Construction, Features and Regulatory Aspects of Organ-chip for Drug Delivery Applications: Advances and Prospective


Cite item

Full Text

Abstract

:Organ-on-chip is an innovative technique that emerged from tissue engineering and microfluidic technologies. Organ-on-chip devices (OoCs) are anticipated to provide efficient explanations for dealing with challenges in pharmaceutical advancement and individualized illness therapies. Organ-on-chip is an advanced method that can replicate human organs' physiological conditions and functions on a small chip. It possesses the capacity to greatly transform the drug development process by enabling the simulation of diseases and the testing of drugs. Effective integration of this advanced technical platform with common pharmaceutical and medical contexts is still a challenge. Microfluidic technology, a micro-level technique, has become a potent tool for biomedical engineering research. As a result, it has revolutionized disciplines, including physiological material interpreting, compound detection, cell-based assay, tissue engineering, biological diagnostics, and pharmaceutical identification. This article aims to offer an overview of newly developed organ-on-a-chip systems. It includes single-organ platforms, emphasizing the most researched organs, including the heart, liver, blood arteries, and lungs. Subsequently, it provides a concise overview of tumor-on-a-chip systems and emphasizes their use in evaluating anti-cancer medications.

About the authors

Babita Gupta

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Email: info@benthamscience.net

Rishabha Malviya

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Author for correspondence.
Email: info@benthamscience.net

Saurabh Srivastava

School of Pharmacy, KPJ Healthcare University College (KPJUC)

Author for correspondence.
Email: info@benthamscience.net

Irfan Ahmad

Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University

Email: info@benthamscience.net

Safia Rab

Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University

Email: info@benthamscience.net

Prerna Uniyal

School of Pharmacy, Graphic Era Hill University

Email: info@benthamscience.net

References

  1. Migliozzi D, Cornaglia M, Mouchiroud L, et al. Multimodal imaging and high-throughput image-processing for drug screening on living organisms on-chip. J Biomed Opt 2018; 24(2): 1-9. doi: 10.1117/1.JBO.24.2.021205 PMID: 30484295
  2. Reardon S. ‘Organs-on-chips’ go mainstream. Nature 2015; 523(7560): 266. doi: 10.1038/523266a PMID: 26178942
  3. Jeon JS, Bersini S, Gilardi M, et al. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc Natl Acad Sci 2015; 112(1): 214-9. doi: 10.1073/pnas.1417115112 PMID: 25524628
  4. Adler M, Ramm S, Hafner M, et al. A quantitative approach to screen for nephrotoxic compounds in vitro. J Am Soc Nephrol 2016; 27(4): 1015-28. doi: 10.1681/ASN.2015010060 PMID: 26260164
  5. Oleaga C, Bernabini C, Smith AST, et al. Multi-Organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep 2016; 6(1): 20030. doi: 10.1038/srep20030 PMID: 26837601
  6. Maschmeyer I, Lorenz AK, Schimek K, et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 2015; 15(12): 2688-99. doi: 10.1039/C5LC00392J PMID: 25996126
  7. Zhang YS, Aleman J, Shin SR, et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci 2017; 114(12): E2293-302. doi: 10.1073/pnas.1612906114 PMID: 28265064
  8. Karagiannis P, Yamanaka S. The fate of cell reprogramming. Nat Methods 2014; 11(10): 1006-8. doi: 10.1038/nmeth.3109 PMID: 25264776
  9. Huh D, Ingber DE. Microfluidic drug screening chip. Nat Protoc 2011; 6(12): 1751-64.
  10. Zhang B, Radisic M. Organ-on-a-chip devices advance to market. Lab Chip 2017; 17(14): 2395-420. doi: 10.1039/C6LC01554A PMID: 28617487
  11. Cook D, Brown D, Alexander R, et al. Lessons learned from the fate of AstraZeneca’s drug pipeline: A five-dimensional framework. Nat Rev Drug Discov 2014; 13(6): 419-31. doi: 10.1038/nrd4309 PMID: 24833294
  12. Day CP, Merlino G, Van Dyke T. Preclinical mouse cancer models: A maze of opportunities and challenges. Cell 2015; 163(1): 39-53. doi: 10.1016/j.cell.2015.08.068 PMID: 26406370
  13. Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach? JACC Basic Transl Sci 2019; 4(7): 845-54. doi: 10.1016/j.jacbts.2019.10.008 PMID: 31998852
  14. Franzen N, van Harten WH, Retèl VP, Loskill P, van den Eijnden- van Raaij J, IJzerman M. Impact of organ-on-a-chip technology on pharmaceutical R&D costs. Drug Discov Today 2019; 24(9): 1720-4. doi: 10.1016/j.drudis.2019.06.003 PMID: 31185290
  15. Zhang B, Korolj A, Lai BFL, Radisic M. Advances in organ-on-a-chip engineering. Nat Rev Mater 2018; 3(8): 257-78. doi: 10.1038/s41578-018-0034-7
  16. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM. Rapid prototyping of microfluidic systems in poly(dimethyl siloxane). Anal Chem 1998; 70(23): 4974-84. doi: 10.1021/ac980656z PMID: 21644679
  17. Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol 2014; 32(8): 760-72. doi: 10.1038/nbt.2989 PMID: 25093883
  18. Ma C, Tian C, Zhao L, Wang J. Pneumatic-aided micro-molding for flexible fabrication of homogeneous and heterogeneous cell-laden microgels. Lab Chip 2016; 16(14): 2609-17. doi: 10.1039/C6LC00540C PMID: 27229899
  19. Mu X, Zheng W, Xiao L, Zhang W, Jiang X. Engineering a 3D vascular network in hydrogel for mimicking a nephron. Lab Chip 2013; 13(8): 1612-8. doi: 10.1039/c3lc41342j PMID: 23455642
  20. Jang KJ, Suh KY. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 2010; 10(1): 36-42. doi: 10.1039/B907515A PMID: 20024048
  21. Ingber DE. Reverse engineering human pathophysiology with organs-on-chips. Cell 2016; 164(6): 1105-9. doi: 10.1016/j.cell.2016.02.049 PMID: 26967278
  22. Xiao S, Coppeta JR, Rogers HB, et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat Commun 2017; 8(1): 14584. doi: 10.1038/ncomms14584 PMID: 28350383
  23. Benam KH, Novak R, Nawroth J, et al. Matched-comparative modeling of normal and diseased human airway responses using a microengineered breathing lung chip. Cell Syst 2016; 3(5): 456-466.e4. doi: 10.1016/j.cels.2016.10.003 PMID: 27894999
  24. Villenave R, Wales SQ, Hamkins-Indik T, et al. Human gut-on-a-chip supports polarized infection of coxsackie B1 virus in vitro. PLoS One 2017; 12(2): e0169412. doi: 10.1371/journal.pone.0169412 PMID: 28146569
  25. Kim HJ, Li H, Collins JJ, Ingber DE. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci 2016; 113(1): E7-E15. doi: 10.1073/pnas.1522193112 PMID: 26668389
  26. Blundell C, Tess ER, Schanzer ASR, et al. A microphysiological model of the human placental barrier. Lab Chip 2016; 16(16): 3065-73. doi: 10.1039/C6LC00259E PMID: 27229450
  27. Choi Y, Hyun E, Seo J, et al. A microengineered pathophysiological model of early-stage breast cancer. Lab Chip 2015; 15(16): 3350-7. doi: 10.1039/C5LC00514K PMID: 26158500
  28. Zhang B, Montgomery M, Chamberlain MD, et al. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat Mater 2016; 15(6): 669-78. doi: 10.1038/nmat4570 PMID: 26950595
  29. Banik S, Uchil A, Kalsang T, et al. The revolution of PDMS microfluidics in cellular biology. Crit Rev Biotechnol 2023; 43(3): 465-83. doi: 10.1080/07388551.2022.2034733 PMID: 35410564
  30. Verpoorte E, De Rooij NF. Microfluidics meets MEMS. Proc IEEE 2003; 91(6): 930-53. doi: 10.1109/JPROC.2003.813570
  31. Ahmed I, Iqbal HMN, Akram Z. Microfluidics engineering: Recent trends, valorization, and applications. Arab J Sci Eng 2018; 43(1): 23-32. doi: 10.1007/s13369-017-2662-4
  32. Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R. Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications. Chem Soc Rev 2010; 39(3): 1153-82. doi: 10.1039/b820557b PMID: 20179830
  33. Ho CMB, Ng SH, Li KHH, Yoon YJ. 3D printed microfluidics for biological applications. Lab Chip 2015; 15(18): 3627-37. doi: 10.1039/C5LC00685F PMID: 26237523
  34. Tsao CW. Polymer microfluidics: Simple, low-cost fabrication process bridging academic lab research to commercialized production. Micromachines 2016; 7(12): 225. doi: 10.3390/mi7120225 PMID: 30404397
  35. Edington CD, Chen WLK, Geishecker E, et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci Rep 2018; 8(1): 4530. doi: 10.1038/s41598-018-22749-0 PMID: 29540740
  36. Becker H, Locascio LE. Polymer microfluidic devices. Talanta 2002; 56(2): 267-87. doi: 10.1016/S0039-9140(01)00594-X PMID: 18968500
  37. Kim S, Kim R, Song J, Yoon J, Park HG. Fully automated multiple standard addition on a centrifugal microfluidic system. Anal Chem 2023; 95(48): 17629-36. doi: 10.1021/acs.analchem.3c03313 PMID: 37976500
  38. Yi H, Wu LQ, Ghodssi R, Rubloff GW, Payne GF, Bentley WE. Signal-directed sequential assembly of biomolecules on patterned surfaces. Langmuir 2005; 21(6): 2104-7. doi: 10.1021/la047529k PMID: 15751993
  39. Shi Y, Ye P, Yang K, et al. Application of centrifugal microfluidics in immunoassay, biochemical analysis and molecular diagnosis. Analyst 2021; 146(19): 5800-21. doi: 10.1039/D1AN00629K PMID: 34570846
  40. Ling Y, Rubin J, Deng Y, et al. A cell-laden microfluidic hydrogel. Lab Chip 2007; 7(6): 756-62. doi: 10.1039/b615486g PMID: 17538718
  41. Grover WH, von Muhlen MG, Manalis SR. Teflon films for chemically-inert microfluidic valves and pumps. Lab Chip 2008; 8(6): 913-8. doi: 10.1039/b800600h PMID: 18497911
  42. Chudobova D, Cihalova K, Skalickova S, et al. 3D-printed chip for detection of methicillin-resistant Staphylococcus aureus labeled with gold nanoparticles. Electrophoresis 2015; 36(3): 457-66. doi: 10.1002/elps.201400321 PMID: 25069433
