Protective Effect and Related Mechanism of Modified Danggui Buxue Decoction on Retinal Oxidative Damage in Mice based on Network Pharmacology


Cite item

Full Text

Abstract

Introduction:Age-related macular degeneration (AMD) is one of the common diseases that cause vision loss in the elderly, and oxidative stress has been considered a major pathogenic factor for AMD. Modified Danggui Buxue Decoction (RRP) has a good therapeutic effect on non-proliferatic diabetic retinopathy and can improve the clinical symptoms of patients. Aim: This study aimed to predict and verify the protective effect and mechanism of RRP on retinal oxidative damage in mice based on network pharmacology and animal experiments.

Methods:The key ingredients and core targets of RRP protecting retinal oxidative damage were obtained by Network pharmacology analysis. A mouse retinal oxidative damage model induced by tail vein injection of 1% NaIO3 solution (25 mg/kg) was treated with RRP for 4 weeks and used to verify the pharmacodynamics and related mechanism.

Aim:This study aimed to predict and verify the protective effect and mechanism of RRP on retinal oxidative damage in mice based on network pharmacology and animal experiments

Results:A total of 15 key active components included in RRP interacted with 57 core targets related to retinal oxidative damage (such as AKT1, NFE2L2, HMOX1), mainly involved in the AGE-RAGE signaling pathway in diabetic complications, PI3K-AKT signaling pathway and so on. Further studies in vivo found that RRP improved the retinal oxidative damage, increased the content of SOD and GSH, decreased the content of MDA in mouse serum, promoted the expression of p-PI3K, p-AKT, Nrf2, HO-1 and NQO1 proteins in the mouse retina, and inhibited the expression of Nrf2 in the cytoplasm.

Conclusion:This study revealed that RRP had a protective effect on oxidative damage of the retina in mice, and might exert anti-oxidative effect by activating the PI3K/Akt/Nrf2 signal pathway. This study provided scientific data for the further development of hospital preparations of RRP, and a good theoretical basis for the clinical application of RRP.

About the authors

Xiangka Hu

Institute of Materia Medica, Jinzhou Medical University

Email: info@benthamscience.net

Feifei Liu

Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University

Email: info@benthamscience.net

He Yang

College of Basic Medicine, Jinzhou Medical University

Email: info@benthamscience.net

Mushuang Qi

College of Basic Medicine, Jinzhou Medical University

Email: info@benthamscience.net

Ying Ren

College of Basic Medicine, Jinzhou Medical University

Email: info@benthamscience.net

Wanjun Zhu

College of Basic Medicine, Jinzhou Medical University

Email: info@benthamscience.net

Chunmei Dai

Institute of Materia Medica, Jinzhou Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Wang J, Li M, Geng Z, et al. Role of oxidative stress in retinal disease and the early intervention strategies: A review. Oxid Med Cell Longev 2022; 2022: 1-13. doi: 10.1155/2022/7836828 PMID: 36275903
  2. Steinmetz JD, Bourne RRA, Briant PS, et al. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: An analysis for the Global Burden of Disease Study. Lancet Glob Health 2021; 9(2): e144-60. doi: 10.1016/S2214-109X(20)30489-7 PMID: 33275949
  3. Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob Health 2014; 2(2): e106-16. doi: 10.1016/S2214-109X(13)70145-1 PMID: 25104651
  4. Guymer RH, Campbell TG. Age-related macular degeneration. Lancet 2023; 401(10386): 1459-72. doi: 10.1016/S0140-6736(22)02609-5 PMID: 36996856
  5. Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related macular degeneration. Nat Rev Dis Primers 2021; 7(1): 31. doi: 10.1038/s41572-021-00265-2 PMID: 33958600
  6. Ruan Y, Jiang S, Gericke A. Age-related macular degeneration: Role of oxidative stress and blood vessels. Int J Mol Sci 2021; 22(3): 1296. doi: 10.3390/ijms22031296 PMID: 33525498
  7. Castelli V, Paladini A, D’Angelo M, et al. Taurine and oxidative stress in retinal health and disease. CNS Neurosci Ther 2021; 27(4): 403-12. doi: 10.1111/cns.13610 PMID: 33621439
  8. Ying L, Yuxian Z, Shuyu Y. Yang Shuyu’s experience in treating diabetic retinopathy with modified Danggui Buxue decoction. China J Chin Ophthalmol 2021; 08: 570-4.
  9. Behl T, Kotwani A. Chinese herbal drugs for the treatment of diabetic retinopathy. J Pharm Pharmacol 2017; 69(3): 223-35. doi: 10.1111/jphp.12683 PMID: 28124440
  10. Song X, Kong J, Song J, Pan R, Wang L. Angelica sinensis polysaccharide alleviates myocardial fibrosis and oxidative stress in the heart of hypertensive rats. Comput Math Methods Med 2021; 2021: 1-10. doi: 10.1155/2021/6710006 PMID: 34527077
  11. Fan Y, Qiao Y, Huang J, Tang M. Protective effects of Panax notoginseng saponins against high glucose-induced oxidative injury in rat retinal capillary endothelial cells. Evid Based Complement Alternat Med 2016; 2016: 1-9. doi: 10.1155/2016/5326382 PMID: 27019662
  12. Shi Y. Clinical characteristics of non-proliferative diabetic retinopathy and clinical efficacy of Radix astragali, Radix angelica sinensis and Panax notoginseng (RRP) in treating non-proliferative diabetic retinopathy patients. Xiamen University 2016.
  13. Ding H, Hong Y, Qi F, et al. The innovative application of "monarch", "minister", "assistant", and "guide" in clinical practice. Lishizhen Med Materia Medica Res 2022; 05: 1178-9.
  14. Zhao L, Zhang H, Li N, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J Ethnopharmacol 2023; 309: 116306. doi: 10.1016/j.jep.2023.116306 PMID: 36858276
  15. Lichao W, Junfeng L, Tingting Z, Fangfang T, Wenhong L. Anti-inflammatory effects of stigmasterol based on network pharmacology and cell experiments. Zhongchengyao 2022; 02: 609-15.
  16. Hu X, Shao P, Liu X, et al. Study on the anti-inflammatory effect and mechanism of Yuxuebi tablet based on network pharmacology. ACS Omega 2022; 7(36): 32784-94. doi: 10.1021/acsomega.2c04641 PMID: 36120030
  17. Luo J, Chen X, Liang P, et al. Mechanism of anti-hyperuricemia of isobavachin based on network pharmacology and molecular docking. Comput Biol Med 2023; 155: 106637. doi: 10.1016/j.compbiomed.2023.106637 PMID: 36791549
  18. Kola-Mustapha AT, Raji MA, Adedeji O, Ambrose GO. Network pharmacology and molecular modeling to elucidate the potential mechanism of neem oil against Acne vulgaris. Molecules 2023; 28(6): 2849. doi: 10.3390/molecules28062849 PMID: 36985821
  19. Liu J, Sun T, Liu S, et al. Dissecting the molecular mechanism of cepharanthine against COVID-19, based on a network pharmacology strategy combined with RNA-sequencing analysis, molecular docking, and molecular dynamics simulation. Comput Biol Med 2022; 151(Pt A): 106298.
  20. Wang T, Jiang X, Ruan Y, Zhuang J, Yin Y. Based on network pharmacology and in vitro experiments to prove the effective inhibition of myocardial fibrosis by Buyang Huanwu decoction. Bioengineered 2022; 13(5): 13767-83. doi: 10.1080/21655979.2022.2084253 PMID: 35726821
  21. Deng J, Qin L, Zhou Z. Network pharmacology and molecular docking reveal the mechanism of Isodon ternifolius (D. Don) kudo against liver fibrosis. Drug Des Devel Ther 2023; 17: 2335-51. doi: 10.2147/DDDT.S412818 PMID: 37576085
  22. Han J, Hou J, Liu Y, Liu P, Zhao T, Wang X. Using network pharmacology to explore the mechanism of Panax notoginseng in the treatment of myocardial fibrosis. J Diabetes Res 2022; 2022: 1-13. doi: 10.1155/2022/8895950 PMID: 35372585
  23. Wang C, Liu X, Guo S. Network pharmacology-based strategy to investigate the effect and mechanism of α-solanine against glioma. BMC Compl Med Therap 2023; 23(1): 371. doi: 10.1186/s12906-023-04215-1 PMID: 37865727
  24. Shang L, Wang Y, Li J, et al. Mechanism of Sijunzi decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation. J Ethnopharmacol 2023; 302(Pt A): 115876.. doi: 10.1016/j.jep.2022.115876
  25. Zhang H, Zhou C, Zhang Z, et al. Integration of network pharmacology and experimental validation to explore the pharmacological mechanisms of Zhuanggu Busui formula against osteoporosis. Front Endocrinol 2022; 12: 841668. doi: 10.3389/fendo.2021.841668 PMID: 35154014
  26. Man L. Effect of Bushen Yangxue Mingmu formula on retinal pigment epithelial cell oxidative stress and its mechanism. Chinese Academy of Chinese Medical Sciences 2015.
  27. Wang J, Iacovelli J, Spencer C, Saint-Geniez M. Direct effect of sodium iodate on neurosensory retina. Invest Ophthalmol Vis Sci 2014; 55(3): 1941-53. doi: 10.1167/iovs.13-13075 PMID: 24481259
  28. Sun R, Zhang A, Ge Y, et al. Ultra-small-size astragaloside-IV loaded lipid nanocapsules eye drops for the effective management of dry age-related macular degeneration. Expert Opin Drug Deliv 2020; 17(9): 1305-20. doi: 10.1080/17425247.2020.1783236 PMID: 32538226
  29. Li J, Wang X, Bai J, Wei H, Wang W, Wang S. Fucoidan modulates SIRT1 and NLRP3 to alleviate hypertensive retinopathy: In vivo and in vitro insights. J Transl Med 2024; 22(1): 155. doi: 10.1186/s12967-024-04877-6 PMID: 38360728
  30. Yang H, Liu Z, Hu X, et al. Protective effect of Panax notoginseng saponins on apolipoprotein-E-deficient atherosclerosis-prone mice. Curr Pharm Des 2022; 28(8): 671-7. doi: 10.2174/1381612828666220128104636 PMID: 35088656
  31. Cai Z, Hu X, Gui L, et al. Study on the therapeutic effect and mechanism of Tangningtongluo tablet on diabetic mice. J Diabetes Complications 2023; 37(8): 108523. doi: 10.1016/j.jdiacomp.2023.108523 PMID: 37301061
  32. Guo T, Liu Z, Zhao Q, Zhao Z, Liu C. A combination of astragaloside I, levistilide A and calycosin exerts anti-liver fibrosis effects in vitro and in vivo. Acta Pharmacol Sin 2018; 39(9): 1483-92. doi: 10.1038/aps.2017.175 PMID: 29849130
  33. Qiao C, Wan J, Zhang L, et al. Astragaloside II alleviates the symptoms of experimental ulcerative colitis in vitro and in vivo. Am J Transl Res 2019; 11(11): 7074-83. PMID: 31814910
  34. Wang Y, Liu X, Hu T, et al. Astragalus saponins improves stroke by promoting the proliferation of neural stem cells through phosphorylation of Akt. J Ethnopharmacol 2021; 277: 114224. doi: 10.1016/j.jep.2021.114224 PMID: 34044075
  35. Liu YL, Zhang QZ, Wang YR, et al. Astragaloside IV improves high-fat diet–induced hepatic steatosis in nonalcoholic fatty liver disease rats by regulating inflammatory factors level via TLR4/NF-κB signaling pathway. Front Pharmacol 2021; 11: 605064. doi: 10.3389/fphar.2020.605064 PMID: 33708118
  36. Meng Y, Ji J, Xiao X, et al. Ononin induces cell apoptosis and reduces inflammation in rheumatoid arthritis fibroblast-like synoviocytes by alleviating MAPK and NF-κB signaling pathways. Acta Biochim Pol 2021; 68(2): 239-45. doi: 10.18388/abp.2020_5528 PMID: 34075738
  37. Salau VF, Erukainure OL, Ibeji CU, Olasehinde TA, Koorbanally NA, Islam MS. Ferulic acid modulates dysfunctional metabolic pathways and purinergic activities, while stalling redox imbalance and cholinergic activities in oxidative brain injury. Neurotox Res 2020; 37(4): 944-55. doi: 10.1007/s12640-019-00099-7 PMID: 31422569
  38. Choi ES, Yoon JJ, Han BH, et al. Ligustilide attenuates vascular inflammation and activates Nrf2/HO-1 induction and, NO synthesis in HUVECs. Phytomedicine 2018; 38: 12-23. doi: 10.1016/j.phymed.2017.09.022 PMID: 29425644
  39. Zhou P, Xie W, Meng X, et al. Notoginsenoside R1 ameliorates diabetic retinopathy through PINK1-dependent activation of mitophagy. Cells 2019; 8(3): 213. doi: 10.3390/cells8030213 PMID: 30832367
  40. Zheng Z, Wang M, Cheng C, et al. Ginsenoside Rb1 reduces H2O2-induced HUVEC dysfunction by stimulating the sirtuin-1/AMP-activated protein kinase pathway. Mol Med Rep 2020; 22(1): 247-56. doi: 10.3892/mmr.2020.11096 PMID: 32377712
  41. Deng Z, Lim J, Wang Q, et al. ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway. Autophagy 2020; 16(5): 917-31. doi: 10.1080/15548627.2019.1644076 PMID: 31362587
  42. Forcina GC, Pope L, Murray M, et al. Ferroptosis regulation by the NGLY1/NFE2L1 pathway. Proc Natl Acad Sci USA 2022; 119(11): e2118646119. doi: 10.1073/pnas.2118646119 PMID: 35271393
  43. Dang X, He B, Ning Q, et al. Alantolactone suppresses inflammation, apoptosis and oxidative stress in cigarette smoke-induced human bronchial epithelial cells through activation of Nrf2/HO-1 and inhibition of the NF-κB pathways. Respir Res 2020; 21(1): 95. doi: 10.1186/s12931-020-01358-4 PMID: 32321531
  44. Ren B, Zhang Y, Liu S, et al. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways. J Cell Mol Med 2020; 24(21): 12355-67. doi: 10.1111/jcmm.15725 PMID: 32961025
  45. Ji Y, Luo J, Zeng J, et al. Xiaoyao pills ameliorate depression- like behaviors and oxidative stress induced by olfactory bulbectomy in rats via the activation of the PIK3CA-AKT1-NFE2L2/BDNF signaling pathway. Front Pharmacol 2021; 12: 643456. doi: 10.3389/fphar.2021.643456 PMID: 33935736
  46. Carrillo-Beltrán D, Muñoz JP, Guerrero-Vásquez N, et al. Human papillomavirus 16 E7 promotes EGFR/PI3K/AKT1/NRF2 signaling pathway contributing to PIR/NF-κB activation in oral cancer cells. Cancers (Basel) 2020; 12(7): 1904. doi: 10.3390/cancers12071904 PMID: 32679705
  47. Zhang B, Qu Z, Hui H, et al. Exploring the therapeutic potential of isoorientin in the treatment of osteoporosis: A study using network pharmacology and experimental validation. Mol Med 2024; 30(1): 27. doi: 10.1186/s10020-024-00799-7 PMID: 38378457
  48. Wang M, Li B, Liu Y, et al. Shu-Xie decoction alleviates oxidative stress and colon injury in acute sleep-deprived mice by suppressing p62/KEAP1/NRF2/HO1/NQO1 signaling. Front Pharmacol 2023; 14: 1107507. doi: 10.3389/fphar.2023.1107507 PMID: 36814500
  49. Zhang Z, Qu J, Zheng C, et al. Nrf2 antioxidant pathway suppresses Numb-mediated epithelial–mesenchymal transition during pulmonary fibrosis. Cell Death Dis 2018; 9(2): 83. doi: 10.1038/s41419-017-0198-x PMID: 29362432
  50. Wu Y. Clinical survey of the Xi-shiyin in treatment of non-proliferative diabetic retinopathy. Fujian University of Traditional Chinese Medicine 2013.
  51. Hsu MY, Hsiao YP, Lin YT, et al. Quercetin alleviates the accumulation of superoxide in sodium iodate-induced retinal autophagy by regulating mitochondrial reactive oxygen species homeostasis through enhanced deacetyl-SOD2 via the Nrf2-PGC-1α-Sirt1 pathway. Antioxidants 2021; 10(7): 1125. doi: 10.3390/antiox10071125 PMID: 34356358
  52. Du W, An Y, He X, Zhang D, He W. Protection of kaempferol on oxidative stress-induced retinal pigment epithelial cell damage. Oxid Med Cell Longev 2018; 2018: 1-14. doi: 10.1155/2018/1610751 PMID: 30584457
  53. Wang J, Gong HM, Zou HH, Liang L, Wu XY. Isorhamnetin prevents H2O2-induced oxidative stress in human retinal pigment epithelial cells. Mol Med Rep 2018; 17(1): 648-52. PMID: 29115489
  54. Jia WC, Liu G, Zhang CD, Zhang SP. Formononetin attenuates hydrogen peroxide (H2O2)-induced apoptosis and NF-κB activation in RGC-5 cells. Eur Rev Med Pharmacol Sci 2014; 18(15): 2191-7. PMID: 25070826
  55. Kai X. Study on the effect of astragaloside IV nanoemulsion gel on experimental dry age-related macular degeneration rat model. Chinese Academy of Chinese Medical Sciences 2018.
  56. Devaraj E, Roy A, Royapuram Veeraragavan G, et al. β-Sitosterol attenuates carbon tetrachloride–induced oxidative stress and chronic liver injury in rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393(6): 1067-75. doi: 10.1007/s00210-020-01810-8 PMID: 31930431
  57. Hu R, Wang M, Liu L, et al. Calycosin inhibited autophagy and oxidative stress in chronic kidney disease skeletal muscle atrophy by regulating AMPK/SKP2/CARM1 signalling pathway. J Cell Mol Med 2020; 24(19): 11084-99. doi: 10.1111/jcmm.15514 PMID: 32910538
  58. Rajput SA, Shaukat A, Rajput IR, et al. Ginsenoside Rb1 prevents deoxynivalenol-induced immune injury via alleviating oxidative stress and apoptosis in mice. Ecotoxicol Environ Saf 2021; 220: 112333. doi: 10.1016/j.ecoenv.2021.112333 PMID: 34058674
  59. Chan CM, Huang DY, Sekar P, Hsu SH, Lin WW. Correction to: Reactive oxygen species-dependent mitochondrial dynamics and autophagy confer protective effects in retinal pigment epithelial cells against sodium iodate-induced cell death. J Biomed Sci 2019; 26(1): 66. doi: 10.1186/s12929-019-0555-4 PMID: 31481051
  60. Enzbrenner A, Zulliger R, Biber J, et al. Sodium iodate-induced degeneration results in local complement changes and inflammatory processes in murine retina. Int J Mol Sci 2021; 22(17): 9218. doi: 10.3390/ijms22179218 PMID: 34502128
  61. Xu W, Liu X, Han W, et al. Inhibiting HIF-1 signaling alleviates HTRA1-induced RPE senescence in retinal degeneration. Cell Commun Signal 2023; 21(1): 134. doi: 10.1186/s12964-023-01138-9 PMID: 37316948
  62. Jie H, Xingwei W. Current research in animal models of dry age-related macular degeneration. China J Chin Ophthalmol 2020; 07: 515-7.
  63. Koster C, van den Hurk KT, ten Brink JB, et al. Sodium-iodate injection can replicate retinal degenerative disease stages in pigmented mice and rats: Non-invasive follow-up using OCT and ERG. Int J Mol Sci 2022; 23(6): 2918. doi: 10.3390/ijms23062918 PMID: 35328338
  64. Zhou P, Kannan R, Spee C, Sreekumar PG, Dou G, Hinton DR. Protection of retina by αB crystallin in sodium iodate induced retinal degeneration. PLoS One 2014; 9(5): e98275. doi: 10.1371/journal.pone.0098275 PMID: 24874187
  65. Yang X, Huo F, Liu B, et al. Crocin inhibits oxidative stress and pro-inflammatory response of microglial cells associated with diabetic retinopathy through the activation of PI3K/Akt signaling pathway. J Mol Neurosci 2017; 61(4): 581-9. doi: 10.1007/s12031-017-0899-8 PMID: 28238066
  66. Hsin IL, Shen HP, Chang HY, Ko JL, Wang PH. Suppression of PI3K/Akt/mTOR/c-Myc/mtp53 positive feedback loop induces cell cycle arrest by dual PI3K/mTOR inhibitor PQR309 in endometrial cancer cell lines. Cells 2021; 10(11): 2916. doi: 10.3390/cells10112916 PMID: 34831139
  67. Wang J, Chen R, Liu C, Wu X, Zhang Y. Antidepressant mechanism of catalpol: Involvement of the PI3K/Akt/Nrf2/HO-1 signaling pathway in rat hippocampus. Eur J Pharmacol 2021; 909: 174396. doi: 10.1016/j.ejphar.2021.174396 PMID: 34332921
  68. Li Z, Dong X, Liu H, et al. Astaxanthin protects ARPE-19 cells from oxidative stress via upregulation of Nrf2-regulated phase II enzymes through activation of PI3K/Akt. Mol Vis 2013; 19: 1656-66. PMID: 23901249
  69. Samakova A, Gazova A, Sabova N, Valaskova S, Jurikova M, Kyselovic J. The PI3k/Akt pathway is associated with angiogenesis, oxidative stress and survival of mesenchymal stem cells in pathophysiologic condition in ischemia. Physiol Res 2019; 68(Suppl 2): S131-8.
  70. Cai ZY, Liu K, Duan X-C, Duan XC. Therapeutic effect of Keap1-Nrf2-ARE pathway-related drugs on age-related eye diseases through anti-oxidative stress. Int J Ophthalmol 2021; 14(8): 1260-73. doi: 10.18240/ijo.2021.08.19 PMID: 34414093
  71. Baird L, Yamamoto M. The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol Cell Biol 2020; 40(13): e00099-20. doi: 10.1128/MCB.00099-20 PMID: 32284348
  72. Ma K, Wu HY, Wang SY, Li BX. The Keap1/Nrf2-ARE signaling pathway is involved in atrazine induced dopaminergic neurons degeneration via microglia activation. Ecotoxicol Environ Saf 2021; 226: 112862. doi: 10.1016/j.ecoenv.2021.112862 PMID: 34624533
  73. Li X, Deng A, Liu J, Hou W. The role of Keap1-Nrf2-ARE signal pathway in diabetic retinopathy oxidative stress and related mechanisms. Int J Clin Exp Pathol 2018; 11(6): 3084-90. PMID: 31938435
  74. Lee J, Lim JW, Kim H. Lycopene inhibits IL-6 expression by upregulating NQO1 and HO-1 via activation of Nrf2 in ethanol/ lipopolysaccharide-stimulated pancreatic acinar cells. Antioxidants 2022; 11(3): 519. doi: 10.3390/antiox11030519 PMID: 35326169
  75. Yuan Z, Du W, He X, Zhang D, He W. Tribulus terrestris ameliorates oxidative stress-induced ARPE-19 cell injury through the PI3K/Akt-Nrf2 signaling pathway. Oxid Med Cell Longev 2020; 2020: 1-14. doi: 10.1155/2020/7962393 PMID: 32774685
  76. Zhang C, Yang Y, Chen R, et al. Aberrant expression of oxidative stress related proteins affects the pregnancy outcome of gestational diabetes mellitus patients. Am J Transl Res 2019; 11(1): 269-79. PMID: 30787985

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers