; 433: 134569. doi: 10.1016/j.cej.2022.134569
  89. Gooneh-Farahani S, Naghib SM, Naimi-Jamal MR. A novel and inexpensive method based on modified ionic gelation for ph-responsive controlled drug release of homogeneously distributed chitosan nanoparticles with a high encapsulation efficiency. Fibers Polym 2020; 21(9): 1917-26. doi: 10.1007/s12221-020-1095-y
  90. Gooneh-Farahani S, Naimi-Jamal MR, Naghib SM. Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: A review. Expert Opin Drug Deliv 2019; 16(1): 79-99. doi: 10.1080/17425247.2019.1556257 PMID: 30514124
  91. Garshasbi H, Salehi S, Naghib SM, Ghorbanzadeh S, Zhang W. Stimuli-responsive injectable chitosan-based hydrogels for controlled drug delivery systems. Front Bioeng Biotechnol 2023; 10: 1126774. doi: 10.3389/fbioe.2022.1126774 PMID: 36698640
  92. Salehi S, Naghib SM, Garshasbi HR, Ghorbanzadeh S, Zhang W. Smart stimuli-responsive injectable gels and hydrogels for drug delivery and tissue engineering applications: A review. Front Bioeng Biotechnol 2023; 11: 1104126. doi: 10.3389/fbioe.2023.1104126 PMID: 36911200
  93. Knipe JM, Peppas NA. Multi-responsive hydrogels for drug delivery and tissue engineering applications. Regen Biomater 2014; 1(1): 57-65. doi: 10.1093/rb/rbu006 PMID: 26816625
  94. Gonsalves K, Halberstadt C, Laurencin CT, Nair L. Biomedical nanostructures. John Wiley & Sons 2007. doi: 10.1002/9780470185834
  95. Ferreira NN, Ferreira LMB, Cardoso VMO, Boni FI, Souza ALR, Gremião MPD. Recent advances in smart hydrogels for biomedical applications: From self-assembly to functional approaches. Eur Polym J 2018; 99: 117-33. doi: 10.1016/j.eurpolymj.2017.12.004
  96. Kulkarni RV, Biswanath S. Electrically responsive smart hydrogels in drug delivery: A review. J Appl Biomater Biomech 2007; 5(3): 125-39. PMID: 20799182
  97. Uman S, Dhand A, Burdick JA. Recent advances in shear-thinning and self-healing hydrogels for biomedical applications. J Appl Polym Sci 2020; 137(25): 48668. doi: 10.1002/app.48668
  98. Mellati A, Akhtari J. Injectable hydrogels: A review of injectability mechanisms and biomedical applications. Res Mol Med 2019; 6: 1-14. doi: 10.18502/rmm.v6i4.4799
  99. Loebel C, Rodell CB, Chen MH, Burdick JA. Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing. Nat Protoc 2017; 12(8): 1521-41. doi: 10.1038/nprot.2017.053 PMID: 28683063
  100. Le TMD, Jung BK, Li Y, et al. Physically crosslinked injectable hydrogels for long-term delivery of oncolytic adenoviruses for cancer treatment. Biomater Sci 2019; 7(10): 4195-207. doi: 10.1039/C9BM00992B PMID: 31386700
  101. Lee JH. Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomater Res 2018; 22(1): 27. doi: 10.1186/s40824-018-0138-6 PMID: 30275970
  102. Khan S, Minhas M, Aqeel M, et al. RETRACTED: Poly (N-vinylcaprolactam-grafted-sodium alginate) based injectable ph/thermo responsive in situ forming depot hydrogels for prolonged controlled anticancer drug delivery; In vitro, in vivo characterization and toxicity evaluation. Pharmaceutics 2022; 14(5): 1050. doi: 10.3390/pharmaceutics14051050 PMID: 35631636
  103. Adeli F, Abbasi F, Babazadeh M, Davaran S. Thermo/pH dual-responsive micelles based on the host-guest interaction between benzimidazole-terminated graft copolymer and β-cyclodextrin- functionalized star block copolymer for smart drug delivery. J Nanobiotechnology 2022; 20(1): 91. doi: 10.1186/s12951-022-01290-3 PMID: 35193612
  104. Hoang HT, Jo SH, Phan QT, et al. Dual pH-/thermo-responsive chitosan-based hydrogels prepared using "click" chemistry for colon-targeted drug delivery applications. Carbohydr Polym 2021; 260: 117812. doi: 10.1016/j.carbpol.2021.117812 PMID: 33712157
  105. Mdlovu NV, Lin KS, Weng MT, Hsieh CC, Lin YS, Carrera Espinoza MJ. In vitro intracellular studies of pH and thermo-triggered doxorubicin conjugated magnetic SBA-15 mesoporous nanocarriers for anticancer activity against hepatocellular carcinoma. J Ind Eng Chem 2021; 102: 1-16. doi: 10.1016/j.jiec.2021.06.004
  106. Porrang S, Rahemi N, Davaran S, Mahdavi M, Hassanzadeh B. Synthesis of temperature/pH dual-responsive mesoporous silica nanoparticles by surface modification and radical polymerization for anti-cancer drug delivery. Colloids Surf A Physicochem Eng Asp 2021; 623: 126719. doi: 10.1016/j.colsurfa.2021.126719
  107. Howaili F, Özliseli E, Küçüktürkmen B, Razavi SM, Sadeghizadeh M, Rosenholm JM. Stimuli-responsive, plasmonic nanogel for dual delivery of curcumin and photothermal therapy for cancer treatment. Front Chem 2021; 8: 602941. doi: 10.3389/fchem.2020.602941 PMID: 33585400
  108. Zhuang J, Zhou L, Tang W, et al. Tumor targeting antibody-conjugated nanocarrier with pH/thermo dual-responsive macromolecular film layer for enhanced cancer chemotherapy. Mater Sci Eng C 2021; 118: 111361. doi: 10.1016/j.msec.2020.111361 PMID: 33254980
  109. Wang J, Huang N, Peng Q, Cheng X, Li W. Temperature/pH dual-responsive and luminescent drug carrier based on PNIPAM- MAA/lanthanide-polyoxometalates for controlled drug delivery and imaging in HeLa cells. Mater Chem Phys 2020; 239: 121994. doi: 10.1016/j.matchemphys.2019.121994
  110. Lee JS, Nah H, Moon HJ, Lee SJ, Heo DN, Kwon IK. Controllable delivery system: A temperature and pH-responsive injectable hydrogel from succinylated chitosan. Appl Surf Sci 2020; 528: 146812. doi: 10.1016/j.apsusc.2020.146812
  111. Lin X, Ma Q, Su J, et al. Dual-responsive alginate hydrogels for controlled release of therapeutics. Molecules 2019; 24(11): 2089. doi: 10.3390/molecules24112089 PMID: 31159343
  112. Stamou A, Iatrou H, Tsitsilianis C. NIPAm-based modification of poly(L-lysine): A pH-dependent LCST-type thermo-responsive biodegradable polymer. Polymers 2022; 14(4): 802. doi: 10.3390/polym14040802 PMID: 35215715
  113. Fan SY, Hao YN, Zhang WX, et al. Poly (ionic liquid)-gated CuCo2S4 for pH-/thermo-triggered drug release and photoacoustic imaging. ACS Appl Mater Interfaces 2020; 12(8): 9000-7. doi: 10.1021/acsami.9b21292 PMID: 32013385
  114. Maleki R, Afrouzi HH, Hosseini M, Toghraie D, Rostami S. Molecular dynamics simulation of Doxorubicin loading with N-isopropyl acrylamide carbon nanotube in a drug delivery system. Comput Methods Programs Biomed 2020; 184: 105303. doi: 10.1016/j.cmpb.2019.105303 PMID: 31901633
  115. Laurano R, Boffito M, Abrami M, et al. Dual stimuli-responsive polyurethane-based hydrogels as smart drug delivery carriers for the advanced treatment of chronic skin wounds. Bioact Mater 2021; 6(9): 3013-24. doi: 10.1016/j.bioactmat.2021.01.003 PMID: 34258478
  116. King JL, Maturavongsadit P, Hingtgen SD, Benhabbour SR. Injectable pH thermo-responsive hydrogel scaffold for tumoricidal neural stem cell therapy for glioblastoma multiforme. Pharmaceutics 2022; 14(10): 2243. doi: 10.3390/pharmaceutics14102243 PMID: 36297678
  117. Metawea ORM, Abdelmoneem MA, Haiba NS, et al. A novel ‘smart’ PNIPAM-based copolymer for breast cancer targeted therapy: Synthesis, and characterization of dual pH/temperature-responsive lactoferrin-targeted PNIPAM-co-AA. Colloids Surf B Biointerfaces 2021; 202: 111694. doi: 10.1016/j.colsurfb.2021.111694 PMID: 33740633
  118. Boffito M, Torchio A, Tonda-Turo C, et al. Hybrid injectable sol-gel systems based on thermo-sensitive polyurethane hydrogels carrying pH-sensitive mesoporous silica nanoparticles for the controlled and triggered release of therapeutic agents. Front Bioeng Biotechnol 2020; 8: 384. doi: 10.3389/fbioe.2020.00384 PMID: 32509740
  119. Maturavongsadit P, Paravyan G, Shrivastava R, Benhabbour SR. Thermo-/pH-responsive chitosan-cellulose nanocrystals based hydrogel with tunable mechanical properties for tissue regeneration applications. Materialia 2020; 12: 100681. doi: 10.1016/j.mtla.2020.100681
  120. Abdelaty MSA. Poly(N-isopropylacrylamide-co-2-((diethylamino)methyl)-4-methylphenyl acrylate) thermo-ph responsive copolymer: trend in the lower critical solution temperature optimization of Poly (N-isopropyylacrylamide). J Polym Res 2021; 28(6): 213. doi: 10.1007/s10965-021-02574-2
  121. Hu Y, Xiong Y, Tao R, et al. Advances and perspective on animal models and hydrogel biomaterials for diabetic wound healing. Biomat Translat 2022; 3(3): 188-200. doi: 10.12336/biomatertransl.2022.03.003 PMID: 36654776
  122. d’Aquino AI, Maikawa CL, Nguyen LT, et al. Use of a biomimetic hydrogel depot technology for sustained delivery of GLP-1 receptor agonists reduces burden of diabetes management. Cell Rep Med 2023; 4(11): 101292. doi: 10.1016/j.xcrm.2023.101292 PMID: 37992687
  123. Zhou W, Duan Z, Zhao J, Fu R, Zhu C, Fan D. Glucose and MMP-9 dual-responsive hydrogel with temperature sensitive self-adaptive shape and controlled drug release accelerates diabetic wound healing. Bioact Mater 2022; 17: 1-17. doi: 10.1016/j.bioactmat.2022.01.004 PMID: 35386439
  124. Zhu Y, Wang L, Li Y, et al. Injectable pH and redox dual responsive hydrogels based on self-assembled peptides for anti-tumor drug delivery. Biomater Sci 2020; 8(19): 5415-26. doi: 10.1039/D0BM01004A PMID: 32996920
  125. Chatterjee S, Hui PC, Siu WS, et al. Influence of pH-responsive compounds synthesized from chitosan and hyaluronic acid on dual-responsive (pH/temperature) hydrogel drug delivery systems of Cortex Moutan. Int J Biol Macromol 2021; 168: 163-74. doi: 10.1016/j.ijbiomac.2020.12.035 PMID: 33309656
  126. Su X, Luo Y, Tian Z, et al. Ctenophore-inspired hydrogels for efficient and repeatable underwater specific adhesion to biotic surfaces. Mater Horiz 2020; 7(10): 2651-61. doi: 10.1039/D0MH01344G
  127. Chatterjee S, Hui PC, Wat E, Kan C, Leung PC, Wang W. Drug delivery system of dual-responsive PF127 hydrogel with polysaccharide-based nano-conjugate for textile-based transdermal therapy. Carbohydr Polym 2020; 236: 116074. doi: 10.1016/j.carbpol.2020.116074 PMID: 32172887
  128. Han Z, Wang P, Mao G, et al. Dual pH-responsive hydrogel actuator for lipophilic drug delivery. ACS Appl Mater Interfaces 2020; 12(10): 12010-7. doi: 10.1021/acsami.9b21713 PMID: 32053341
  129. Gulfam M, Jo SH, Jo SW, Vu TT, Park SH, Lim KT. Highly porous and injectable hydrogels derived from cartilage acellularized matrix exhibit reduction and NIR light dual-responsive drug release properties for application in antitumor therapy. NPG Asia Mater 2022; 14(1): 8. doi: 10.1038/s41427-021-00354-4
  130. Guo T, Wang W, Song J, Jin Y, Xiao H. Dual-responsive carboxymethyl cellulose/dopamine/cystamine hydrogels driven by dynamic metal-ligand and redox linkages for controllable release of agrochemical. Carbohydr Polym 2021; 253: 117188. doi: 10.1016/j.carbpol.2020.117188 PMID: 33278966
  131. Song F, Gong J, Tao Y, Cheng Y, Lu J, Wang H. A robust regenerated cellulose-based dual stimuli-responsive hydrogel as an intelligent switch for controlled drug delivery. Int J Biol Macromol 2021; 176: 448-58. doi: 10.1016/j.ijbiomac.2021.02.104 PMID: 33607138
  132. Li W, Guan Q, Li M, Saiz E, Hou X. Nature-inspired strategies for the synthesis of hydrogel actuators and their applications. Prog Polym Sci 2023; 140: 101665. doi: 10.1016/j.progpolymsci.2023.101665
  133. Dadfar SMR, Pourmahdian S, Tehranchi MM, Dadfar SM. Novel dual-responsive semi-interpenetrating polymer network hydrogels for controlled release of anticancer drugs. J Biomed Mater Res A 2019; 107(10): 2327-39. doi: 10.1002/jbm.a.36741 PMID: 31161657
  134. Chen Y, Kang S, Yu J, Wang Y, Zhu J, Hu Z. Tough robust dual responsive nanocomposite hydrogel as controlled drug delivery carrier of asprin. J Mech Behav Biomed Mater 2019; 92: 179-87. doi: 10.1016/j.jmbbm.2019.01.017 PMID: 30735979
  135. Khan S, Akhtar N, Minhas MU, Badshah SF. pH/thermo-dual responsive tunable in situ cross-linkable depot injectable hydrogels based on poly(n-isopropylacrylamide)/carboxymethyl chitosan with potential of controlled localized and systemic drug delivery. AAPS PharmSciTech 2019; 20(3): 119. doi: 10.1208/s12249-019-1328-9 PMID: 30790143
  136. Wang F, Zhang Q, Li X, et al. Redox-responsive blend hydrogel films based on carboxymethyl cellulose/chitosan microspheres as dual delivery carrier. Int J Biol Macromol 2019; 134: 413-21. doi: 10.1016/j.ijbiomac.2019.05.049 PMID: 31078600
  137. Szymusiak R. Magnocellular nuclei of the basal forebrain: Substrates of sleep and arousal regulation. Sleep 1995; 18(6): 478-500.
  138. Chen X, Yuan P, Liu Z, Bai Y, Zhou Y. Dual responsive hydrogels based on functionalized mesoporous silica nanoparticles as an injectable platform for tumor therapy and tissue regeneration. J Mater Chem B Mater Biol Med 2017; 5(30): 5968-73. doi: 10.1039/C7TB01225J PMID: 32264353
  139. Pang X, Liang S, Wang T, et al. Engineering thermo-ph dual responsive hydrogel for enhanced tumor accumulation, penetration, and chemo-protein combination therapy. Int J Nanomed 2020; 15: 4739-52. doi: 10.2147/IJN.S253990 PMID: 32753862
  140. Curcio M, Diaz-Gomez L, Cirillo G, Concheiro A, Iemma F, Alvarez-Lorenzo C. pH/redox dual-sensitive dextran nanogels for enhanced intracellular drug delivery. Eur J Pharm Biopharm 2017; 117: 324-32. doi: 10.1016/j.ejpb.2017.05.002 PMID: 28478161
  141. Lin JT, Ye QB, Yang QJ, Wang GH. Hierarchical bioresponsive nanocarriers for codelivery of curcumin and doxorubicin. Colloids Surf B Biointerfaces 2019; 180: 93-101. doi: 10.1016/j.colsurfb.2019.04.023 PMID: 31035057
  142. Kumar P, Behl G, Kaur S, Yadav N, Liu B, Chhikara A. Tumor microenvironment responsive nanogels as a smart triggered release platform for enhanced intracellular delivery of doxorubicin. J Biomater Sci Polym Ed 2021; 32(3): 385-404. doi: 10.1080/09205063.2020.1837504 PMID: 33054642
  143. Peng N, Ding X, Wang Z, et al. Novel dual responsive alginate-based magnetic nanogels for onco-theranostics. Carbohydr Polym 2019; 204: 32-41. doi: 10.1016/j.carbpol.2018.09.084 PMID: 30366540
  144. Salimi F, Dilmaghani KA, Alizadeh E, Akbarzadeh A, Davaran S. Enhancing cisplatin delivery to hepatocellular carcinoma HepG2 cells using dual sensitive smart nanocomposite. Artif Cells Nanomed Biotechnol 2018; 46(5): 949-58. doi: 10.1080/21691401.2017.1349777 PMID: 28687054
  145. Qu Y, Chu B, Wei X, et al. Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for "on-demand" drug delivery. J Control Release 2019; 296: 93-106. doi: 10.1016/j.jconrel.2019.01.016 PMID: 30664976
  146. Zhou T, Li J, Jia X, Zhao X, Liu P. pH/reduction dual-responsive oxidized alginate-doxorubicin (mPEG-OAL-DOX/Cys) prodrug nanohydrogels: Effect of complexation with cyclodextrins. Langmuir 2018; 34(1): 416-24. doi: 10.1021/acs.langmuir.7b03990 PMID: 29237263
  147. Zhang H, Pei M, Liu P. pH-activated surface charge-reversal double-crosslinked hyaluronic acid nanogels with feather keratin as multifunctional crosslinker for tumor-targeting DOX delivery. Int J Biol Macromol 2020; 150: 1104-12. doi: 10.1016/j.ijbiomac.2019.10.116 PMID: 31747574
  148. Xu W, Wang J, Li Q, et al. Cancer cell membrane-coated nanogels as a redox/pH dual-responsive drug carrier for tumor-targeted therapy. J Mater Chem B Mater Biol Med 2021; 9(38): 8031-7. doi: 10.1039/D1TB00788B PMID: 34486010
  149. Qiu Y, Bai J, Feng Y, Shi X, Zhao X. Use of pH-active catechol-bearing polymeric nanogels with glutathione-responsive dissociation to codeliver bortezomib and doxorubicin for the synergistic therapy of cancer. ACS Appl Mater Interfaces 2021; 13(31): 36926-37. doi: 10.1021/acsami.1c10328 PMID: 34319074
  150. Zhang Y, Dosta P, Conde J, Oliva N, Wang M, Artzi N. Prolonged local in vivo delivery of stimuli-responsive nanogels that rapidly release doxorubicin in triple-negative breast cancer cells. Adv Healthc Mater 2020; 9(4): 1901101. doi: 10.1002/adhm.201901101 PMID: 31957227
  151. Wang H, Dai T, Zhou S, et al. Self-assembly assisted fabrication of dextran-based nanohydrogels with reduction-cleavable junctions for applications as efficient drug delivery systems. Sci Rep 2017; 7(1): 40011. doi: 10.1038/srep40011 PMID: 28071743
  152. Indulekha S, Arunkumar P, Bahadur D, Srivastava R. Dual responsive magnetic composite nanogels for thermo-chemotherapy. Colloids Surf B Biointerfaces 2017; 155: 304-13. doi: 10.1016/j.colsurfb.2017.04.035 PMID: 28448900
  153. Najafipour A, Gharieh A, Fassihi A, Sadeghi-Aliabadi H, Mahdavian AR. MTX-loaded dual thermoresponsive and pH-responsive magnetic hydrogel nanocomposite particles for combined controlled drug delivery and hyperthermia therapy of cancer. Mol Pharm 2021; 18(1): 275-84. doi: 10.1021/acs.molpharmaceut.0c00910 PMID: 33300343
  154. Kang JH, Turabee MH, Lee DS, Kwon YJ, Ko YT. Temperature and pH-responsive in situ hydrogels of gelatin derivatives to prevent the reoccurrence of brain tumor. Biomed Pharmacother 2021; 143: 112144. doi: 10.1016/j.biopha.2021.112144 PMID: 34509823
  155. Bardajee GR, Khamooshi N, Nasri S, Vancaeyzeele C. Multi-stimuli responsive nanogel/hydrogel nanocomposites based on κ-carrageenan for prolonged release of levodopa as model drug. Int J Biol Macromol 2020; 153: 180-9. doi: 10.1016/j.ijbiomac.2020.02.329 PMID: 32135252
  156. Yan H, Jiang Q, Wang J, et al. A triple-stimuli responsive supramolecular hydrogel based on methoxy-azobenzene-grafted poly(acrylic acid) and β-cyclodextrin dimer. Polymer 2021; 221: 123617. doi: 10.1016/j.polymer.2021.123617
  157. Zhou Y, Cui Y, Wang L-Q. A Dual-sensitive hydrogel based on poly (lactide-co-glycolide)-polyethylene glycol-poly (lactide-co-glycolide) block copolymers for 3D printing. Int J Bioprint 2021; 7: 22.
  158. Tang L, Huang J, Zhang H, Yang T, Mo Z, Qu J. Multi-stimuli responsive hydrogels with shape memory and self-healing properties for information encryption. Eur Polym J 2020; 140: 110061. doi: 10.1016/j.eurpolymj.2020.110061
  159. Narupai B, Smith PT, Nelson A. 4D printing of multi-stimuli responsive protein-based hydrogels for autonomous shape transformations. Adv Funct Mater 2021; 31(23): 2011012. doi: 10.1002/adfm.202011012
  160. Komatsu S, Tago M, Ando Y, Asoh TA, Kikuchi A. Facile preparation of multi-stimuli-responsive degradable hydrogels for protein loading and release. J Control Release 2021; 331: 1-6. doi: 10.1016/j.jconrel.2021.01.011 PMID: 33434598
  161. Huang Y, Tang Z, Peng S, et al. pH/redox/UV irradiation multi-stimuli responsive nanogels from star copolymer micelles and Fe3+ complexation for "on-demand" anticancer drug delivery. React Funct Polym 2020; 149: 104532. doi: 10.1016/j.reactfunctpolym.2020.104532
  162. Sheng YJ, Chen Y, Qiu JF, Yang X, Zhang RL, Sun YL. Adhesive hydrogels for bioelectronics. Biomed Eng Commun 2023; 2(3): 16. doi: 10.53388/BMEC2023016
  163. Luo CH, Sun XX, Wang F, Wei N, Luo FL. Utilization of L-serinyl derivate to preparing triple stimuli-responsive hydrogels for controlled drug delivery. J Polym Res 2019; 26(12): 280. doi: 10.1007/s10965-019-1976-1
  164. Chen Z, Liu J, Chen Y, Zheng X, Liu H, Li H. Multiple-stimuli-responsive and cellulose conductive ionic hydrogel for smart wearable devices and thermal actuators. ACS Appl Mater Interfaces 2021; 13(1): 1353-66. doi: 10.1021/acsami.0c16719 PMID: 33351585
  165. Cho K, Kang D, Lee H, Koh WG. Multi-stimuli responsive and reversible soft actuator engineered by layered fibrous matrix and hydrogel micropatterns. Chem Eng J 2022; 427: 130879. doi: 10.1016/j.cej.2021.130879
  166. Gull N, Khan SM, Zahid Butt MT, et al. In vitro study of chitosan-based multi-responsive hydrogels as drug release vehicles: A preclinical study. RSC Adv 2019; 9(53): 31078-91. doi: 10.1039/C9RA05025F PMID: 35529386
  167. Chen W, Zhang H, Zhou Q, Zhou F, Zhang Q, Su J. Smart hydrogels for bone reconstruction via modulating the microenvironment. Research 2023; 6: 0089. doi: 10.34133/research.0089 PMID: 36996343

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers