Exploring the Molecular Mechanisms of Huaier on Modulating Metabolic Reprogramming of Hepatocellular Carcinoma: A Study based on Network Pharmacology, Molecular Docking and Bioinformatics


Cite item

Full Text

Abstract

Background:Huaier (Trametes robiniophila Murr), a traditional Chinese medicine, is widely used in China as a complementary and alternative therapy to treat hepatocellular carcinoma (HCC). Past studies have shown that Huaier can arrest the cell cycle, promote apoptosis and inhibit the proliferation of cancer cells. However, how it regulates the metabolism of HCC is still unclear.

Objective:This study explores the metabolic-related function of Huaier in treating HCC with an in-silico approach.

Methods:A network pharmacology and bioinformatics-based approach was employed to investigate the molecular pathogenesis of metabolic reprogramming in HCC with Huaier. The compounds of Huaier were obtained from public databases. Oral bioavailability and drug likeness were screened using the TCMSP platform. The differential gene expressions between HCC and non-tumor tissue were calculated and used to find the overlap from the targets of Huaier. The enrichment analysis of the overlapped targets by Metascape helped filter out the metabolism-related targets of Huaier in treating HCC. Protein-protein interaction (PPI) network construction and topological screening revealed the hub nodes. The prognosis and clinical correlation of these targets were validated from the cancer genome atlas (TCGA) database, and the interactions between the hub nodes and active ingredients were validated by molecular docking.

Results:The results showed that Peroxyergosterol, Daucosterol, and Kaempferol were the primary active compounds of Huaier involved in the metabolic reprogramming of HCC. The top 6 metabolic targets included AKR1C3, CYP1A1, CYP3A4, CYP1A2, CYP17A1, and HSD11B1. The decreased expression of CYP3A4 and increased expression of AKR1C3 were related to the poor overall survival of HCC patients. The molecular docking validated that Peroxyergosterol and Kaempferol exhibited the potential to modulate CYP3A4 and AKR1C3 from a computational perspective.

Conclusion:This study provided a workflow for understanding the mechanism of Huaier in regulating the metabolic reprogramming of HCC.

About the authors

Yuxiang Wan

Department of Acupuncture and Mini-invasive Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital,

Email: info@benthamscience.net

Honglin Jiang

Department of Acupuncture and Mini-invasive Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital

Email: info@benthamscience.net

Zeyu Liu

Department of VIP Region, Sun Yat-sen University Cancer Center

Email: info@benthamscience.net

Chen Bai

School of Traditional Chinese Medicine,, Beijing University of Chinese Medicine

Email: info@benthamscience.net

Yanyan Lian

Department of Acupuncture and Mini-invasive Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital

Email: info@benthamscience.net

Chunguang Zhang

Department of Acupuncture and Mini-invasive Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital

Email: info@benthamscience.net

Qiaoli Zhang

Department of Acupuncture and Mini-invasive Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital

Author for correspondence.
Email: info@benthamscience.net

Jinchang Huang

Department of Acupuncture and Mini-invasive Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital

Author for correspondence.
Email: info@benthamscience.net

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin 2021; 71(1): 7-33. doi: 10.3322/caac.21654 PMID: 33433946
  2. Blechacz B. Cholangiocarcinoma: Current knowledge and new developments. Gut Liver 2017; 11(1): 13-26. doi: 10.5009/gnl15568 PMID: 27928095
  3. Hartke J, Johnson M, Ghabril M. The diagnosis and treatment of hepatocellular carcinoma. Semin Diagn Pathol 2017; 34(2): 153-9. doi: 10.1053/j.semdp.2016.12.011 PMID: 28108047
  4. Schlachterman A, Craft WWJ Jr, Hilgenfeldt E, Mitra A, Cabrera R. Current and future treatments for hepatocellular carcinoma. World J Gastroenterol 2015; 21(28): 8478-91. doi: 10.3748/wjg.v21.i28.8478 PMID: 26229392
  5. Chen Q, Shu C, Laurence AD, et al. Effect of huaier granule on recurrence after curative resection of HCC: A multicentre, randomised clinical trial. Gut 2018; 67(11): 2006-16. doi: 10.1136/gutjnl-2018-315983 PMID: 29802174
  6. CSCO. Hepatocellular carcinoma. Beijing: People's Medical Publishing House 2018.
  7. Shan L, Li Y, Jiang H, et al. Huaier restrains proliferative and migratory potential of hepatocellular carcinoma cells partially through decreased yes-associated protein 1. J Cancer 2017; 8(19): 4087-97. doi: 10.7150/jca.21018 PMID: 29187885
  8. Bao H, Liu P, Jiang K, et al. Huaier polysaccharide induces apoptosis in hepatocellular carcinoma cells through p38 MAPK. Oncol Lett 2016; 12(2): 1058-66. doi: 10.3892/ol.2016.4686 PMID: 27446394
  9. Zheng J, Li C, Wu X, et al. Huaier polysaccharides suppresses hepatocarcinoma MHCC97-H cell metastasis via inactivation of EMT and AEG-1 pathway. Int J Biol Macromol 2014; 64: 106-10. doi: 10.1016/j.ijbiomac.2013.11.034 PMID: 24321491
  10. Zou Y, Xiong H, Xiong H, et al. A polysaccharide from mushroom Huaier retards human hepatocellular carcinoma growth, angiogenesis, and metastasis in nude mice. Tumour Biol 2015; 36(4): 2929-36. doi: 10.1007/s13277-014-2923-8 PMID: 25492485
  11. Gingold JA, Zhu D, Lee DF, Kaseb A, Chen J. Genomic profiling and metabolic homeostasis in primary liver cancers. Trends Mol Med 2018; 24(4): 395-411. doi: 10.1016/j.molmed.2018.02.006 PMID: 29530485
  12. Wang YH, Cheng TY, Chen TY, Chang KM, Chuang VP, Kao KJ. Plasmalemmal vesicle associated protein (plvap) as a therapeutic target for treatment of hepatocellular carcinoma. BMC Cancer 2014; 14(1): 815. doi: 10.1186/1471-2407-14-815 PMID: 25376302
  13. Fang S, Dong L, Liu L, et al. HERB: A high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res 2021; 49(D1): D1197-206. doi: 10.1093/nar/gkaa1063 PMID: 33264402
  14. Xu X, Zhang W, Huang C, et al. A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci 2012; 13(6): 6964-82. doi: 10.3390/ijms13066964 PMID: 22837674
  15. Ru J, Li P, Wang J, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014; 6(1): 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
  16. Tao W, Xu X, Wang X, et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal radix curcumae formula for application to cardiovascular disease. J Ethnopharmacol 2013; 145(1): 1-10. doi: 10.1016/j.jep.2012.09.051 PMID: 23142198
  17. Wan Y, Xu L, Liu Z, et al. Utilising network pharmacology to explore the underlying mechanism of wumei pill in treating pancreatic neoplasms. BMC Complement Altern Med 2019; 19(1): 158. doi: 10.1186/s12906-019-2580-y PMID: 31272505
  18. Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK. Relating protein pharmacology by ligand chemistry. Nat Biotechnol 2007; 25(2): 197-206. doi: 10.1038/nbt1284 PMID: 17287757
  19. Gfeller D, Michielin O, Zoete V. Shaping the interaction landscape of bioactive molecules. Bioinformatics 2013; 29(23): 3073-9. doi: 10.1093/bioinformatics/btt540 PMID: 24048355
  20. Nickel J, Gohlke B, Erehman J, Banerjee P, Rong WW, Goede A. SuperPred: Update on drug classification and target prediction. NUCLEIC ACIDS RES 2014; 42(Web Server issue): W26-31. doi: 10.1093/nar/gku477
  21. Chen L, Zhang YH, Wang S, Zhang Y, Huang T, Cai YD. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways. PLoS One 2017; 12(9): e0184129. doi: 10.1371/journal.pone.0184129 PMID: 28873455
  22. Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504. doi: 10.1101/gr.1239303 PMID: 14597658
  23. Tomczak K, Czerwińska P, Wiznerowicz M. Review the cancer genome atlas (TCGA): An immeasurable source of knowledge. Contemp Oncol 2015; 1A(1A): 68-77. doi: 10.5114/wo.2014.47136 PMID: 25691825
  24. Digre A, Lindskog C. The human protein atlas-spatial localization of the human proteome in health and disease. Protein science 2021; 30(1): 218-33. doi: 10.1002/pro.3987
  25. Chen M, Adeniji AO, Twenter BM, Winkler JD, Christianson DW, Penning TM. Crystal structures of AKR1C3 containing an N-(aryl)amino-benzoate inhibitor and a bifunctional AKR1C3 inhibitor and androgen receptor antagonist. Therapeutic leads for castrate resistant prostate cancer. Bioorg Med Chem Lett 2012; 22(10): 3492-7. doi: 10.1016/j.bmcl.2012.03.085 PMID: 22507964
  26. Kaur P, Chamberlin AR, Poulos TL, Sevrioukova IF. Structure-based inhibitor design for evaluation of a cyp3a4 pharmacophore model. J Med Chem 2016; 59(9): 4210-20. doi: 10.1021/acs.jmedchem.5b01146 PMID: 26371436
  27. Rajeswari M, Santhi N, Bhuvaneswari V. Pharmacophore and virtual screening of jak3 inhibitors. Bioinformation 2014; 10(3): 157-63. doi: 10.6026/97320630010157 PMID: 24748756
  28. Fazi R, Tintori C, Brai A, et al. Homology model-based virtual screening for the identification of human helicase ddx3 inhibitors. J Chem Inf Model 2015; 55(11): 2443-54. doi: 10.1021/acs.jcim.5b00419 PMID: 26544088
  29. Friesner RA, Banks JL, Murphy RB, et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004; 47(7): 1739-49. doi: 10.1021/jm0306430 PMID: 15027865
  30. Halgren TA, Murphy RB, Friesner RA, et al. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 2004; 47(7): 1750-9. doi: 10.1021/jm030644s PMID: 15027866
  31. Zeng J, Liu X, Li X, Zheng Y, Liu B, Xiao Y. Daucosterol inhibits the proliferation, migration, and invasion of hepatocellular carcinoma cells via Wnt/β-catenin signaling. Molecules 2017; 22(6): 862. doi: 10.3390/molecules22060862 PMID: 28574485
  32. Han B, Yu YQ, Yang QL, Shen CY, Wang XJ. Kaempferol induces autophagic cell death of hepatocellular carcinoma cells via activating AMPK signaling. Oncotarget 2017; 8(49): 86227-39. doi: 10.18632/oncotarget.21043 PMID: 29156790
  33. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74. doi: 10.1016/j.cell.2011.02.013 PMID: 21376230
  34. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab 2016; 23(1): 27-47. doi: 10.1016/j.cmet.2015.12.006 PMID: 26771115
  35. Lee M, Ko H, Yun M. Cancer metabolism as a mechanism of treatment resistance and potential therapeutic target in hepatocellular carcinoma. Yonsei Med J 2018; 59(10): 1143-9. doi: 10.3349/ymj.2018.59.10.1143 PMID: 30450847
  36. Niu Y, Shan L, Gao H, et al. Huaier suppresses the hepatocellular carcinoma cell cycle by regulating minichromosome maintenance proteins. OncoTargets Ther 2020; 13: 12015-25. doi: 10.2147/OTT.S279723 PMID: 33244243
  37. Zhang C, Zhang J, Li X, Sun N, Yu R, Zhao B. Huaier aqueous extract induces hepatocellular carcinoma cells arrest in s phase via jnk signaling pathway. Evid Based Complement Alternat Med 2015; 2015: 171356.
  38. Xu X, Wei Q, Wang K, et al. Anticancer effects of Huaier are associated with down-regulation of P53. APJCP 2011; 12(9): 2251-4. PMID: 22296365
  39. Bland R, Hewison M. Steroid hormone metabolites and hormone binding assays. Methods Mol Biol 2001; 176: 145-62. doi: 10.1385/1-59259-115-9:145 PMID: 11554320
  40. Ghayee HK, Auchus RJ. Basic concepts and recent developments in human steroid hormone biosynthesis. Rev Endocr Metab Disord 2007; 8(4): 289-300. doi: 10.1007/s11154-007-9052-2 PMID: 17926129
  41. Ray K. Restoring gluconeogenesis: Steroids could treat liver cancer. Nat Rev Gastroenterol Hepatol 2013; 10(12): 693. doi: 10.1038/nrgastro.2013.215 PMID: 24192608
  42. Maio DM, Daniele B, Pignata S, et al. Is human hepatocellular carcinoma a hormone-responsive tumor? World J Gastroenterol 2008; 14(11): 1682-9. doi: 10.3748/wjg.14.1682 PMID: 18350599
  43. Kur P, Wołosiuk KA, Has MK, Wiszniewska B. Sex hormone-dependent physiology and diseases of liver. Int J Environ Res Public Health 2020; 17(8): 2620. doi: 10.3390/ijerph17082620 PMID: 32290381
  44. Zhang L, Wu J, Wu Q, et al. Sex steroid axes in determining male predominance in hepatocellular carcinoma. Cancer Lett 2023; 555: 216037. doi: 10.1016/j.canlet.2022.216037 PMID: 36563929
  45. Ince I, Knibbe CAJ, Danhof M, de Wildt SN. Developmental changes in the expression and function of cytochrome P450 3A isoforms: Evidence from in vitro and in vivo investigations. Clin Pharmacokinet 2013; 52(5): 333-45. doi: 10.1007/s40262-013-0041-1 PMID: 23463352
  46. Krohne G, Franke WW, Ely S, D’Arcy A, Jost E. Localization of a nuclear envelope-associated protein by indirect immunofluorescence microscopy using antibodies against a major polypeptide from rat liver fractions enriched in nuclear envelope-associated material. Cytobiologie 1978; 18(1): 22-38. PMID: 361462
  47. Fanni D, Manchia M, Lai F, Gerosa C, Ambu R, Faa G. Immunohistochemical markers of CYP3A4 and CYP3A7: A new tool towards personalized pharmacotherapy of hepatocellular carcinoma. Eur J Histochem 2016; 60(2): 2614. doi: 10.4081/ejh.2016.2614 PMID: 27349315
  48. Drozdzik M, Oswald S. Expression and regulation of drug transporters and metabolizing enzymes in the human gastrointestinal tract. Curr Med Chem 2016; 23(39): 4468-89. doi: 10.2174/0929867323666161024154457 PMID: 27781942
  49. Goey AKL, Mooiman KD, Beijnen JH, Schellens JHM, Meijerman I. Relevance of in vitro and clinical data for predicting CYP3A4-mediated herb–drug interactions in cancer patients. Cancer Treat Rev 2013; 39(7): 773-83. doi: 10.1016/j.ctrv.2012.12.008 PMID: 23394826
  50. Wang W, Xu G, Ding CL, et al. All-trans retinoic acid protects hepatocellular carcinoma cells against serum-starvation-induced cell death by upregulating collagen 8A2. FEBS J 2013; 280(5): 1308-19. doi: 10.1111/febs.12122 PMID: 23298258
  51. Chen H, Howald WN, Juchau MR. Biosynthesis of all-trans-retinoic acid from all-trans-retinol: Catalysis of all-trans-retinol oxidation by human P-450 cytochromes. Drug Metab Dispos 2000; 28(3): 315-22. PMID: 10681376
  52. Shang F, Liu M, Li B, et al. The anti-angiogenic effect of dexamethasone in a murine hepatocellular carcinoma model by augmentation of gluconeogenesis pathway in malignant cells. Cancer Chemother Pharmacol 2016; 77(5): 1087-96. doi: 10.1007/s00280-016-3030-x PMID: 27071921
  53. Zhang YJ, Chen S, Tsai WY, Ahsan H, Lunn RM, Wang L. Expression of cytochrome P450 1A1/2 and 3A4 in liver tissues of hepatocellular carcinoma cases and controls from Taiwan and their relationship to hepatitis B virus and aflatoxin B1-and 4-aminobiphenyl-DNA adducts. Biomarkers 2000; 5(4): 295-306.
  54. Ba Q, Li J, Huang C, et al. Effects of benzoapyrene exposure on human hepatocellular carcinoma cell angiogenesis, metastasis, and NF-κB signaling. Environ Health Perspect 2015; 123(3): 246-54. doi: 10.1289/ehp.1408524 PMID: 25325763
  55. Hu Z, Yang A, Su G, et al. Huaier restrains proliferative and invasive potential of human hepatoma SKHEP-1 cells partially through decreased Lamin B1 and elevated NOV. Sci Rep 2016; 6(1): 31298. doi: 10.1038/srep31298 PMID: 27503760
  56. Liu D, Zhu H, Zheng Y, Zhu X. Kaempferol activates human steroid and xenobiotic receptor-mediated cytochrome P450 3A4 transcription. Zhejiang da xue xue bao. Yi xue ban = J Zhejiang University. Med Sci 2006; 35(1): 14-7.
  57. Hyndman D, Bauman DR, Heredia VV, Penning TM. The aldo-keto reductase superfamily homepage. Chem Biol Interact 2003; 143-144: 621-31. doi: 10.1016/S0009-2797(02)00193-X PMID: 12604248
  58. Labrie F, Luu-The V, Lin SX, et al. Intracrinology: Role of the family of 17 beta-hydroxysteroid dehydrogenases in human physiology and disease. J Mol Endocrinol 2000; 25(1): 1-16. doi: 10.1677/jme.0.0250001 PMID: 10915214
  59. Penning TM, Burczynski ME, Jez JM, et al. Human 3α-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: Functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem J 2000; 351(1): 67-77. doi: 10.1042/bj3510067 PMID: 10998348
  60. Lin HK, Jez JM, Schlegel BP, Peehl DM, Pachter JA, Penning TM. Expression and characterization of recombinant type 2 3 alpha-hydroxysteroid dehydrogenase (HSD) from human prostate: Demonstration of bifunctional 3 alpha/17 beta-HSD activity and cellular distribution. Mol Endocrinol 1997; 11(13): 1971-84. PMID: 9415401
  61. Matsuura K, Shiraishi H, Hara A, et al. Identification of a principal mRNA species for human 3alpha-hydroxysteroid dehydrogenase isoform (AKR1C3) that exhibits high prostaglandin D2 11-ketoreductase activity. J Biochem 1998; 124(5): 940-6. doi: 10.1093/oxfordjournals.jbchem.a022211 PMID: 9792917
  62. Steckelbroeck S, Jin Y, Gopishetty S, Oyesanmi B, Penning TM. Human cytosolic 3alpha-hydroxysteroid dehydrogenases of the aldo-keto reductase superfamily display significant 3beta-hydroxysteroid dehydrogenase activity: Implications for steroid hormone metabolism and action. J Biol Chem 2004; 279(11): 10784-95. doi: 10.1074/jbc.M313308200 PMID: 14672942
  63. Auchus RJ. The backdoor pathway to dihydrotestosterone. Trends Endocrinol Metab 2004; 15(9): 432-8. doi: 10.1016/j.tem.2004.09.004 PMID: 15519890
  64. Prossnitz ER, Barton M. The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol 2011; 7(12): 715-26. doi: 10.1038/nrendo.2011.122 PMID: 21844907
  65. White DL, Liu Y, Tsavachidis S, et al. Sex hormone pathway gene polymorphisms are associated with risk of advanced hepatitis C-related liver disease in males. Gastroenterology 2014; 146(5): S-968. doi: 10.1016/S0016-5085(14)63524-1 PMID: 25379136
  66. Abbattista MR, Jamieson SMF, Gu Y, et al. Pre-clinical activity of PR-104 as monotherapy and in combination with sorafenib in hepatocellular carcinoma. Cancer Biol Ther 2015; 16(4): 610-22. doi: 10.1080/15384047.2015.1017171 PMID: 25869917
  67. Zhou Q, Tian W, Jiang Z, et al. A positive feedback loop of akr1c3-mediated activation of nf-κb and stat3 facilitates proliferation and metastasis in hepatocellular carcinoma. Cancer Res 2021; 81(5): 1361-74. doi: 10.1158/0008-5472.CAN-20-2480 PMID: 33361392
  68. Zhu P, Feng R, Lu X, et al. Diagnostic and prognostic values of akr1c3 and akr1d1 in hepatocellular carcinoma. Aging 2021; 13(3): 4138-56. doi: 10.18632/aging.202380 PMID: 33493134
  69. Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 2013; 138(4): 2099-107. doi: 10.1016/j.foodchem.2012.11.139 PMID: 23497863
  70. Stroheker T, Picard K, Lhuguenot JC, Lavier CMC, Chagnon MC. Steroid activities comparison of natural and food wrap compounds in human breast cancer cell lines. Food Chem Toxicol 2004; 42(6): 887-97. doi: 10.1016/j.fct.2004.01.012
  71. Wang J, Fang F, Huang Z, Wang Y, Wong C. Kaempferol is an estrogen-related receptor α and γ inverse agonist. FEBS Lett 2009; 583(4): 643-7. doi: 10.1016/j.febslet.2009.01.030 PMID: 19171140
  72. Jeong YU, Park YJ. Ergosterol peroxide from the medicinal mushroom Ganoderma lucidum inhibits differentiation and lipid accumulation of 3t3-l1 adipocytes. Int J Mol Sci 2020; 21(2): 460. doi: 10.3390/ijms21020460 PMID: 31936890
  73. Sherif ENF, Ahmed SA, Ibrahim AK, et al. Ergosterol peroxide from the egyptian red lingzhi or reishi mushroom, ganoderma resinaceum (agaricomycetes), showed preferred inhibition of mcf-7 over mda-mb-231 breast cancer cell lines. Int J Med Mushrooms 2020; 22(4): 389-96. doi: 10.1615/IntJMedMushrooms.2020034223 PMID: 32558503
  74. Li X, Wu Q, Bu M, et al. Ergosterol peroxide activates Foxo3-mediated cell death signaling by inhibiting AKT and c-Myc in human hepatocellular carcinoma cells. Oncotarget 2016; 7(23): 33948-59. doi: 10.18632/oncotarget.8608 PMID: 27058618
  75. Yuan Z, Pan Y, Leng T, Chu Y, Zhang H, Ma J. Progress and prospects of research ideas and methods in the network pharmacology of traditional Chinese medicine. J Pharm Pharm Sci 2022; 25: 218-26. doi: 10.18433/jpps32911
  76. Gu S, Pei J. Chinese herbal medicine meets biological networks of complex diseases: A computational perspective. Evid Based Complement Alternat Med 2017; 2017: 7198645. doi: 10.1155/2017/7198645
  77. Liu X, Liu J, Fu B, et al. DCABM-TCM: A database of constituents absorbed into the blood and metabolites of traditional Chinese medicine. J Chem Inf Model 2023; 63(15): 4948-59. doi: 10.1021/acs.jcim.3c00365 PMID: 37486750

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers