Discovery of an EP300 Inhibitor using Structure-based Virtual Screening and Bioactivity Evaluation


Cite item

Full Text

Abstract

Background:EP300 (E1A binding protein p300) played a significant role in serial diseases such as cancer, neurodegenerative disease. Therefore, it became a significant target.

Methods:Targeting EP300 discovery of a novel drug to alleviate these diseases. In this paper, 17 candidate compounds were obtained using a structure-based virtual screening approach, 4449-0460, with an IC50 of 5.89 ± 2.08 uM, which was identified by the EP300 bioactivity test. 4449-0460 consisted of three rings. The middle benzene ring connected the 5-ethylideneimidazolidine-2,4-dione group and the 3-F-Phenylmethoxy group.

Results:Furthermore, the interaction mechanism between 4449-0460 and EP300 was explored by combining molecular dynamics (MD) simulations and binding free energy calculation methods.

Conclusion:The binding free energy of EP300 with 4449-0460 was -10.93 kcal/mol, and mainly came from the nonpolar energy term (ΔGnonpolar). Pro1074, Phe1075, Val1079, Leu1084, and Val1138 were the key residues in EP300/4449-0460 binding with more -1 kcal/mol energy contribution. 4449-0460 was a promising inhibitor targeting EP300, which had implications for the development of drugs for EP300-related diseases.

About the authors

Dabo Pan

Department of Medical Technology, Qiandongnan Vocational and Technical College for Nationalities

Author for correspondence.
Email: info@benthamscience.net

Yaxuan Huang

Department of Medical Technology, Qiandongnan Vocational and Technical College for Nationalities

Email: info@benthamscience.net

Dewen Jiang

Department of Medical Technology, Qiandongnan Vocational and Technical College for Nationalities

Email: info@benthamscience.net

Yonghao Zhang

Department of Medical Technology, Qiandongnan Vocational and Technical College for Nationalities

Email: info@benthamscience.net

Mingkai Wu

Department of Medical Technology, Qiandongnan Vocational and Technical College for Nationalities

Email: info@benthamscience.net

Minzhen Han

Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Guizhou Medical University,

Author for correspondence.
Email: info@benthamscience.net

Xiaojie Jin

College of Pharmacy, Gansu University of Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

References

  1. Wang F, Marshall CB, Ikura M. Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: Structural and functional versatility in target recognition. Cell Mol Life Sci 2013; 70(21): 3989-4008. doi: 10.1007/s00018-012-1254-4 PMID: 23307074
  2. Breen ME, Mapp AK. Modulating the masters: Chemical tools to dissect CBP and p300 function. Curr Opin Chem Biol 2018; 45: 195-203. doi: 10.1016/j.cbpa.2018.06.005 PMID: 30025258
  3. Chen G, Bao B, Cheng Y, et al. Acetyl-CoA metabolism as a therapeutic target for cancer. Biomed Pharmacother 2023; 168: 115741. doi: 10.1016/j.biopha.2023.115741 PMID: 37864899
  4. Welti J, Sharp A, Brooks N, et al. Targeting the p300/CBP axis in lethal prostate cancer. Cancer Discov 2021; 11(5): 1118-37. doi: 10.1158/2159-8290.CD-20-0751 PMID: 33431496
  5. Jin L, Garcia J, Chan E, et al. Therapeutic targeting of the CBP/p300 bromodomain blocks the growth of castration-resistant prostate cancer. Cancer Res 2017; 77(20): 5564-75. doi: 10.1158/0008-5472.CAN-17-0314 PMID: 28819026
  6. Denny RA, Flick AC, Coe J, et al. Structure-based design of highly selective inhibitors of the CREB binding protein bromodomain. J Med Chem 2017; 60(13): 5349-63. doi: 10.1021/acs.jmedchem.6b01839 PMID: 28375629
  7. Zhu G, Pei L, Li Y. EP300 mutation is associated with tumor mutation burden and promotes antitumor immunity in bladder cancer patients. Int J Appl Mech 2020; 12: 2132-41.
  8. Ring A, Kaur P, Lang JE. EP300 knockdown reduces cancer stem cell phenotype, tumor growth and metastasis in triple negative breast cancer. BMC Cancer 2020; 20(1): 1076. doi: 10.1186/s12885-020-07573-y PMID: 33167919
  9. Kim KB, Kabra A, Kim DW, et al. KIX domain determines a selective tumor-promoting role for EP300 and its vulnerability in small cell lung cancer. Sci Adv 2022; 8(7): eabl4618. doi: 10.1126/sciadv.abl4618 PMID: 35171684
  10. Wimalasena VK, Wang T, Sigua LH, Durbin AD, Qi J. Using chemical epigenetics to target cancer. Mol Cell 2020; 78(6): 1086-95. doi: 10.1016/j.molcel.2020.04.023 PMID: 32407673
  11. Ghosh S, Taylor A, Chin M, et al. Regulatory T cell modulation by CBP/EP300 bromodomain inhibition. J Biol Chem 2016; 291(25): 13014-27. doi: 10.1074/jbc.M115.708560 PMID: 27056325
  12. Dancy BM, Cole PA. Protein lysine acetylation by p300/CBP. Chem Rev 2015; 115(6): 2419-52. doi: 10.1021/cr500452k PMID: 25594381
  13. Plotnikov AN, Yang S, Zhou TJ, Rusinova E, Frasca A, Zhou MM. Structural insights into acetylated-histone H4 recognition by the bromodomain-PHD finger module of human transcriptional coactivator CBP. Structure 2014; 22(2): 353-60. doi: 10.1016/j.str.2013.10.021 PMID: 24361270
  14. Muthengi A, Wimalasena VK, Yosief HO, et al. Development of dimethylisoxazole-attached imidazo1,2-apyridines as potent and selective CBP/P300 inhibitors. J Med Chem 2021; 64(9): 5787-801. doi: 10.1021/acs.jmedchem.0c02232 PMID: 33872011
  15. Ebrahimi A, Sevinç K, Gürhan Sevinç G, et al. Bromodomain inhibition of the coactivators CBP/EP300 facilitate cellular reprogramming. Nat Chem Biol 2019; 15(5): 519-28. doi: 10.1038/s41589-019-0264-z PMID: 30962627
  16. Kandagalla S, Shekarappa SB, Rimac H, Grishina MA, Potemkin VA, Hanumanthappa M. Computational insights into the binding mode of curcumin analogues against EP300 HAT domain as potent acetyltransferase inhibitors. J Mol Graph Model 2020; 101: 107756. doi: 10.1016/j.jmgm.2020.107756 PMID: 32979659
  17. Kanada R, Suzuki T, Murata T, et al. 4-Pyridone-3-carboxylic acid as a benzoic acid bioisostere: Design, synthesis, and evaluation of EP300/CBP histone acetyltransferase inhibitors. Bioorg Med Chem Lett 2021; 51: 128358. doi: 10.1016/j.bmcl.2021.128358 PMID: 34534674
  18. Ibrahim Z, Wang T, Destaing O, et al. Structural insights into p300 regulation and acetylation-dependent genome organisation. Nat Commun 2022; 13(1): 7759. doi: 10.1038/s41467-022-35375-2 PMID: 36522330
  19. Wilson JE, Patel G, Patel C, et al. Discovery of CPI-1612: A potent, selective, and orally bioavailable EP300/CBP histone acetyltransferase inhibitor. ACS Med Chem Lett 2020; 11(6): 1324-9. doi: 10.1021/acsmedchemlett.0c00155 PMID: 32551019
  20. Kanada R, Kagoshima Y, Suzuki T, et al. Discovery of DS-9300: A highly potent, selective, and once-daily oral EP300/CBP histone acetyltransferase inhibitor. J Med Chem 2023; 66(1): 695-715. doi: 10.1021/acs.jmedchem.2c01641 PMID: 36572866
  21. Romero FA, Murray J, Lai KW, et al. GNE-781, A highly advanced potent and selective bromodomain inhibitor of cyclic adenosine monophosphate response element binding protein, binding protein (CBP). J Med Chem 2017; 60(22): 9162-83. doi: 10.1021/acs.jmedchem.7b00796 PMID: 28892380
  22. Hay DA, Fedorov O, Martin S, et al. Discovery and optimization of small-molecule ligands for the CBP/p300 bromodomains. J Am Chem Soc 2014; 136(26): 9308-19. doi: 10.1021/ja412434f PMID: 24946055
  23. Rooney TPC, Filippakopoulos P, Fedorov O, et al. A series of potent CREBBP bromodomain ligands reveals an induced-fit pocket stabilized by a cation-π interaction. Angew Chem Int Ed 2014; 53(24): 6126-30. doi: 10.1002/anie.201402750 PMID: 24821300
  24. Chekler ELP, Pellegrino JA, Lanz TA, et al. Transcriptional profiling of a selective CREB binding protein bromodomain inhibitor highlights therapeutic opportunities. Chem Biol 2015; 22(12): 1588-96. doi: 10.1016/j.chembiol.2015.10.013 PMID: 26670081
  25. Popp TA, Tallant C, Rogers C, et al. Development of selective CBP/P300 benzoxazepine bromodomain inhibitors. J Med Chem 2016; 59(19): 8889-912. doi: 10.1021/acs.jmedchem.6b00774 PMID: 27673482
  26. Taylor AM, Côté A, Hewitt MC, et al. Fragment-based discovery of a selective and cell-active benzodiazepinone CBP/EP300 bromodomain inhibitor (CPI-637). ACS Med Chem Lett 2016; 7(5): 531-6. doi: 10.1021/acsmedchemlett.6b00075 PMID: 27190605
  27. Zou L, Xiang Q, Xue X, et al. Y08197 is a novel and selective CBP/EP300 bromodomain inhibitor for the treatment of prostate cancer. Acta Pharmacol Sin 2019; 40(11): 1436-47. doi: 10.1038/s41401-019-0237-5 PMID: 31097763
  28. Crawford TD, Romero FA, Lai KW, et al. Discovery of a potent and selective in vivo probe (GNE-272) for the bromodomains of CBP/EP300. J Med Chem 2016; 59(23): 10549-63. doi: 10.1021/acs.jmedchem.6b01022 PMID: 27682507
  29. Crawford MC, Tripu DR, Barritt SA, et al. Comparative analysis of drug-like EP300/CREBBP acetyltransferase inhibitors. ACS Chem Biol 2023; 18(10): 2249-58. doi: 10.1021/acschembio.3c00293 PMID: 37737090
  30. Cheng-Sánchez I, Gosselé KA, Palaferri L, Kirillova MS, Nevado C. Discovery and characterization of active CBP/EP300 degraders targeting the HAT domain. ACS Med Chem Lett 2024; 15(3): 355-61. doi: 10.1021/acsmedchemlett.3c00490 PMID: 38505842
  31. Chang Q, Li J, Deng Y, et al. Discovery of novel PROTAC degraders of p300/CBP as potential therapeutics for hepatocellular carcinoma. J Med Chem 2024; 67(4): 2466-86. doi: 10.1021/acs.jmedchem.3c01468 PMID: 38316017
  32. Hu J, Xu H, Wu T, et al. Discovery of highly potent and efficient CBP/p300 degraders with strong in vivo antitumor activity. J Med Chem 2024; 67(9): 6952-86. doi: 10.1021/acs.jmedchem.3c02195 PMID: 38649304
  33. Thomas JE II, Wang M, Jiang W, et al. Discovery of exceptionally potent, selective, and efficacious PROTAC degraders of CBP and p300 proteins. J Med Chem 2023; 66(12): 8178-99. doi: 10.1021/acs.jmedchem.3c00492 PMID: 37276143
  34. Chen Z, Wang M, Wu D, et al. Discovery of CBPD-268 as an exceptionally potent and orally efficacious CBP/p300 PROTAC degrader capable of achieving tumor regression. J Med Chem 2024; 67(7): 5275-304. doi: 10.1021/acs.jmedchem.3c02124 PMID: 38477974
  35. Tian X, Suarez D, Thomson D, et al. Discovery of proline-based p300/CBP inhibitors using DNA-encoded library technology in combination with high-throughput screening. J Med Chem 2022; 65(21): 14391-408. doi: 10.1021/acs.jmedchem.2c00670 PMID: 36302181
  36. Huang L, Li H, Li L, et al. Discovery of pyrrolo3,2-dpyrimidin-4-one derivatives as a new class of potent and cell-active inhibitors of P300/CBP-associated factor bromodomain. J Med Chem 2019; 62(9): 4526-42. doi: 10.1021/acs.jmedchem.9b00096 PMID: 30998845
  37. Chen Z, Wang M, Wu D, et al. Discovery of CBPD-409 as a highly potent, selective, and orally efficacious CBP/p300 PROTAC degrader for the treatment of advanced prostate cancer. J Med Chem 2024; 67(7): 5351-72. doi: 10.1021/acs.jmedchem.3c01789 PMID: 38530938
  38. Hu J, Xu Y. CBP/p300 degrader: A promising therapeutic strategy for treatment of prostate cancer and beyond. J Med Chem 2024; 67(7): 5272-4. doi: 10.1021/acs.jmedchem.4c00502 PMID: 38517344
  39. Ejalonibu MA, Ogundare SA, Elrashedy AA, et al. Drug discovery for Mycobacterium tuberculosis using structure-based computer-aided drug design approach. Int J Mol Sci 2021; 22(24): 13259. doi: 10.3390/ijms222413259 PMID: 34948055
  40. Ece A. Computer-aided drug design. BMC Chem 2023; 17(1): 26. doi: 10.1186/s13065-023-00939-w PMID: 36964610
  41. Manathunga M, Götz AW, Merz KM Jr. Computer-aided drug design, quantum-mechanical methods for biological problems. Curr Opin Struct Biol 2022; 75: 102417. doi: 10.1016/j.sbi.2022.102417 PMID: 35779437
  42. Li P, Niu Y, Li S, et al. Identification of an AXL kinase inhibitor in triple-negative breast cancer by structure-based virtual screening and bioactivity test. Chem Biol Drug Des 2022; 99(2): 222-32. doi: 10.1111/cbdd.13977 PMID: 34679238
  43. Zhu J, Dong J, Batiste L, et al. Binding motifs in the CBP bromodomain: An analysis of 20 crystal structures of complexes with small molecules. ACS Med Chem Lett 2018; 9(9): 929-34. doi: 10.1021/acsmedchemlett.8b00286 PMID: 30258543
  44. Kumari N, Dalal V, Kumar P, Rath SN. Antagonistic interaction between TTA-A2 and paclitaxel for anti-cancer effects by complex formation with T-type calcium channel. J Biomol Struct Dyn 2022; 40(6): 2395-406. doi: 10.1080/07391102.2020.1839558 PMID: 33103598
  45. Zhang J, Zou L, Tang P, Pan D, He Z, Yao D. Design, synthesis and biological evaluation of 1H-pyrazolo 3,4-dpyrimidine derivatives as PAK1 inhibitors that trigger apoptosis, ER stress and anti-migration effect in MDA-MB-231 cells. Eur J Med Chem 2020; 194: 112220. doi: 10.1016/j.ejmech.2020.112220 PMID: 32222676
  46. Yao D, Zhang J, Wang J, Pan D, He Z. Discovery of novel ATAD2 bromodomain inhibitors that trigger apoptosis and autophagy in breast cells by structure-based virtual screening. J Enzyme Inhib Med Chem 2020; 35(1): 713-25. doi: 10.1080/14756366.2020.1740924 PMID: 32174193
  47. Xiang H, Chen Y, Zhang J, et al. Discovery of a novel sodium taurocholate cotransporting polypeptide (NTCP) inhibitor: Design, synthesis, and anti-proliferative activities. Chin Chem Lett 2020; 31(6): 1422-6. doi: 10.1016/j.cclet.2020.03.017
  48. Han JT, Zhu Y, Pan DB, et al. Discovery of pentapeptide-inhibitor hits targeting FKBP51 by combining computational modeling and X-ray crystallography. Comput Struct Biotechnol J 2021; 19: 4079-91. doi: 10.1016/j.csbj.2021.07.015 PMID: 34401048
  49. Eid AM, Natsheh H, Issa L, et al. Capsicum annuum oleoresin nanoemulgel - design characterization and in vitro investigation of anticancer and antimicrobial activities. Curr Pharm Des 2024; 30(2): 151-60. doi: 10.2174/0113816128283684231220062019 PMID: 38532324
  50. Garaev TM, Grebennikova TV, Lebedeva VV, Avdeeva VV, Larichev VF. Compounds based on adamantyl-substituted amino acids and peptides as potential antiviral drugs acting as viroporin inhibitors. Curr Pharm Des 2024; 30(12): 912-20. doi: 10.2174/0113816128286111240229074810 PMID: 38482627
  51. Çomaklı V, Aygül İ, Sağlamtaş R, et al. Assessment of anticholinergic and antidiabetic properties of some natural and synthetic molecules: An in vitro and in silico approach. Curr Computeraided Drug Des 2024; 20(5): 441-51. doi: 10.2174/1573409919666230518151414
  52. Tan S, Gong X, Liu H, Yao X. Virtual screening and biological activity evaluation of new potent inhibitors targeting LRRK2 kinase domain. ACS Chem Neurosci 2021; 12(17): 3214-24. doi: 10.1021/acschemneuro.1c00399 PMID: 34387082
  53. Shahab M, Zheng G, Alshabrmi FM, Bourhia M, Wondmie GF, Mohammad Salamatullah A. Exploring potent aldose reductase inhibitors for anti-diabetic (anti-hyperglycemic) therapy: Integrating structure-based drug design, and MMGBSA approaches. Front Mol Biosci 2023; 10: 1271569. doi: 10.3389/fmolb.2023.1271569 PMID: 38053577
  54. Schrödinger Release 2017-4: LigPrep. New York: Schrödinger 2020.
  55. Hügle M, Lucas X, Ostrovskyi D, et al. Beyond the BET family: Targeting CBP/p300 with 4-acyl pyrroles. Angew Chem Int Ed 2017; 56(41): 12476-80. doi: 10.1002/anie.201705516 PMID: 28766825
  56. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 2001; 105(28): 6474-87. doi: 10.1021/jp003919d
  57. Zhong H, Wang Z, Wang X, et al. Importance of a crystalline water network in docking-based virtual screening: A case study of BRD4. Phys Chem Chem Phys 2019; 21(45): 25276-89. doi: 10.1039/C9CP04290C PMID: 31701109
  58. Zhong H, Wang X, Chen S, et al. Discovery of novel inhibitors of BRD4 for treating prostate cancer: A comprehensive case study for considering water networks in virtual screening and drug design. J Med Chem 2024; 67(1): 138-51. doi: 10.1021/acs.jmedchem.3c00996 PMID: 38153295
  59. Epik, version 20. New York, NY: Schrödinger, LLC 2017.
  60. Kumari R, Dalal V. Identification of potential inhibitors for LLM of Staphylococcus aureus: Structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies. J Biomol Struct Dyn 2022; 40(20): 9833-47. doi: 10.1080/07391102.2021.1936179 PMID: 34096457
  61. Kumari R, Rathi R, Pathak SR, Dalal V. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus. J Mol Struct 2022; 1255: 132476. doi: 10.1016/j.molstruc.2022.132476
  62. Release S. 2017-3: Canvas, S, LLC, New York, NY, 2020 Schrödinger Release 2017-3. New York, NY: Canvas, Schrödinger, LLC 2020.
  63. Bayly CI, Cieplak P, Cornell W, Kollman PA. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J Phys Chem 1993; 97(40): 10269-80. doi: 10.1021/j100142a004
  64. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem 2004; 25(9): 1157-74. doi: 10.1002/jcc.20035 PMID: 15116359
  65. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 2015; 11(8): 3696-713. doi: 10.1021/acs.jctc.5b00255 PMID: 26574453
  66. Salomon-Ferrer R, Case DA, Walker RC. An overview of the Amber biomolecular simulation package. Wiley Interdiscip Rev Comput Mol Sci 2013; 3(2): 198-210. doi: 10.1002/wcms.1121
  67. Dalal V, Kumar P, Rakhaminov G, et al. Repurposing an ancient protein core structure: Structural studies on FmtA, a novel esterase of Staphylococcus aureus. J Mol Biol 2019; 431(17): 3107-23. doi: 10.1016/j.jmb.2019.06.019 PMID: 31260692
  68. Dalal V, Golemi-Kotra D, Kumar P. Quantum mechanics/molecular mechanics studies on the catalytic mechanism of a novel esterase (FmtA) of Staphylococcus aureus. J Chem Inf Model 2022; 62(10): 2409-20. doi: 10.1021/acs.jcim.2c00057 PMID: 35475370
  69. Wang J, Hou T. Correction to application of molecular dynamics simulations in molecular property prediction. 1. Density and heat of vaporization. J Chem Theory Comput 2011; 7(7): 2333-33. doi: 10.1021/ct2004287 PMID: 26606501
  70. Pan D, Sun H, Shen Y, Liu H, Yao X. Exploring the molecular basis of dsRNA recognition by NS1 protein of influenza A virus using molecular dynamics simulation and free energy calculation. Antiviral Res 2011; 92(3): 424-33. doi: 10.1016/j.antiviral.2011.09.009 PMID: 22001595
  71. Miller BR III, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE. MMPBSA.py: An efficient program for end-state free energy calculations. J Chem Theory Comput 2012; 8(9): 3314-21. doi: 10.1021/ct300418h PMID: 26605738
  72. Hou T, Yu R. Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: Mechanism for binding and drug resistance. J Med Chem 2007; 50(6): 1177-88. doi: 10.1021/jm0609162 PMID: 17300185
  73. Hou T, Wang J, Li Y, Wang W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 2011; 51(1): 69-82. doi: 10.1021/ci100275a PMID: 21117705
  74. Fu L, Shi S, Yi J, et al. ADMETlab 3.0: An updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res 2024; gkae236. doi: 10.1093/nar/gkae236 PMID: 38572755
  75. Xiong G, Wu Z, Yi J, et al. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 2021; 49(W1): W5-W14. doi: 10.1093/nar/gkab255 PMID: 33893803
  76. Hou T, Wang J, Zhang W, Xu X. ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification. J Chem Inf Model 2007; 47(1): 208-18. doi: 10.1021/ci600343x PMID: 17238266

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers