Development and Evaluation of PEG-gelatin-based Microparticles to Enhance the Oral Delivery of Insulin
- Authors: Buxaderas E.1, Akpa P.2, Hanifah A.3, Oseni O.4, Kenechukwu F.2, Mumuni M.5, Diaz D.6, Alfa J.7, Ben A.8
-
Affiliations:
- Instituto Universitario de Bio-Orgánica Antonio González, Instituto Universitario de Bio-Orgánica Antonio González
- Drug Delivery Research Unit, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria
- Department of Medical Laboratory Sciences,, Usmanu Danfodiyo University Sokoto
- Department of Microbiology, Faculty of Natural Sciences, Kogi State University,
- Drug Delivery Research Unit, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences,, University of Nigeria
- , Instituto Universitario de Bio-Orgánica Antonio González,
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Bingham University
- Department of Pharmaceutical Technology and Industrial Pharmacy, Faculty of Pharmaceutical Sciences,, University of Nigeria
- Issue: Vol 30, No 24 (2024)
- Pages: 1939-1948
- Section: Immunology, Inflammation & Allergy
- URL: https://vestnikugrasu.org/1381-6128/article/view/645833
- DOI: https://doi.org/10.2174/0113816128309449240527053640
- ID: 645833
Cite item
Full Text
Abstract
Background:Diabetes mellitus is a global disease identified by hyperglycemia due to defects in insulin secretion, insulin action, or both.
Objective:The main objective of this research was to evaluate the ability of gelatinized Poly(ethylene glycol) (PEG) microparticles to be used as carriers for oral insulin delivery via double emulsion preparation.
Methods:Five different batches of the formulation consisting of gelatin:PEG were prepared as follows: 0:1 (W1), 1:0 (W2), 1:1 (W3), 1:3 (W4), and 3:1 (W5). The prepared microparticles (from insulin-loaded batches) had particle sizes ranging from 19.5 ± 0.32-23.9 ± 0.22 µm and encapsulation and loading capacities ranging from 78.8 ± 0.24-88.9 ± 0.95 and 22.2 ± 0.96-29.7 ± 0.86%, respectively. The minimum and maximum in vitro release rates were 8.0 and 66.0%, respectively, for batches W1 and W2 at 8 h.
Results:Insulin-loaded MPs induced a significant decrease in glucose levels, with a reduction from 100 to 33.35% in batch W5 at 9 h compared to that of subcutaneous insulin (100 to 22.63%). A liver function study showed that the formulation caused no obvious toxicity to the experimental rats.
Conclusion:Gelatinized PEG-based microparticles as insulin delivery systems may open a new window into the development of oral insulin for diabetic treatment.
About the authors
Eduardo Buxaderas
Instituto Universitario de Bio-Orgánica Antonio González, Instituto Universitario de Bio-Orgánica Antonio González
Email: info@benthamscience.net
Paul Akpa
Drug Delivery Research Unit, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria
Email: info@benthamscience.net
Abdulmumin Hanifah
Department of Medical Laboratory Sciences,, Usmanu Danfodiyo University Sokoto
Email: info@benthamscience.net
Okolo Oseni
Department of Microbiology, Faculty of Natural Sciences, Kogi State University,
Email: info@benthamscience.net
Franklin Kenechukwu
Drug Delivery Research Unit, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria
Email: info@benthamscience.net
Momoh Mumuni
Drug Delivery Research Unit, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences,, University of Nigeria
Author for correspondence.
Email: info@benthamscience.net
David Diaz
, Instituto Universitario de Bio-Orgánica Antonio González,
Author for correspondence.
Email: info@benthamscience.net
John Alfa
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Bingham University
Email: info@benthamscience.net
Amadi Ben
Department of Pharmaceutical Technology and Industrial Pharmacy, Faculty of Pharmaceutical Sciences,, University of Nigeria
Email: info@benthamscience.net
References
- Hong J, Surapaneni A, Daya N, et al. Retinopathy and risk of kidney disease in persons with diabetes. Kidney Med 2021; 3(5): 808-815.e1. doi: 10.1016/j.xkme.2021.04.018 PMID: 34693260
- Zimmet PZ. Diabetes and its drivers: The largest epidemic in human history? Clin Diabetes Endocrinol 2017; 3(1): 1. doi: 10.1186/s40842-016-0039-3 PMID: 28702255
- Misra A, Gopalan H, Jayawardena R, et al. Diabetes in developing countries. J Diabetes 2019; 11(7): 522-39. doi: 10.1111/1753-0407.12913 PMID: 30864190
- a) Todd JA. Etiology of type 1 diabetes. Immunity 2010; 32(4): 457-67. doi: 10.1016/j.immuni.2010.04.001 PMID: 20412756; b) Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2010; 464(7293): 1293-300. doi: 10.1038/nature08933 PMID: 20432533
- DeFronzo RA, Ferrannini E, Groop L, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers 2015; 1(1): 15019. doi: 10.1038/nrdp.2015.19 PMID: 27189025
- Roham PH, Save SN, Sharma S. Human islet amyloid polypeptide: A therapeutic target for the management of type 2 diabetes mellitus. J Pharm Anal 2022; 12(4): 556-69. doi: 10.1016/j.jpha.2022.04.001 PMID: 36105173
- Frokjaer S, Otzen DE. Protein drug stability: A formulation challenge. Nat Rev Drug Discov 2005; 4(4): 298-306. doi: 10.1038/nrd1695 PMID: 15803194
- Meneguin AB, Silvestre ALP, Sposito L, et al. The role of polysaccharides from natural resources to design oral insulin micro and nanoparticles intended for the treatment of Diabetes mellitus: A review. Carbohydr Polym 2021; 256: 117504. doi: 10.1016/j.carbpol.2020.117504 PMID: 33483027
- Drucker DJ. Advances in oral peptide therapeutics. Nat Rev Drug Discov 2020; 19(4): 277-89. doi: 10.1038/s41573-019-0053-0 PMID: 31848464
- Ji K, Yao Y, Wei X, et al. Material design for oral insulin delivery. Med-X 2023; 1(1): 7. doi: 10.1007/s44258-023-00006-y PMID: 37485249
- Krauland AH, Guggi D, Bernkop-Schnürch A. Oral insulin delivery: The potential of thiolated chitosan-insulin tablets on non-diabetic rats. J Control Release 2004; 95(3): 547-55. doi: 10.1016/j.jconrel.2003.12.017 PMID: 15023465
- Ofokansi K, Winter G, Fricker G, Coester C. Matrix-loaded biodegradable gelatin nanoparticles as new approach to improve drug loading and delivery. Eur J Pharm Biopharm 2010; 76(1): 1-9. doi: 10.1016/j.ejpb.2010.04.008 PMID: 20420904
- Momoh MA, Emmanuel OC, Onyeto AC, et al. Preparation of snail cyst and PEG-4000 composite carriers via PEGylation for oral delivery of insulin: An in vitro and in vivo evaluation. Trop J Pharm Res 2021; 18(5): 919-26. doi: 10.4314/tjpr.v18i5.2
- Momoh MA, Adedokun MO, Adikwu MU, Kenechukwu FC, Ibezim EC, Ugwoke EE. Design, characterization and evaluation of PEGylated-mucin for oral delivery of metformin hydrochloride. Afr J Pharm Pharmacol 2013; 7(7): 347-55. doi: 10.5897/AJPP12.488
- Mumuni MA, Kenechukwu FC, Ernest OC, et al. Surface-modified mucoadhesive microparticles as a controlled release system for oral delivery of insulin. Heliyon 2019; 5(9): e02366. doi: 10.1016/j.heliyon.2019.e02366 PMID: 31535040
- Kenechukwu FC, Attama AA, Ibezim EC, et al. Surface-modified mucoadhesive microgels as a controlled release system for miconazole nitrate to improve localized treatment of vulvovaginal candidiasis. Eur J Pharm Sci 2018; 111: 358-75. doi: 10.1016/j.ejps.2017.10.002 PMID: 28986195
- Erel G, Kotmakçı M, Akbaba H, Sözer Karadağlı S, Kantarcı AG. Nanoencapsulated chitosan nanoparticles in emulsion-based oral delivery system: In vitro and in vivo evaluation of insulin loaded formulation. J Drug Deliv Sci Technol 2016; 36: 161-7. doi: 10.1016/j.jddst.2016.10.010
- Ma Z, Lim TM, Lim LY. Pharmacological activity of peroral chitosaninsulin nanoparticles in diabetic rats. Int J Pharm 2005; 293(1-2): 271-80. doi: 10.1016/j.ijpharm.2004.12.025 PMID: 15778065
- Simon-Giavarotti KA, Giavarotti L, Gomes LF, et al. Enhancement of lindane-induced liver oxidative stress and hepatotoxicity by thyroid hormone is reduced by gadolinium chloride. Free Radic Res 2002; 36(10): 1033-9. doi: 10.1080/1071576021000028280 PMID: 12516873
- Kasarala G, Tillmann HL. Standard liver tests. Clin Liver Dis 2016; 8(1): 13-8. doi: 10.1002/cld.562 PMID: 31041056
- Rosas PC, Nagaraja GM, Kaur P, et al. Hsp72 (HSPA1A) prevents human islet amyloid polypeptide aggregation and toxicity: A new approach for type 2 diabetes treatment. PLoS One 2016; 11(3): e0149409. doi: 10.1371/journal.pone.0149409 PMID: 26960140
- Ibraheem D, Elaissari A, Fessi H. Administration strategies for proteins and peptides. Int J Pharm 2014; 477(1-2): 578-89. doi: 10.1016/j.ijpharm.2014.10.059 PMID: 25445533
Supplementary files