  43. Zhu F, Macdonald NP, Cooper JM, Wlodkowic D. Additive manufacturing of lab-on-a-chip devices: Promises and challenges. International Society for Optics and Photonics Melbourne 2013; 8923: 892344.
  44. King PH, Jones G, Morgan H, de Planque MRR, Zauner KP. Interdroplet bilayer arrays in millifluidic droplet traps from 3D-printed moulds. Lab Chip 2014; 14(4): 722-9. doi: 10.1039/C3LC51072G PMID: 24336841
  45. Natu R, Herbertson L, Sena G, Strachan K, Guha S. A systematic analysis of recent technology trends of microfluidic medical devices in the United States. Micromachines 2023; 14(7): 1293. doi: 10.3390/mi14071293 PMID: 37512604
  46. Plegue TJ, Kovach KM, Thompson AJ, Potkay JA. Stability of polyethylene glycol and zwitterionic surface modifications in PDMS microfluidic flow chambers. Langmuir 2018; 34(1): 492-502. doi: 10.1021/acs.langmuir.7b03095 PMID: 29231737
  47. Cherpinski A, Torres-Giner S, Vartiainen J, Peresin MS, Lahtinen P, Lagaron JM. Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose 2018; 25(2): 1291-307. doi: 10.1007/s10570-018-1648-z
  48. Mogosanu DE, Verplancke R, Dubruel P, Vanfleteren J. Fabrication of 3-dimensional biodegradable microfluidic environments for tissue engineering applications. Mater Des 2016; 89: 1315-24. doi: 10.1016/j.matdes.2015.10.046
  49. Roy E, Geissler M, Galas JC, Veres T. Prototyping of microfluidic systems using a commercial thermoplastic elastomer. Microfluid Nanofluidics 2011; 11(3): 235-44. doi: 10.1007/s10404-011-0789-2
  50. Stucki AO, Stucki JD, Hall SRR, et al. A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip 2015; 15(5): 1302-10. doi: 10.1039/C4LC01252F PMID: 25521475
  51. Glieberman AL, Pope BD, Zimmerman JF, et al. Synchronized stimulation and continuous insulin sensing in a microfluidic human Islet on a chip designed for scalable manufacturing. Lab Chip 2019; 19(18): 2993-3010. doi: 10.1039/C9LC00253G PMID: 31464325
  52. Ugolini GS, Visone R, Cruz-Moreira D, Mainardi A, Rasponi M. Generation of functional cardiac microtissues in a beating heart-on-a-chip. Methods Cell Biol 2018; 146: 69-84. doi: 10.1016/bs.mcb.2018.05.005 PMID: 30037467
  53. Poceviciute R, Ismagilov RF. Human-gut-microbiome on a chip. Nat Biomed Eng 2019; 3(7): 500-1. doi: 10.1038/s41551-019-0425-0 PMID: 31278388
  54. Koo Y, Hawkins BT, Yun Y. Three-dimensional (3D) tetra-culture brain on chip platform for organophosphate toxicity screening. Sci Rep 2018; 8(1): 2841. doi: 10.1038/s41598-018-20876-2 PMID: 29434277
  55. Pires de Mello CP, Carmona-Moran C, McAleer CW, et al. Microphysiological heart–liver body-on-a-chip system with a skin mimic for evaluating topical drug delivery. Lab Chip 2020; 20(4): 749-59. doi: 10.1039/C9LC00861F PMID: 31970354
  56. Miller PG, Shuler ML. Design and demonstration of a pumpless 14 compartment microphysiological system. Biotechnol Bioeng 2016; 113(10): 2213-27. doi: 10.1002/bit.25989 PMID: 27070809
  57. Livingston CA, Fabre KM, Tagle DA. Facilitating the commercialization and use of organ platforms generated by the microphysiological systems (Tissue Chip) program through public–private partnerships. Comput Struct Biotechnol J 2016; 14: 207-10. doi: 10.1016/j.csbj.2016.04.003 PMID: 27904714
  58. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science 2010; 328(5986): 1662-8. doi: 10.1126/science.1188302 PMID: 20576885
  59. Humayun M, Chow CW, Young EWK. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions. Lab Chip 2018; 18(9): 1298-309. doi: 10.1039/C7LC01357D PMID: 29651473
  60. Bai H, Ingber DE. What can an organ-on-a-chip teach us about human lung pathophysiology? Physiology 2022; 37(5): 242-52. doi: 10.1152/physiol.00012.2022 PMID: 35658627
  61. Lee SA, No DY, Kang E, Ju J, Kim DS, Lee SH. Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte–hepatic stellate cell interactions and flow effects. Lab Chip 2013; 13(18): 3529-37. doi: 10.1039/c3lc50197c PMID: 23657720
  62. Bavli D, Prill S, Ezra E, et al. Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction. Proc Natl Acad Sci 2016; 113(16): E2231-40. doi: 10.1073/pnas.1522556113 PMID: 27044092
  63. Delalat B, Cozzi C, Rasi Ghaemi S, et al. Microengineered bioartificial liver chip for drug toxicity screening. Adv Funct Mater 2018; 28(28): 1801825. doi: 10.1002/adfm.201801825
  64. Dal Pan GJ. Ongoing challenges in pharmacovigilance. Drug Saf 2014; 37(1): 1-8. doi: 10.1007/s40264-013-0123-x
  65. Khetani SR, Kanchagar C, Ukairo O, et al. Use of micropatterned cocultures to detect compounds that cause drug-induced liver injury in humans. toxicolog sci 2013; 132(1): 107-17.
  66. Chung K, Kim Y, Kanodia JS, Gong E, Shvartsman SY, Lu H. A microfluidic array for large-scale ordering and orientation of embryos. Nat Methods 2011; 8(2): 171-6. doi: 10.1038/nmeth.1548 PMID: 21186361
  67. Jaeschke H, Adelusi OB, Akakpo JY, et al. Recommendations for the use of the acetaminophen hepatotoxicity model for mechanistic studies and how to avoid common pitfalls. Acta Pharm Sin B 2021; 11(12): 3740-55. doi: 10.1016/j.apsb.2021.09.023 PMID: 35024303
  68. Wilmer MJ, Ng CP, Lanz HL, Vulto P, Suter-Dick L, Masereeuw R. Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends Biotechnol 2016; 34(2): 156-70. doi: 10.1016/j.tibtech.2015.11.001 PMID: 26708346
  69. Kim HJ, Ingber DE. Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol 2013; 5(9): 1130-40. doi: 10.1039/c3ib40126j PMID: 23817533
  70. Singh VK, Romaine PLP, Newman VL. Biologics as countermeasures for acute radiation syndrome: Where are we now? Expert Opin Biol Ther 2015; 15(4): 465-71. doi: 10.1517/14712598.2015.986453 PMID: 25416452
  71. Wikswo ME, Khetsuriani N, Fowlkes AL, et al. Increased activity of Coxsackievirus B1 strains associated with severe disease among young infants in the United States, 2007-2008. Clin Infect Dis 2009; 49(5): e44-51. doi: 10.1086/605090 PMID: 19622041
  72. Jastrzebska E, Tomecka E, Jesion I. Heart-on-a-chip based on stem cell biology. Biosens Bioelectron 2016; 75: 67-81. doi: 10.1016/j.bios.2015.08.012 PMID: 26298640
  73. Marsano A, Conficconi C, Lemme M, et al. Beating heart on a chip: A novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip 2016; 16(3): 599-610. doi: 10.1039/C5LC01356A PMID: 26758922
  74. Ahn S, Ardoña HAM, Lind JU, et al. Mussel-inspired 3D fiber scaffolds for heart-on-a-chip toxicity studies of engineered nanomaterials. Anal Bioanal Chem 2018; 410(24): 6141-54. doi: 10.1007/s00216-018-1106-7 PMID: 29744562
  75. Kattman SJ, Witty AD, Gagliardi M, et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 2011; 8(2): 228-40. doi: 10.1016/j.stem.2010.12.008 PMID: 21295278
  76. Park J, Lee BK, Jeong GS, Hyun JK, Lee CJ, Lee SH. Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of Alzheimer’s disease. Lab Chip 2015; 15(1): 141-50. doi: 10.1039/C4LC00962B PMID: 25317977
  77. Kilic O, Pamies D, Lavell E, et al. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. Lab Chip 2016; 16(21): 4152-62. doi: 10.1039/C6LC00946H PMID: 27722368
  78. Dauth S, Maoz BM, Sheehy SP, et al. Neurons derived from different brain regions are inherently different in vitro: A novel multiregional brain-on-a-chip. J Neurophysiol 2017; 117(3): 1320-41. doi: 10.1152/jn.00575.2016 PMID: 28031399
  79. Luni C, Serena E, Elvassore N. Human-on-chip for therapy development and fundamental science. Curr Opin Biotechnol 2014; 25: 45-50. doi: 10.1016/j.copbio.2013.08.015 PMID: 24484880
  80. Weibel D, Whitesides G. Applications of microfluidics in chemical biology. Curr Opin Chem Biol 2006; 10(6): 584-91. doi: 10.1016/j.cbpa.2006.10.016 PMID: 17056296
  81. Ingber DE. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat Rev Genet 2022; 23(8): 467-91. doi: 10.1038/s41576-022-00466-9 PMID: 35338360
  82. van den Berg A, Mummery CL, Passier R, van der Meer AD. Personalised organs-on-chips: Functional testing for precision medicine. Lab Chip 2019; 19(2): 198-205. doi: 10.1039/C8LC00827B PMID: 30506070
  83. Song JW, Cavnar SP, Walker AC, et al. Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS One 2009; 4(6): e5756. doi: 10.1371/journal.pone.0005756 PMID: 19484126
  84. Businaro L, De Ninno A, Schiavoni G, et al. Cross talk between cancer and immune cells: Exploring complex dynamics in a microfluidic environment. Lab Chip 2013; 13(2): 229-39. doi: 10.1039/C2LC40887B PMID: 23108434
  85. Vidi PA, Maleki T, Ochoa M, et al. Disease-on-a-chip: Mimicry of tumor growth in mammary ducts. Lab Chip 2014; 14(1): 172-7. doi: 10.1039/C3LC50819F PMID: 24202525
  86. Torisawa Y, Spina CS, Mammoto T, et al. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat Methods 2014; 11(6): 663-9. doi: 10.1038/nmeth.2938 PMID: 24793454
  87. Choucha Snouber L, Bunescu A, Naudot M, et al. Metabolomics- on-a-chip of hepatotoxicity induced by anticancer drug flutamide and Its active metabolite hydroxyflutamide using HepG2/C3a microfluidic biochips. Toxicol Sci 2013; 132(1): 8-20. doi: 10.1093/toxsci/kfs230 PMID: 22843567
  88. McAleer CW, Long CJ, Elbrecht D, et al. Multi-organ system for the evaluation of efficacy and off-target toxicity of anticancer therapeutics. Sci Transl Med 2019; 11(497): eaav1386. doi: 10.1126/scitranslmed.aav1386 PMID: 31217335
  89. Feng J, Neuzil J, Manz A, Iliescu C, Neuzil P. Microfluidic trends in drug screening and drug delivery. Trends Analyt Chem 2023; 158: 116821. doi: 10.1016/j.trac.2022.116821
  90. Trietsch SJ, Israëls GD, Joore J, Hankemeier T, Vulto P. Microfluidic titer plate for stratified 3D cell culture. Lab Chip 2013; 13(18): 3548-54. doi: 10.1039/c3lc50210d PMID: 23887749
  91. Santana HS, Palma MSA, Lopes MGM, et al. Microfluidic devices and 3D printing for synthesis and screening of drugs and tissue engineering. Ind Eng Chem Res 2020; 59(9): 3794-810. doi: 10.1021/acs.iecr.9b03787
  92. Ingber DE. Developmentally inspired human ‘organs on chips’. Development 2018; 145(16): dev156125. doi: 10.1242/dev.156125 PMID: 29776965
  93. Chiu K, Racz R, Burkhart K, et al. New science, drug regulation, and emergent public health issues: The work of FDA’s division of applied regulatory science. Front Med 2023; 9: 1109541. doi: 10.3389/fmed.2022.1109541 PMID: 36743666
  94. Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol 2011; 21(12): 745-54. doi: 10.1016/j.tcb.2011.09.005 PMID: 22033488
  95. Perfetto EM, Burke L, Oehrlein EM, Epstein RS. Patient-focused drug development: A new direction for collaboration. Med Care 2015; 53(1): 9-17. doi: 10.1097/MLR.0000000000000273 PMID: 25494232
  96. Sung JH, Kam C, Shuler ML. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 2010; 10(4): 446-55. doi: 10.1039/b917763a PMID: 20126684
  97. Lind JU, Busbee TA, Valentine AD, et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat Mater 2017; 16(3): 303-8. doi: 10.1038/nmat4782 PMID: 27775708
  98. Zarrintaj P, Saeb MR, Stadler FJ, et al. Human organs-on-chips: A review of the state-of-the-art, current prospects, and future challenges. Adv Biol 2022; 6(1): 2000526. doi: 10.1002/adbi.202000526 PMID: 34837667
  99. Zhu J, He J, Verano M, et al. An integrated adipose-tissue-on-chip nanoplasmonic biosensing platform for investigating obesity-associated inflammation. Lab Chip 2018; 18(23): 3550-60. doi: 10.1039/C8LC00605A PMID: 30302487
  100. Zhang YS, Arneri A, Bersini S, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 2016; 110: 45-59. doi: 10.1016/j.biomaterials.2016.09.003 PMID: 27710832
  101. Yi HG, Jeong YH, Kim Y, et al. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat Biomed Eng 2019; 3(7): 509-19. doi: 10.1038/s41551-019-0363-x PMID: 31148598

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers