CRISPR/Cas9 Technology: A Novel Approach to Obesity Research


Cite item

Full Text

Abstract

:Gene editing technology, particularly Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has transformed medical research. As a newly developed genome editing technique, CRISPR technology has strongly assisted scientists in enriching their comprehension of the roles of individual genes and their influences on a vast spectrum of human malignancies. Despite considerable progress in elucidating obesity's molecular pathways, current anti-obesity medications fall short in effectiveness. A thorough understanding of the genetic foundations underlying various neurobiological pathways related to obesity, as well as the neuro-molecular mechanisms involved, is crucial for developing effective obesity treatments. Utilizing CRISPR-based technologies enables precise determination of the roles of genes that encode transcription factors or enzymes involved in processes, such as lipogenesis, lipolysis, glucose metabolism, and lipid storage within adipose tissue. This innovative approach allows for the targeted suppression or activation of genes regulating obesity, potentially leading to effective weight management strategies. In this review, we have provided a detailed overview of obesity's molecular genetics, the fundamentals of CRISPR/Cas9 technology, and how this technology contributes to the discovery and therapeutic targeting of new genes associated with obesity.

About the authors

Zahra Khademi

Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences

Email: info@benthamscience.net

Zahra Mahmoudi

Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran

Email: info@benthamscience.net

Vasily Sukhorukov

Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences

Email: info@benthamscience.net

Tannaz Jamialahmadi

Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Amirhossein Sahebkar

Biotechnology Research Center, Pharmaceutical Technology Institute,, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Haslam D, James W. Obesity. Lancet 2005; 366: 67483.
  2. Hruby A, Hu FB. The epidemiology of obesity: A big picture. PharmacoEconomics 2015; 33(7): 673-89. doi: 10.1007/s40273-014-0243-x PMID: 25471927
  3. Hayden J, Strawn T, Zink B, Bostick BP. Targeted treatment of hfpef in a mouse model of western diet-induced obesity via viral gene therapy of antioxidant NRF2. J Am Coll Cardiol 2022; 79(9) (Suppl.): 322-2. doi: 10.1016/S0735-1097(22)01313-4
  4. Gadde KM, Martin CK, Berthoud HR, Heymsfield SB. Obesity. J Am Coll Cardiol 2018; 71(1): 69-84. doi: 10.1016/j.jacc.2017.11.011 PMID: 29301630
  5. Jakab J, Miškić B, Mikši㠊, et al. Adipogenesis as a potential anti-obesity target: A review of pharmacological treatment and natural products. Diabetes Metab Syndr Obes 2021; 14: 67-83. doi: 10.2147/DMSO.S281186 PMID: 33447066
  6. Pigeyre M, Yazdi FT, Kaur Y, Meyre D. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin Sci 2016; 130(12): 943-86. doi: 10.1042/CS20160136 PMID: 27154742
  7. Romieu I, Dossus L, Barquera S, et al. Energy balance and obesity: What are the main drivers? Cancer Causes Control 2017; 28(3): 247-58. doi: 10.1007/s10552-017-0869-z PMID: 28210884
  8. Jayachandran M, Fei Z, Qu S. Genetic advancements in obesity management and CRISPR-Cas9-based gene editing system. Mol Cell Biochem 2022; 1-11. PMID: 35909208
  9. Kunej T, Skok DJ, Zorc M, et al. Obesity gene atlas in mammals. J Genomics 2013; 1: 45-55. doi: 10.7150/jgen.3996 PMID: 25031655
  10. Li X, Qi L. Gene-environment interactions on body fat distribution. Int J Mol Sci 2019; 20(15): 3690. doi: 10.3390/ijms20153690 PMID: 31357654
  11. Hill JO, Wyatt HR, Peters JC. Energy balance and obesity. Circulation 2012; 126(1): 126-32. doi: 10.1161/CIRCULATIONAHA.111.087213 PMID: 22753534
  12. Coughlin JW, Brantley PJ, Champagne CM, et al. The impact of continued intervention on weight: Five-year results from the weight loss maintenance trial. Obesity 2016; 24(5): 1046-53. doi: 10.1002/oby.21454 PMID: 26991814
  13. Gadde KM, Apolzan JW, Berthoud HR. Pharmacotherapy for patients with obesity. Clin Chem 2018; 64(1): 118-29. doi: 10.1373/clinchem.2017.272815 PMID: 29054924
  14. Yanovski SZ, Yanovski JA. Long-term drug treatment for obesity: A systematic and clinical review. JAMA 2014; 311(1): 74-86. doi: 10.1001/jama.2013.281361 PMID: 24231879
  15. Franco-Tormo MJ, Salas-Crisostomo M, Rocha NB, Budde H, Machado S, Murillo-Rodríguez E. CRISPR/Cas9, the powerful new genome-editing tool for putative therapeutics in obesity. J Mol Neurosci 2018; 65(1): 10-6. doi: 10.1007/s12031-018-1076-4 PMID: 29732484
  16. Loos RJF, Yeo GSH. The bigger picture of FTO-the first GWAS-identified obesity gene. Nat Rev Endocrinol 2014; 10(1): 51-61. doi: 10.1038/nrendo.2013.227 PMID: 24247219
  17. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822): 860-921. doi: 10.1038/35057062 PMID: 11237011
  18. Wood AJ, Lo TW, Zeitler B, et al. Targeted genome editing across species using ZFNs and TALENs. Science 2011; 333(6040): 307-7. doi: 10.1126/science.1207773 PMID: 21700836
  19. Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013; 339(6121): 823-6. doi: 10.1126/science.1232033 PMID: 23287722
  20. Urnov FD, Miller JC, Lee YL, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005; 435(7042): 646-51. doi: 10.1038/nature03556 PMID: 15806097
  21. Carroll D. Genome engineering with zinc-finger nucleases. Genetics 2011; 188(4): 773-82. doi: 10.1534/genetics.111.131433 PMID: 21828278
  22. Ho B, Loh S, Chan W, Soh B. In vivo genome editing as a therapeutic approach. Int J Mol Sci 2018; 19(9): 2721. doi: 10.3390/ijms19092721 PMID: 30213032
  23. Kim YG, Chandrasegaran S. Chimeric restriction endonuclease. Proc Natl Acad Sci USA 1994; 91(3): 883-7. doi: 10.1073/pnas.91.3.883 PMID: 7905633
  24. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet 2010; 11(9): 636-46. doi: 10.1038/nrg2842 PMID: 20717154
  25. Miller JC, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 2011; 29(2): 143-8. doi: 10.1038/nbt.1755 PMID: 21179091
  26. Sung YH, Baek IJ, Kim DH, et al. Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol 2013; 31(1): 23-4. doi: 10.1038/nbt.2477 PMID: 23302927
  27. Bogdanove AJ, Voytas DF. TAL effectors: Customizable proteins for DNA targeting. Science 2011; 333(6051): 1843-6. doi: 10.1126/science.1204094 PMID: 21960622
  28. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816-21. doi: 10.1126/science.1225829 PMID: 22745249
  29. Brouns SJJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008; 321(5891): 960-4. doi: 10.1126/science.1159689 PMID: 18703739
  30. Fonfara I, Le Rhun A, Chylinski K, et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 2014; 42(4): 2577-90. doi: 10.1093/nar/gkt1074 PMID: 24270795
  31. Yuan M, Webb E, Lemoine N, Wang Y. CRISPR-Cas9 as a powerful tool for efficient creation of oncolytic viruses. Viruses 2016; 8(3): 72. doi: 10.3390/v8030072 PMID: 26959050
  32. Lander ES. The heroes of CRISPR. Cell 2016; 164(1-2): 18-28. doi: 10.1016/j.cell.2015.12.041 PMID: 26771483
  33. Sorek R, Kunin V, Hugenholtz P. CRISPR - a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 2008; 6(3): 181-6. doi: 10.1038/nrmicro1793 PMID: 18157154
  34. Chandrasekaran M, Boopathi T, Paramasivan M. A status-quo review on CRISPR-Cas9 gene editing applications in tomato. Int J Biol Macromol 2021; 190: 120-9. doi: 10.1016/j.ijbiomac.2021.08.169 PMID: 34474054
  35. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science 2010; 327(5962): 167-70. doi: 10.1126/science.1179555 PMID: 20056882
  36. Rath D, Amlinger L, Rath A, Lundgren M. The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie 2015; 117: 119-28. doi: 10.1016/j.biochi.2015.03.025 PMID: 25868999
  37. Zhu S, Zhou Y, Wei W. Genome-wide CRISPR/Cas9 screening for high-throughput functional genomics in human cells. Innate Antiviral Immunity. Springer 2017; pp. 175-81.
  38. Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819-23. doi: 10.1126/science.1231143 PMID: 23287718
  39. Khademi Z, Ramezani M, Alibolandi M, et al. A novel dual-targeting delivery system for specific delivery of CRISPR/Cas9 using hyaluronic acid, chitosan and AS1411. Carbohydr Polym 2022; 292: 119691. doi: 10.1016/j.carbpol.2022.119691 PMID: 35725215
  40. Kang X, Wang Y, Liu P, et al. Progresses, challenges, and prospects of CRISPR/Cas9 gene-editing in glioma studies. Cancers 2023; 15(2): 396. doi: 10.3390/cancers15020396 PMID: 36672345
  41. Gaj T, Sirk SJ, Shui S, Liu J. Genome-editing technologies: Principles and applications. Cold Spring Harb Perspect Biol 2016; 8(12): a023754. doi: 10.1101/cshperspect.a023754 PMID: 27908936
  42. Xu Z, Li Y, Li M, Xiang H, Yan A. Harnessing the type I CRISPR-CAS systems for genome editing in prokaryotes. Environ Microbiol 2021; 23(2): 542-58. doi: 10.1111/1462-2920.15116 PMID: 32510745
  43. Pu Y, Wu W, Xiang H, Chen Y, Xu H. CRISPR/Cas9-based genome editing for multimodal synergistic cancer nanotherapy. Nano Today 2023; 48: 101734. doi: 10.1016/j.nantod.2022.101734
  44. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 2014; 32(3): 279-84. doi: 10.1038/nbt.2808 PMID: 24463574
  45. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346(6213): 1258096. doi: 10.1126/science.1258096 PMID: 25430774
  46. Wang HX, Li M, Lee CM, et al. CRISPR/Cas9-based genome editing for disease modeling and therapy: Challenges and opportunities for nonviral delivery. Chem Rev 2017; 117(15): 9874-906. doi: 10.1021/acs.chemrev.6b00799 PMID: 28640612
  47. Yin H, Kauffman KJ, Anderson DG. Delivery technologies for genome editing. Nat Rev Drug Discov 2017; 16(6): 387-99. doi: 10.1038/nrd.2016.280 PMID: 28337020
  48. Kopelman PG. Obesity as a medical problem. Nature 2000; 404(6778): 635-43. doi: 10.1038/35007508 PMID: 10766250
  49. Manco M, Dallapiccola B. Genetics of pediatric obesity. Pediatrics 2012; 130(1): 123-33. doi: 10.1542/peds.2011-2717 PMID: 22665408
  50. Chung WK. An overview of mongenic and syndromic obesities in humans. Pediatr Blood Cancer 2012; 58(1): 122-8. doi: 10.1002/pbc.23372 PMID: 21994130
  51. Ng MCY, Bowden DW. Is genetic testing of value in predicting and treating obesity? N C Med J 2013; 74(6): 530-3. doi: 10.18043/ncm.74.6.530 PMID: 24316784
  52. Li S, Zhao JH, Luan J, et al. Cumulative effects and predictive value of common obesity-susceptibility variants identified by genome-wide association studies. Am J Clin Nutr 2010; 91(1): 184-90. doi: 10.3945/ajcn.2009.28403 PMID: 19812171
  53. den Hoed M, Ekelund U, Brage S, et al. Genetic susceptibility to obesity and related traits in childhood and adolescence: Influence of loci identified by genome-wide association studies. Diabetes 2010; 59(11): 2980-8. doi: 10.2337/db10-0370 PMID: 20724581
  54. Mahmoud R, Kimonis V, Butler MG. Genetics of obesity in humans: A clinical review. Int J Mol Sci 2022; 23(19): 11005. doi: 10.3390/ijms231911005 PMID: 36232301
  55. Münzberg H, Morrison CD. Structure, production and signaling of leptin. Metabolism 2015; 64(1): 13-23. doi: 10.1016/j.metabol.2014.09.010 PMID: 25305050
  56. Coleman DL. Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 1973; 9(4): 294-8. doi: 10.1007/BF01221857 PMID: 4767369
  57. Coleman DL. Obese and diabetes: Two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 1978; 14(3): 141-8. doi: 10.1007/BF00429772 PMID: 350680
  58. Friedman JM, Leibel RL. Tackling a weighty problem. Cell 1992; 69(2): 217-20. doi: 10.1016/0092-8674(92)90402-X PMID: 1568242
  59. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998; 395(6704): 763-70. doi: 10.1038/27376 PMID: 9796811
  60. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372(6505): 425-32. doi: 10.1038/372425a0 PMID: 7984236
  61. Pelleymounter MA, Cullen MJ, Baker MB, et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995; 269(5223): 540-3. doi: 10.1126/science.7624776 PMID: 7624776
  62. Sadaf Farooqi I. Genetic and hereditary aspects of childhood obesity. Best Pract Res Clin Endocrinol Metab 2005; 19(3): 359-74. doi: 10.1016/j.beem.2005.04.004 PMID: 16150380
  63. Franks PW, Brage S, Luan JA, et al. Leptin predicts a worsening of the features of the metabolic syndrome independently of obesity. Obes Res 2005; 13(8): 1476-84. doi: 10.1038/oby.2005.178 PMID: 16129731
  64. Paracchini V, Pedotti P, Taioli E. Genetics of leptin and obesity: A huge review. Am J Epidemiol 2005; 162(2): 101-14. doi: 10.1093/aje/kwi174 PMID: 15972940
  65. Wasim M, Awan FR, Najam SS, Khan AR, Khan HN. Role of leptin deficiency, inefficiency, and leptin receptors in obesity. Biochem Genet 2016; 54(5): 565-72. doi: 10.1007/s10528-016-9751-z PMID: 27313173
  66. Obradovic M, Sudar-Milovanovic E, Soskic S, et al. Leptin and obesity: Role and clinical implication. Front Endocrinol 2021; 12: 585887. doi: 10.3389/fendo.2021.585887 PMID: 34084149
  67. Chen H, Charlat O, Tartaglia LA, et al. Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice. Cell 1996; 84(3): 491-5. doi: 10.1016/S0092-8674(00)81294-5 PMID: 8608603
  68. Roh J, Lee J, Park SU, et al. CRISPR-Cas9-mediated generation of obese and diabetic mouse models. Exp Anim 2018; 67(2): 229-37. doi: 10.1538/expanim.17-0123 PMID: 29343656
  69. Kamble PG, Hetty S, Vranic M, et al. Proof-of-concept for CRISPR/Cas9 gene editing in human preadipocytes: Deletion of FKBP5 and PPARG and effects on adipocyte differentiation and metabolism. Sci Rep 2020; 10(1): 10565. doi: 10.1038/s41598-020-67293-y PMID: 32601291
  70. Liu J, Liu J, Zeng D, et al. miR-143-null is against diet-induced obesity by promoting BAT thermogenesis and inhibiting WAT adipogenesis. Int J Mol Sci 2022; 23(21): 13058. doi: 10.3390/ijms232113058 PMID: 36361843
  71. Wang CH, Lundh M, Fu A, et al. CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Sci Transl Med 2020; 12(558): eaaz8664. doi: 10.1126/scitranslmed.aaz8664 PMID: 32848096
  72. Qiu J, Bosch MA, Stincic TL, et al. CRISPR/SaCas9 mutagenesis of stromal interaction molecule 1 in proopiomelanocortin neurons increases glutamatergic excitability and protects against diet-induced obesity. Mol Metab 2022; 66: 101645. doi: 10.1016/j.molmet.2022.101645 PMID: 36442744
  73. Yang Z, Li P, Shang Q, et al. CRISPR-mediated BMP9 ablation promotes liver steatosis via the down-regulation of PPARα expression. Sci Adv 2020; 6(48): eabc5022. doi: 10.1126/sciadv.abc5022 PMID: 33246954
  74. Leuillier M, Duflot T, Ménoret S, et al. CRISPR/Cas9-mediated inactivation of the phosphatase activity of soluble epoxide hydrolase prevents obesity and cardiac ischemic injury. J Adv Res 2023; 43: 163-74. doi: 10.1016/j.jare.2022.03.004 PMID: 36585106
  75. Zhu L, Yang X, Li J, et al. Leptin gene-targeted editing in ob/ob mouse adipose tissue based on the CRISPR/Cas9 system. J Genet Genomics 2021; 48(2): 134-46. doi: 10.1016/j.jgg.2021.01.008 PMID: 33931338
  76. Tian H, Niu H, Luo J, et al. Effects of CRISPR/Cas9-mediated stearoyl-Coenzyme A desaturase 1 knockout on mouse embryo development and lipid synthesis. PeerJ 2022; 10: e13945. doi: 10.7717/peerj.13945 PMID: 36124130
  77. Tsagkaraki E, Nicoloro SM, DeSouza T, et al. CRISPR-enhanced human adipocyte browning as cell therapy for metabolic disease. Nat Commun 2021; 12(1): 6931. doi: 10.1038/s41467-021-27190-y PMID: 34836963
  78. Yuan H, Ruan Y, Tan Y, et al. Regenerating Urethral Striated muscle by CRISPRi/dCas9-KRAB-mediated myostatin silencing for obesity-associated stress urinary incontinence. CRISPR J 2020; 3(6): 562-72. doi: 10.1089/crispr.2020.0077 PMID: 33346712
  79. Lin X, Liou YH, Li Y, et al. FAM13A represses AMPK activity and regulates hepatic glucose and lipid metabolism. iScience 2020; 23(3): 100928. doi: 10.1016/j.isci.2020.100928 PMID: 32151973
  80. Lundbäck V, Kulyte A, Strawbridge RJ, et al. FAM13A and POM121C are candidate genes for fasting insulin: Functional follow-up analysis of a genome-wide association study. Diabetologia 2018; 61(5): 1112-23. doi: 10.1007/s00125-018-4572-8 PMID: 29487953
  81. Le Magueresse-Battistoni B. Adipose tissue and endocrine-disrupting chemicals: Does sex matter? Int J Environ Res Public Health 2020; 17(24): 9403. doi: 10.3390/ijerph17249403 PMID: 33333918
  82. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004; 89(6): 2548-56. doi: 10.1210/jc.2004-0395 PMID: 15181022
  83. Guerreiro VA, Carvalho D, Freitas P. Obesity, adipose tissue, and inflammation answered in questions. J Obes 2022; 2022: 1-11. doi: 10.1155/2022/2252516 PMID: 35321537
  84. Gupta A, Efthymiou V, Kodani SD, et al. Mapping the transcriptional landscape of human white and brown adipogenesis using single-nuclei RNA-seq. Mol Metab 2023; 74: 101746. doi: 10.1016/j.molmet.2023.101746 PMID: 37286033
  85. Gezginci-Oktayoglu S, Sancar S, Karatug-Kacar A, Bolkent S. miR-375 induces adipogenesis through targeting Erk1 in pancreatic duct cells under the influence of sodium palmitate. J Cell Physiol 2021; 236(5): 3881-95. doi: 10.1002/jcp.30129 PMID: 33107061
  86. Chen C, Zhang X, Deng Y, et al. Regulatory roles of circRNAs in adipogenesis and lipid metabolism: Emerging insights into lipid-related diseases. FEBS J 2021; 288(12): 3663-82. doi: 10.1111/febs.15525 PMID: 32798313
  87. Becher T, Palanisamy S, Kramer DJ, et al. Brown adipose tissue is associated with cardiometabolic health. Nat Med 2021; 27(1): 58-65. doi: 10.1038/s41591-020-1126-7 PMID: 33398160
  88. Nedergaard J, Cannon B. The changed metabolic world with human brown adipose tissue: Therapeutic visions. Cell Metab 2010; 11(4): 268-72. doi: 10.1016/j.cmet.2010.03.007 PMID: 20374959
  89. Carpentier AC, Blondin DP, Haman F, Richard D. Brown adipose tissue-a translational perspective. Endocr Rev 2023; 44(2): 143-92. doi: 10.1210/endrev/bnac015 PMID: 35640259
  90. Chen Z, Wang GX, Ma SL, et al. Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic disorders. Mol Metab 2017; 6(8): 863-72. doi: 10.1016/j.molmet.2017.03.016 PMID: 28752050
  91. Wang GX, Zhao XY, Meng ZX, et al. The brown fat–enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat Med 2014; 20(12): 1436-43. doi: 10.1038/nm.3713 PMID: 25401691
  92. Harb E, Kheder O, Poopalasingam G, Rashid R, Srinivasan A, Izzi-Engbeaya C. Brown adipose tissue and regulation of human body weight. Diabetes Metab Res Rev 2023; 39(1): e3594. doi: 10.1002/dmrr.3594 PMID: 36398906
  93. Cannon B, de Jong JMA, Fischer AW, Nedergaard J, Petrovic N. Human brown adipose tissue: Classical brown rather than brite/beige? Exp Physiol 2020; 105(8): 1191-200. doi: 10.1113/EP087875 PMID: 32378255
  94. Townsend KL, Tseng YH. Brown fat fuel utilization and thermogenesis. Trends Endocrinol Metab 2014; 25(4): 168-77. doi: 10.1016/j.tem.2013.12.004 PMID: 24389130
  95. Zhang Y, Yin C, Zhang T, et al. CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Sci Rep 2015; 5(1): 16277. doi: 10.1038/srep16277 PMID: 26538064
  96. Vora S, Tuttle M, Cheng J, Church G. Next stop for the CRISPR revolution: RNA-guided epigenetic regulators. FEBS J 2016; 283(17): 3181-93. doi: 10.1111/febs.13768 PMID: 27248712
  97. Xiong K, Zhou Y, Hyttel P, Bolund L, Freude KK, Luo Y. Generation of induced pluripotent stem cells (iPSCs) stably expressing CRISPR-based synergistic activation mediator (SAM). Stem Cell Res 2016; 17(3): 665-9. doi: 10.1016/j.scr.2016.10.011 PMID: 27934604
  98. Chen X, Ranjan VD, Liu S, et al. In situ formation of 3D conductive and cell-laden graphene hydrogel for electrically regulating cellular behavior. Macromol Biosci 2021; 21(4): 2000374. doi: 10.1002/mabi.202000374 PMID: 33620138
  99. Tozzi A, Bengtson CP, Longone P, et al. Involvement of transient receptor potential-like channels in responses to mGluR-I activation in midbrain dopamine neurons. Eur J Neurosci 2003; 18(8): 2133-45. doi: 10.1046/j.1460-9568.2003.02936.x PMID: 14622174
  100. Clapham DE. TRP channels as cellular sensors. Nature 2003; 426(6966): 517-24. doi: 10.1038/nature02196 PMID: 14654832
  101. Salido GM, Jardín I, Rosado JA. The TRPC ion channels: Association with Orai1 and STIM1 proteins and participation in capacitative and non-capacitative calcium entry. Transient Recep Potential Channels 2011; pp. 413-33.
  102. Ling M, Lai X, Quan L, et al. Knockdown of VEGFB/VEGFR1 signaling promotes white adipose tissue browning and skeletal muscle development. Int J Mol Sci 2022; 23(14): 7524. doi: 10.3390/ijms23147524 PMID: 35886871
  103. Chen L, Dai YM, Ji CB, et al. MiR-146b is a regulator of human visceral preadipocyte proliferation and differentiation and its expression is altered in human obesity. Mol Cell Endocrinol 2014; 393(1-2): 65-74. doi: 10.1016/j.mce.2014.05.022 PMID: 24931160
  104. Kawamura Y, Tanaka Y, Kawamori R, Maeda S. Overexpression of Kruppel-like factor 7 regulates adipocytokine gene expressions in human adipocytes and inhibits glucose-induced insulin secretion in pancreatic β-cell line. Mol Endocrinol 2006; 20(4): 844-56. doi: 10.1210/me.2005-0138 PMID: 16339272
  105. Sun Y, Xu H, Li J, et al. Genome-wide survey identifies TNNI2 as a target of KLF7 that inhibits chicken adipogenesis via downregulating FABP4. Biochim Biophys Acta Gene Regul Mech 2023; 1866(1): 194899. doi: 10.1016/j.bbagrm.2022.194899 PMID: 36410687
  106. Zhang Z, Wang H, Sun Y, Li H, Wang N. Klf7 modulates the differentiation and proliferation of chicken preadipocyte. Acta Biochim Biophys Sin 2013; 45(4): 280-8. doi: 10.1093/abbs/gmt010 PMID: 23439665
  107. Jia Z. KLF7 promotes preadipocyte proliferation via activation of the akt signaling pathway by cis-regulating CDKN3. bioRxiv 2022; 2022.06. doi: 10.1101/2022.06.16.496506
  108. Newman JW, Morisseau C, Harris TR, Hammock BD. The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity. Proc Natl Acad Sci USA 2003; 100(4): 1558-63. doi: 10.1073/pnas.0437724100 PMID: 12574510
  109. Cronin A, Mowbray S, Dürk H, et al. The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase. Proc Natl Acad Sci USA 2003; 100(4): 1552-7. doi: 10.1073/pnas.0437829100 PMID: 12574508
  110. Gonçalves GAR, Paiva RMA. Gene therapy: Advances, challenges and perspectives. Einstein 2017; 15(3): 369-75. doi: 10.1590/s1679-45082017rb4024 PMID: 29091160
  111. Gao M, Liu D. Gene therapy for obesity: Progress and prospects. Discov Med 2014; 17(96): 319-28. PMID: 24979252
  112. Song Z, Xiaoli A, Yang F. Regulation and metabolic significance of de novo lipogenesis in adipose tissues. Nutrients 2018; 10(10): 1383. doi: 10.3390/nu10101383 PMID: 30274245
  113. Akalestou E, Genser L, Rutter GA. Glucocorticoid metabolism in obesity and following weight loss. Front Endocrinol 2020; 11: 59. doi: 10.3389/fendo.2020.00059 PMID: 32153504
  114. Wei X, Zhang J, Tang M, Wang X, Fan N, Peng Y. Fat mass and obesity–associated protein promotes liver steatosis by targeting PPARα. Lipids Health Dis 2022; 21(1): 29. doi: 10.1186/s12944-022-01640-y PMID: 35282837
  115. Salazar VS, Gamer LW, Rosen V. BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol 2016; 12(4): 203-21. doi: 10.1038/nrendo.2016.12 PMID: 26893264
  116. Miller AF, Harvey SAK, Thies RS, Olson MS. Bone morphogenetic protein-9. An autocrine/paracrine cytokine in the liver. J Biol Chem 2000; 275(24): 17937-45. doi: 10.1074/jbc.275.24.17937 PMID: 10849432
  117. Bidart M, Ricard N, Levet S, et al. BMP9 is produced by hepatocytes and circulates mainly in an active mature form complexed to its prodomain. Cell Mol Life Sci 2012; 69(2): 313-24. doi: 10.1007/s00018-011-0751-1 PMID: 21710321
  118. Huang C, Chen W, Wang X. Studies on the fat mass and obesity-associated (FTO) gene and its impact on obesity-associated diseases. Genes Dis 2023; 10(6): 2351-65. doi: 10.1016/j.gendis.2022.04.014 PMID: 37554175
  119. Claussnitzer M, Dankel SN, Kim KH, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med 2015; 373(10): 895-907. doi: 10.1056/NEJMoa1502214 PMID: 26287746
  120. Chung JY, Hong J, Kim HJ, et al. White adipocyte-targeted dual gene silencing of FABP4/5 for anti-obesity, anti-inflammation and reversal of insulin resistance: Efficacy and comparison of administration routes. Biomaterials 2021; 279: 121209. doi: 10.1016/j.biomaterials.2021.121209 PMID: 34700224
  121. Chen MT, Huang JS, Gao DD, Li YX, Wang HY. Combined treatment with FABP4 inhibitor ameliorates rosiglitazone-induced liver steatosis in obese diabetic db/db mice. Basic Clin Pharmacol Toxicol 2021; 129(3): 173-82. doi: 10.1111/bcpt.13621 PMID: 34128319
  122. Furuhashi M. Fatty acid-binding protein 4 in cardiovascular and metabolic diseases. J Atheroscler Thromb 2019; 26(3): 216-32. doi: 10.5551/jat.48710 PMID: 30726793
  123. Chung JY, Ain QU, Song Y, Yong SB, Kim YH. Targeted delivery of CRISPR interference system against Fabp4 to white adipocytes ameliorates obesity, inflammation, hepatic steatosis, and insulin resistance. Genome Res 2019; 29(9): 1442-52. doi: 10.1101/gr.246900.118 PMID: 31467027
  124. Lu Y, Day FR, Gustafsson S, et al. New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nat Commun 2016; 7(1): 10495. doi: 10.1038/ncomms10495 PMID: 26833246
  125. Kilpeläinen TO, Zillikens MC, Stančákova A, et al. Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat Genet 2011; 43(8): 753-60. doi: 10.1038/ng.866 PMID: 21706003
  126. Cook NL, Pjanic M, Emmerich AG, et al. CRISPR-Cas9-mediated knockout of SPRY2 in human hepatocytes leads to increased glucose uptake and lipid droplet accumulation. BMC Endocr Disord 2019; 19(1): 115. doi: 10.1186/s12902-019-0442-8 PMID: 31664995
  127. He Y, Brouwers B, Liu H, et al. Human loss-of-function variants in the serotonin 2C receptor associated with obesity and maladaptive behavior. Nat Med 2022; 28(12): 2537-46. doi: 10.1038/s41591-022-02106-5 PMID: 36536256

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers