MicroRNAs as Key Regulators in RA and SLE: Insights into Biological Functions


Цитировать

Полный текст

Аннотация

MicroRNAs (miRNAs) are non-coding RNA molecules that bind to mRNAs to regulate gene expression. Since changes in miRNA expression levels have been found in a variety of autoimmune illnesses, miRNAs are important in autoimmune diseases. MiRNAs serve not only as pathogenic factors and biomarkers for autoimmune diseases but also as important targets for disease therapeutics. Although miRNA-based treatments are still in the research stage, in-depth investigations into the biological functions of miRNAs have significantly enhanced our understanding of their mechanisms in autoimmune diseases. The purpose of this review is to summarize the biological functions of miRNAs, their roles in rheumatoid arthritis and systemic lupus erythematosus, therapeutic strategies, and challenges.

Об авторах

Xiao-Xiao Li

Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University

Email: info@benthamscience.net

Chan-Na Zhao

Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University

Email: info@benthamscience.net

Hai-Fen Wei

Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University

Email: info@benthamscience.net

Sheng Li

Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University

Email: info@benthamscience.net

Jian Tang

Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University

Email: info@benthamscience.net

Yan-Yu Zhu

Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University

Email: info@benthamscience.net

Xue-Er Cheng

Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University

Email: info@benthamscience.net

Qian-Qian Shi

Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University

Email: info@benthamscience.net

Peng Wang

Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Hai-Feng Pan

Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Hiramatsu-Asano S, Wada J. Therapeutic approaches targeting miRNA in systemic lupus erythematosus. Acta Med Okayama 2022; 76(4): 359-71. doi: 10.18926/AMO/63887 PMID: 36123150
  2. Gorabi AM, Kiaie N, Aslani S, Jamialahmadi T, Johnston TP, Sahebkar A. Prospects for the potential of RNA interference in the treatment of autoimmune diseases: Small interfering RNAs in the spotlight. J Autoimmun 2020; 114: 102529. doi: 10.1016/j.jaut.2020.102529 PMID: 32782117
  3. Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs’ action through miRNA editing. Int J Mol Sci 2019; 20(24): 6249. doi: 10.3390/ijms20246249 PMID: 31835747
  4. Diener C, Keller A, Meese E. Emerging concepts of miRNA therapeutics: From cells to clinic. Trends Genet 2022; 38(6): 613-26. doi: 10.1016/j.tig.2022.02.006 PMID: 35303998
  5. Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455(7209): 58-63. doi: 10.1038/nature07228 PMID: 18668040
  6. Mestdagh P, Boström AK, Impens F, et al. The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma. Mol Cell 2010; 40(5): 762-73. doi: 10.1016/j.molcel.2010.11.038 PMID: 21145484
  7. Hart M, Walch-Rückheim B, Krammes L, et al. miR-34a as hub of T cell regulation networks. J Immunother Cancer 2019; 7(1): 187. doi: 10.1186/s40425-019-0670-5 PMID: 31311583
  8. Ullah S, John P, Bhatti A. MicroRNAs with a role in gene regulation and in human diseases. Mol Biol Rep 2014; 41(1): 225-32. doi: 10.1007/s11033-013-2855-1 PMID: 24197698
  9. Roy S, Awasthi A. Emerging roles of noncoding RNAs in T cell differentiation and functions in autoimmune diseases. Int Rev Immunol 2019; 38(5): 232-45. doi: 10.1080/08830185.2019.1648454 PMID: 31411520
  10. Huang J, Xu X, Yang J. miRNAs alter T helper 17 cell fate in the pathogenesis of autoimmune diseases. Front Immunol 2021; 12: 593473. doi: 10.3389/fimmu.2021.593473 PMID: 33968012
  11. Colamatteo A, Micillo T, Bruzzaniti S, et al. Metabolism and autoimmune responses: The microRNA connection. Front Immunol 2019; 10: 1969. doi: 10.3389/fimmu.2019.01969 PMID: 31555261
  12. Kissler S. From genome-wide association studies to etiology: Probing autoimmunity genes by RNAi. Trends Mol Med 2011; 17(11): 634-40. doi: 10.1016/j.molmed.2011.06.006 PMID: 21783421
  13. Acuña SM, Floeter-Winter LM, Muxel SM. MicroRNAs: Biological regulators in pathogen–host interactions. Cells 2020; 9(1): 113. doi: 10.3390/cells9010113 PMID: 31906500
  14. Liu L, Chen H, Jiang T, He D. MicroRNA-106b overexpression suppresses synovial inflammation and alleviates synovial damage in patients with rheumatoid arthritis. Mod Rheumatol 2022; 32(6): 1054-63. doi: 10.1093/mr/roab108 PMID: 34850088
  15. Yang J, Li Z, Wang L, et al. The role of non-coding RNAs (miRNA and lncRNA) in the clinical management of rheumatoid arthritis. Pharmacol Res 2022; 186: 106549. doi: 10.1016/j.phrs.2022.106549 PMID: 36368452
  16. Ouboussad L, Hunt L, Hensor EMA, et al. Profiling microRNAs in individuals at risk of progression to rheumatoid arthritis. Arthritis Res Ther 2017; 19(1): 288. doi: 10.1186/s13075-017-1492-9 PMID: 29273071
  17. Noack M, Miossec P. Selected cytokine pathways in rheumatoid arthritis. Semin Immunopathol 2017; 39(4): 365-83. doi: 10.1007/s00281-017-0619-z PMID: 28213794
  18. Evangelatos G, Fragoulis GE, Koulouri V, Lambrou GI. MicroRNAs in rheumatoid arthritis: From pathogenesis to clinical impact. Autoimmun Rev 2019; 18(11): 102391. doi: 10.1016/j.autrev.2019.102391 PMID: 31520804
  19. Chen Y, Dang J, Lin X, et al. RA fibroblast-like synoviocytes derived extracellular vesicles promote angiogenesis by miRNA-1972 targeting p53/mTOR signaling in vascular endotheliocyte. Front Immunol 2022; 13: 793855. doi: 10.3389/fimmu.2022.793855 PMID: 35350778
  20. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 2009; 1(6): a001651. doi: 10.1101/cshperspect.a001651 PMID: 20457564
  21. Chen Y, Xian PF, Yang L, Wang SX. MicroRNA-21 promotes proliferation of fibroblast-like synoviocytes through mediation of NF-κ B nuclear translocation in a rat model of collagen-induced rheumatoid arthritis. BioMed Res Int 2016; 2016: 1-8. doi: 10.1155/2016/9279078 PMID: 27429986
  22. de la Rica L, Urquiza JM, Gómez-Cabrero D, et al. Identification of novel markers in rheumatoid arthritis through integrated analysis of DNA methylation and microRNA expression. J Autoimmun 2013; 41: 6-16. doi: 10.1016/j.jaut.2012.12.005 PMID: 23306098
  23. Shi D L, Shi G R. MicroRNA-27a inhibits cell migration and invasion of fibroblast-like synoviocytes by targeting follistatin-like protein 1 in Rheumatoid Arthritis. Mol Cells 2016; 39(8): 611-8. doi: 10.14348/molcells.2016.0103
  24. Li Z, Chen H, Wang F, et al. Down-regulation of microRNA-98 promoted apoptosis of TNF-α stimulated human fibroblast-like synoviocytes via up-regulating IL-10. Gene 2019; 706: 124-30. doi: 10.1016/j.gene.2019.05.019 PMID: 31077735
  25. Iwamoto N, Fukui S, Takatani A, et al. Osteogenic differentiation of fibroblast-like synovial cells in rheumatoid arthritis is induced by microRNA-218 through a ROBO/Slit pathway. Arthritis Res Ther 2018; 20(1): 189. doi: 10.1186/s13075-018-1703-z PMID: 30157923
  26. Semaan N, Frenzel L, Alsaleh G, et al. miR-346 controls release of TNF-α protein and stability of its mRNA in rheumatoid arthritis via tristetraprolin stabilization. PLoS One 2011; 6(5): e19827. doi: 10.1371/journal.pone.0019827 PMID: 21611196
  27. Ospelt C, Gay S, Klein K. Epigenetics in the pathogenesis of RA. Semin Immunopathol 2017; 39(4): 409-19. doi: 10.1007/s00281-017-0621-5 PMID: 28324153
  28. Niederer F, Trenkmann M, Ospelt C, et al. Down-regulation of microRNA-34a* in rheumatoid arthritis synovial fibroblasts promotes apoptosis resistance. Arthritis Rheum 2012; 64(6): 1771-9. doi: 10.1002/art.34334 PMID: 22161761
  29. Hussain N, Zhu W, Jiang C, et al. Down-regulation of miR-10a-5p promotes proliferation and restricts apoptosis via targeting T-box transcription factor 5 in inflamed synoviocytes. Biosci Rep 2018; 38(2): BSR20180003. doi: 10.1042/BSR20180003 PMID: 29545315
  30. Mu N, Gu J, Huang T, et al. A novel NF-κB/YY1/microRNA-10a regulatory circuit in fibroblast-like synoviocytes regulates inflammation in rheumatoid arthritis. Sci Rep 2016; 6(1): 20059. doi: 10.1038/srep20059 PMID: 26821827
  31. Akhtar N, Singh AK, Ahmed S. MicroRNA-17 suppresses TNF-α signaling by interfering with TRAF2 and cIAP2 association in rheumatoid arthritis synovial fibroblasts. J Immunol 2016; 197(6): 2219-28. doi: 10.4049/jimmunol.1600360 PMID: 27534557
  32. Trenkmann M, Brock M, Gay RE, Michel BA, Gay S, Huber LC. Tumor necrosis factor α-induced microRNA-18a activates rheumatoid arthritis synovial fibroblasts through a feedback loop in NF-κB signaling. Arthritis Rheum 2013; 65(4): 916-27. doi: 10.1002/art.37834 PMID: 23280137
  33. Li Z, Cai J, Cao X. MiR-19 suppresses fibroblast-like synoviocytes cytokine release by targeting toll like receptor 2 in rheumatoid arthritis. Am J Transl Res 2016; 8(12): 5512-8. PMID: 28078022
  34. Philippe L, Alsaleh G, Suffert G, et al. TLR2 expression is regulated by microRNA miR-19 in rheumatoid fibroblast-like synoviocytes. J Immunol 2012; 188(1): 454-61. doi: 10.4049/jimmunol.1102348 PMID: 22105995
  35. Wang M, Mei L, Liu Z, et al. The mechanism of Chinese herbal formula HQT in the treatment of rheumatoid arthritis is related to its regulation of lncRNA uc.477 and miR-19b. J Leukoc Biol 2020; 108(2): 519-29. doi: 10.1002/JLB.3MA0620-441RRRR PMID: 32696503
  36. Li XF, Shen WW, Sun YY, et al. MicroRNA-20a negatively regulates expression of NLRP3-inflammasome by targeting TXNIP in adjuvant-induced arthritis fibroblast-like synoviocytes. Joint Bone Spine 2016; 83(6): 695-700. doi: 10.1016/j.jbspin.2015.10.007 PMID: 26934991
  37. Philippe L, Alsaleh G, Pichot A, et al. MiR-20a regulates ASK1 expression and TLR4-dependent cytokine release in rheumatoid fibroblast-like synoviocytes. Ann Rheum Dis 2013; 72(6): 1071-9. doi: 10.1136/annrheumdis-2012-201654 PMID: 23087182
  38. Lin J, Huo R, Xiao L, et al. A novel p53/microRNA-22/Cyr61 axis in synovial cells regulates inflammation in rheumatoid arthritis. Arthritis Rheumatol 2014; 66(1): 49-59. doi: 10.1002/art.38142 PMID: 24449575
  39. Zhu S, Pan W, Song X, et al. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nat Med 2012; 18(7): 1077-86. doi: 10.1038/nm.2815 PMID: 22660635
  40. Liu J, Fei D, Xing J, Du J. RETRACTED: MicroRNA-29a inhibits proliferation and induces apoptosis in rheumatoid arthritis fibroblast-like synoviocytes by repressing STAT3. Biomed Pharmacother 2017; 96: 173-81. doi: 10.1016/j.biopha.2017.09.120 PMID: 28987940
  41. Gaur N, Karouzakis E, Glück S, et al. MicroRNAs interfere with DNA methylation in rheumatoid arthritis synovial fibroblasts. RMD Open 2016; 2(2): e000299. doi: 10.1136/rmdopen-2016-000299 PMID: 27843576
  42. Alsaleh G, François A, Philippe L, et al. MiR-30a-3p negatively regulates BAFF synthesis in systemic sclerosis and rheumatoid arthritis fibroblasts. PLoS One 2014; 9(10): e111266. doi: 10.1371/journal.pone.0111266 PMID: 25360821
  43. Luo C, Liang JS, Gong J, et al. miRNA-31 over-expression improve synovial cells apoptosis induced by RA. Bratisl Med J 2018; 119(6): 355-60. doi: 10.4149/BLL_2018_066 PMID: 29947235
  44. Hou C, Wang D, Zhang L. MicroRNA-34a-3p inhibits proliferation of rheumatoid arthritis fibroblast-like synoviocytes. Mol Med Rep 2019; 20(3): 2563-70. doi: 10.3892/mmr.2019.10516 PMID: 31524250
  45. Kawano S, Nakamachi Y. miR-124a as a key regulator of proliferation and MCP-1 secretion in synoviocytes from patients with rheumatoid arthritis. Ann Rheum Dis 2011; 70 (Suppl. 1): i88-91. doi: 10.1136/ard.2010.138669 PMID: 21339227
  46. Nakamachi Y, Kawano S, Takenokuchi M, et al. MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum 2009; 60(5): 1294-304. doi: 10.1002/art.24475 PMID: 19404929
  47. Wang Y, Dai L, Wu H, et al. Novel anti-inflammatory target of geniposide: Inhibiting Itgβ1/Ras-Erk1/2 signal pathway via the miRNA-124a in rheumatoid arthritis synovial fibroblasts. Int Immunopharmacol 2018; 65: 284-94. doi: 10.1016/j.intimp.2018.09.049 PMID: 30342345
  48. Gao J, Kong R, Zhou X, Ji L, Zhang J, Zhao D. MiRNA-126 expression inhibits IL-23R mediated TNF-α or IFN-γ production in fibroblast-like synoviocytes in a mice model of collagen-induced rheumatoid arthritis. Apoptosis 2018; 23(11-12): 607-15. doi: 10.1007/s10495-018-1474-7 PMID: 30167920
  49. Qu Y, Wu J, Deng JX, et al. MicroRNA-126 affects rheumatoid arthritis synovial fibroblast proliferation and apoptosis by targeting PIK3R2 and regulating PI3K-AKT signal pathway. Oncotarget 2016; 7(45): 74217-26. doi: 10.18632/oncotarget.12487 PMID: 27729613
  50. Chen J, Luo X, Liu M, et al. Silencing long non-coding RNA NEAT1 attenuates rheumatoid arthritis via the MAPK/ERK signalling pathway by downregulating microRNA-129 and microRNA-204. RNA Biol 2021; 18(5): 657-68. doi: 10.1080/15476286.2020.1857941 PMID: 33258403
  51. Du J, Zhang F, Guo J. miR-137 decreases proliferation, migration and invasion in rheumatoid arthritis fibroblast-like synoviocytes. Mol Med Rep 2017; 17(2): 3312-7. doi: 10.3892/mmr.2017.8225 PMID: 29257263
  52. Peng JS, Chen SY, Wu CL, et al. Amelioration of experimental autoimmune arthritis through targeting of synovial fibroblasts by intraarticular delivery of MicroRNAs 140-3p and 140-5p. Arthritis Rheumatol 2016; 68(2): 370-81. doi: 10.1002/art.39446 PMID: 26473405
  53. Hong BK, You S, Yoo SA, et al. MicroRNA-143 and -145 modulate the phenotype of synovial fibroblasts in rheumatoid arthritis. Exp Mol Med 2017; 49(8): e363-3. doi: 10.1038/emm.2017.108 PMID: 28775366
  54. Yang Z, Wang J, Pan Z, Zhang Y. miR-143-3p regulates cell proliferation and apoptosis by targeting IGF1R and IGFBP5 and regulating the Ras/p38 MAPK signaling pathway in rheumatoid arthritis. Exp Ther Med 2018; 15(4): 3781-90. doi: 10.3892/etm.2018.5907 PMID: 29581736
  55. Nakasa T, Miyaki S, Okubo A, et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum 2008; 58(5): 1284-92. doi: 10.1002/art.23429 PMID: 18438844
  56. Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EKL. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther 2008; 10(4): R101. doi: 10.1186/ar2493 PMID: 18759964
  57. Anaparti V, Smolik I, Meng X, Spicer V, Mookherjee N, El-Gabalawy H. Whole blood microRNA expression pattern differentiates patients with rheumatoid arthritis, their seropositive first-degree relatives, and healthy unrelated control subjects. Arthritis Res Ther 2017; 19(1): 249. doi: 10.1186/s13075-017-1459-x PMID: 29126434
  58. Chen Y, Wang X, Yang M, et al. miR-145-5p increases osteoclast numbers in vitro and aggravates bone erosion in collagen-induced arthritis by targeting osteoprotegerin. Med Sci Monit 2018; 24: 5292-300. doi: 10.12659/MSM.908219 PMID: 30059491
  59. Abou-Zeid A, Saad M, Soliman E. MicroRNA 146a expression in rheumatoid arthritis: Association with tumor necrosis factor-alpha and disease activity. Genet Test Mol Biomarkers 2011; 15(11): 807-12. doi: 10.1089/gtmb.2011.0026 PMID: 21810022
  60. Kurowska-Stolarska M, Alivernini S, Ballantine LE, et al. MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc Natl Acad Sci USA 2011; 108(27): 11193-8. doi: 10.1073/pnas.1019536108 PMID: 21690378
  61. Abo ElAtta AS, Ali YBM, Bassyouni IH, Talaat RM. Upregulation of miR-221/222 expression in rheumatoid arthritis (RA) patients: Correlation with disease activity. Clin Exp Med 2019; 19(1): 47-53. doi: 10.1007/s10238-018-0524-3 PMID: 30132091
  62. Tang X, Yin K, Zhu H, et al. Correlation between the expression of MicroRNA-301a-3p and the proportion of Th17 cells in patients with rheumatoid arthritis. Inflammation 2016; 39(2): 759-67. doi: 10.1007/s10753-016-0304-8 PMID: 26782362
  63. Lai NS, Yu HC, Yu CL, Koo M, Huang HB, Lu MC. Anti-citrullinated protein antibodies suppress let-7a expression in monocytes from patients with rheumatoid arthritis and facilitate the inflammatory responses in rheumatoid arthritis. Immunobiology 2015; 220(12): 1351-8. doi: 10.1016/j.imbio.2015.07.007 PMID: 26227320
  64. Dong L, Wang X, Tan J, et al. Decreased expression of micro RNA-21 correlates with the imbalance of Th17 and Treg cells in patients with rheumatoid arthritis. J Cell Mol Med 2014; 18(11): 2213-24. doi: 10.1111/jcmm.12353 PMID: 25164131
  65. Hruskova V, Jandova R, Vernerova L, et al. MicroRNA-125b: Association with disease activity and the treatment response of patients with early rheumatoid arthritis. Arthritis Res Ther 2016; 18(1): 124. doi: 10.1186/s13075-016-1023-0 PMID: 27255643
  66. Wang Y, Zheng F, Gao G, et al. MiR-548a-3p regulates inflammatory response via TLR4/NF-κB signaling pathway in rheumatoid arthritis. J Cell Biochem 2019; 120(2): 1133-40. doi: 10.1002/jcb.26659 PMID: 29315763
  67. Long L, Yu P, Liu Y, et al. Upregulated microRNA-155 expression in peripheral blood mononuclear cells and fibroblast-like synoviocytes in rheumatoid arthritis. Clin Dev Immunol 2013; 2013: 1-10. doi: 10.1155/2013/296139 PMID: 24151514
  68. Migita K, Iwanaga N, Izumi Y, et al. TNF-α-induced miR-155 regulates IL-6 signaling in rheumatoid synovial fibroblasts. BMC Res Notes 2017; 10(1): 403. doi: 10.1186/s13104-017-2715-5 PMID: 28807007
  69. Stanczyk J, Pedrioli DML, Brentano F, et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum 2008; 58(4): 1001-9. doi: 10.1002/art.23386 PMID: 18383392
  70. Paoletti A, Rohmer J, Ly B, et al. Monocyte/macrophage abnormalities specific to rheumatoid arthritis are linked to mir-155 and are differentially modulated by different TNF inhibitors. J Immunol 2019; 203(7): 1766-75. doi: 10.4049/jimmunol.1900386 PMID: 31484730
  71. Kim S, Chen Z, Essani AB, et al. Identification of a novel toll-like receptor 7 endogenous ligand in rheumatoid arthritis synovial fluid that can provoke arthritic joint inflammation. Arthritis Rheumatol 2016; 68(5): 1099-110. doi: 10.1002/art.39544 PMID: 26662519
  72. Ogando J, Tardáguila M, Díaz-Alderete A, et al. Notch-regulated miR-223 targets the aryl hydrocarbon receptor pathway and increases cytokine production in macrophages from rheumatoid arthritis patients. Sci Rep 2016; 6(1): 20223. doi: 10.1038/srep20223 PMID: 26838552
  73. Xu K, Xu P, Yao JF, Zhang YG, Hou W, Lu SM. Reduced apoptosis correlates with enhanced autophagy in synovial tissues of rheumatoid arthritis. Inflamm Res 2013; 62(2): 229-37. doi: 10.1007/s00011-012-0572-1 PMID: 23178792
  74. Wu J, Fan W, Ma L, Geng X. miR-708-5p promotes fibroblast- like synoviocytes’ cell apoptosis and ameliorates rheumatoid arthritis by inhibition of Wnt3a/β-catenin pathway. Drug Des Devel Ther 2018; 12: 3439-47. doi: 10.2147/DDDT.S177128 PMID: 30349197
  75. Miao C Gui. DNMT1 activates the canonical Wnt signaling in rheumatoid arthritis model rats via a crucial functional crosstalk between miR-152 and the DNMT1, MeCP2. Int Immunopharmacol 2015; 28(1): 344-53. doi: 10.1016/j.intimp.2015.06.013
  76. Miao C Gui. MicroRNA-152 modulates the canonical Wnt pathway activation by targeting DNA methyltransferase 1 in arthritic rat model. Biochimie 2014; 106: 149-56. doi: 10.1016/j.biochi.2014.08.016
  77. Ruedel A, Dietrich P, Schubert T, Hofmeister S, Hellerbrand C, Bosserhoff AK. Expression and function of microRNA-188-5p in activated rheumatoid arthritis synovial fibroblasts. Int J Clin Exp Pathol 2015; 8(5): 4953-62. PMID: 26191188
  78. Li S, Jin Z, Lu X. MicroRNA-192 suppresses cell proliferation and induces apoptosis in human rheumatoid arthritis fibroblast- like synoviocytes by downregulating caveolin 1. Mol Cell Biochem 2017; 432(1-2): 123-30. doi: 10.1007/s11010-017-3003-3 PMID: 28321538
  79. Wangyang Y, Yi L, Wang T, et al. MiR-199a-3p inhibits proliferation and induces apoptosis in rheumatoid arthritis fibroblast-like synoviocytes via suppressing retinoblastoma 1. Biosci Rep 2018; 38(6): BSR20180982. doi: 10.1042/BSR20180982 PMID: 30352835
  80. Stanczyk J, Ospelt C, Karouzakis E, et al. Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum 2011; 63(2): 373-81. doi: 10.1002/art.30115 PMID: 21279994
  81. Li B, Li N, Zhang L, et al. Hsa_circ_0001859 regulates ATF2 expression by functioning as an MiR-204/211 sponge in human rheumatoid arthritis. J Immunol Res 2018; 2018: 1-8. doi: 10.1155/2018/9412387 PMID: 29577053
  82. Liu Y, Zhang XL, Li XF, Tang YC, Zhao X. miR-212-3p reduced proliferation, and promoted apoptosis of fibroblast-like synoviocytes via down-regulating SOX5 in rheumatoid arthritis. Eur Rev Med Pharmacol Sci 2018; 22(2): 461-71. PMID: 29424904
  83. Maeda Y, Farina NH, Matzelle MM, Fanning PJ, Lian JB, Gravallese EM. Synovium-derived MicroRNAs regulate bone pathways in rheumatoid arthritis. J Bone Miner Res 2017; 32(3): 461-72. doi: 10.1002/jbmr.3005 PMID: 27676131
  84. Pandis I, Ospelt C, Karagianni N, et al. Identification of microRNA-221/222 and microRNA-323-3p association with rheumatoid arthritis via predictions using the human tumour necrosis factor transgenic mouse model. Ann Rheum Dis 2012; 71(10): 1716-23. doi: 10.1136/annrheumdis-2011-200803 PMID: 22562984
  85. Yang S, Yang Y. Downregulation of microRNA-221 decreases migration and invasion in fibroblast-like synoviocytes in rheumatoid arthritis. Mol Med Rep 2015; 12(2): 2395-401. doi: 10.3892/mmr.2015.3642 PMID: 25891943
  86. Moriya N, Shibasaki S, Karasaki M, Iwasaki T. The impact of MicroRNA-223-3p on IL-17 receptor D expression in synovial cells. PLoS One 2017; 12(1): e0169702. doi: 10.1371/journal.pone.0169702 PMID: 28056105
  87. Shibuya H, Nakasa T, Adachi N, et al. Overexpression of microRNA-223 in rheumatoid arthritis synovium controls osteoclast differentiation. Mod Rheumatol 2013; 23(4): 674-85. doi: 10.3109/s10165-012-0710-1 PMID: 22903258
  88. Xu T, Li L, Huang C, Li X, Peng Y, Li J. MicroRNA-323-3p with clinical potential in rheumatoid arthritis, Alzheimer’s disease and ectopic pregnancy. Expert Opin Ther Targets 2014; 18(2): 153-8. doi: 10.1517/14728222.2014.855201 PMID: 24283221
  89. Guo T, Ding H, Jiang H, Bao N, Zhou L, Zhao J. miR-338-5p regulates the viability, proliferation, apoptosis and migration of rheumatoid arthritis fibroblast-like synoviocytes by targeting NFAT5. Cell Physiol Biochem 2018; 49(3): 899-910. doi: 10.1159/000493222 PMID: 30184542
  90. Miao C G, Shi W J. miR-375 regulates the canonical Wnt pathway through FZD8 silencing in arthritis synovial fibroblasts. Immunol Lett 2015; 164(1): 1-10. doi: 10.1016/j.imlet.2015.01.003
  91. Wang Y, Hou L, Yuan X, et al. LncRNA NEAT1 targets fibroblast-like synoviocytes in rheumatoid arthritis via the miR-410-3p/YY1 axis. Front Immunol 2020; 11: 1975. doi: 10.3389/fimmu.2020.01975 PMID: 32983133
  92. Wang X, Si X, Sun J, Yue L, Wang J, Yu Z. miR-522 modulated the expression of proinflammatory cytokines and matrix metalloproteinases partly via targeting suppressor of cytokine signaling 3 in rheumatoid arthritis synovial fibroblasts. DNA Cell Biol 2018; 37(4): 405-15. doi: 10.1089/dna.2017.4008 PMID: 29394098
  93. Chang TK, Zhong YH, Liu SC, et al. Apelin promotes endothelial progenitor cell angiogenesis in rheumatoid arthritis disease via the miR-525-5p/angiopoietin-1 pathway. Front Immunol 2021; 12: 737990. doi: 10.3389/fimmu.2021.737990 PMID: 34659230
  94. Liu Y, Qian K, Li C, Ma Y, Chen X. Roles of microRNA-539 and osteopontin in rheumatoid arthritis. Exp Ther Med 2017; 15(3): 2681-7. doi: 10.3892/etm.2017.5665 PMID: 29467860
  95. Xu X, Chen H, Zhang Q, Xu J, Shi Q, Wang M. MiR-650 inhibits proliferation, migration and invasion of rheumatoid arthritis synovial fibroblasts by targeting AKT2. Biomed Pharmacother 2017; 88: 535-41. doi: 10.1016/j.biopha.2017.01.063 PMID: 28129626
  96. Miao C G. MicroRNA-663 activates the canonical Wnt signaling through the adenomatous polyposis coli suppression. Immunol Lett 2015; 166(1): 45-54. doi: 10.1016/j.imlet.2015.05.011
  97. Zhou X, Xie D, Huang J, et al. Therapeutic effects of (5R)-5-hydroxytriptolide on fibroblast-like synoviocytes in rheumatoid arthritis via lncRNA WAKMAR2/miR-4478/E2F1/p53 axis. Front Immunol 2021; 12: 605616. doi: 10.3389/fimmu.2021.605616 PMID: 33664742
  98. Bi X, Guo XH, Mo BY, et al. LncRNA PICSAR promotes cell proliferation, migration and invasion of fibroblast-like synoviocytes by sponging miRNA-4701-5p in rheumatoid arthritis. EBioMedicine 2019; 50: 408-20. doi: 10.1016/j.ebiom.2019.11.024 PMID: 31791845
  99. Ameer MA, Chaudhry H, Mushtaq J, et al. An overview of systemic lupus erythematosus (SLE) pathogenesis, classification, and management. Cureus 2022; 14(10): e30330. doi: 10.7759/cureus.30330 PMID: 36407159
  100. Liu Y J. Current progress in treating systemic lupus erythematosus using exosomes/MicroRNAs Cell Transplant 2023; 32. doi: 10.1177/09636897221148775
  101. Lu M-C, Lai N-S, Chen H-C, et al. Decreased microRNA(miR)-145 and increased miR-224 expression in T cells from patients with systemic lupus erythematosus involved in lupus immunopathogenesis. Clin Exp Immunol 2012; 171(1): 91-9. doi: 10.1111/j.1365-2249.2012.04676.x PMID: 23199328
  102. Martínez-Ramos R, García-Lozano J-R, Lucena J-M, et al. Differential expression pattern of microRNAs in CD4+ and CD19+ cells from asymptomatic patients with systemic lupus erythematosus. Lupus 2014; 23(4): 353-9. doi: 10.1177/0961203314522335 PMID: 24509687
  103. Pan W, Zhu S, Yuan M, et al. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 2010; 184(12): 6773-81. doi: 10.4049/jimmunol.0904060 PMID: 20483747
  104. Stagakis E, Bertsias G, Verginis P, et al. Identification of novel microRNA signatures linked to human lupus disease activity and pathogenesis: MiR-21 regulates aberrant T cell responses through regulation of PDCD4 expression. Ann Rheum Dis 2011; 70(8): 1496-506. doi: 10.1136/ard.2010.139857 PMID: 21602271
  105. Zhao M, Li M, Gao X, et al. Downregulation of BDH2 modulates iron homeostasis and promotes DNA demethylation in CD4 + T cells of systemic lupus erythematosus. Clin Immunol 2018; 187: 113-21. doi: 10.1016/j.clim.2017.11.002 PMID: 29113828
  106. Qin H, Zhu X, Liang J, et al. MicroRNA-29b contributes to DNA hypomethylation of CD4+ T cells in systemic lupus erythematosus by indirectly targeting DNA methyltransferase 1. J Dermatol Sci 2013; 69(1): 61-7. doi: 10.1016/j.jdermsci.2012.10.011 PMID: 23142053
  107. Rouas R, Fayyad-Kazan H, El Zein N, et al. Human natural Treg microRNA signature: Role of microRNA-31 and microRNA-21 in FOXP3 expression. Eur J Immunol 2009; 39(6): 1608-18. doi: 10.1002/eji.200838509 PMID: 19408243
  108. Xie M, Wang J, Gong W, et al. NF-κB-driven miR-34a impairs Treg/Th17 balance via targeting Foxp3. J Autoimmun 2019; 102: 96-113. doi: 10.1016/j.jaut.2019.04.018 PMID: 31130368
  109. Zhang C, Zhang C, Huang C, Ji J, Liu J, Lu Y. Hsa_circ_0012919 promotes pyroptosis in CD4+ T cells of systemic lupus erythematous by miR-125a-3p/GSDMD axis. Exp Dermatol 2023; 32(1): 41-9. doi: 10.1111/exd.14680 PMID: 36164970
  110. Zhao X, Tang Y, Qu B, et al. MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis Rheum 2010; 62(11): 3425-35. doi: 10.1002/art.27632 PMID: 20589685
  111. Zhao S, Wang Y, Liang Y, et al. MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum 2011; 63(5): 1376-86. doi: 10.1002/art.30196 PMID: 21538319
  112. Gong A, Mi L, Wei F, et al. Downregulation of miR-137 facilitates CD4+ T cell pyroptosis in systemic lupus erythematosus via stimulating AMPK pathway. J Immunol Res 2023; 2023: 1-11. doi: 10.1155/2023/1241774 PMID: 36815949
  113. Ding S, Liang Y, Zhao M, et al. Decreased microRNA-142-3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus. Arthritis Rheum 2012; 64(9): 2953-63. doi: 10.1002/art.34505 PMID: 22549634
  114. Li HS, Ning Y, Li SB, et al. Expression and clinical significance of miR-181a and miR-203 in systemic lupus erythematosus patients. Eur Rev Med Pharmacol Sci 2017; 21(21): 4790-6. PMID: 29164585
  115. Wang H, Geng G, Zhang D, Han F, Ye S. Analysis of microRNA-199a-3p expression in CD4+ T cells of systemic lupus erythematosus. Clin Rheumatol 2023; 42(6): 1683-94. doi: 10.1007/s10067-023-06534-7 PMID: 36763225
  116. Liu D, Zhang N, Zhang X, Qin M, Dong Y, Jin L. MiR-410 down-regulates the expression of interleukin-10 by targeting STAT3 in the pathogenesis of systemic lupus erythematosus. Cell Physiol Biochem 2016; 39(1): 303-15. doi: 10.1159/000445625 PMID: 27351906
  117. Chen S, Wang Y, Qin H, et al. Downregulation of miR-633 activated AKT/mTOR pathway by targeting AKT1 in lupus CD4+ T cells. Lupus 2019; 28(4): 510-9. doi: 10.1177/0961203319829853 PMID: 30760089
  118. Chen SH, Lv QL, Hu L, Peng MJ, Wang GH, Sun B. DNA methylation alterations in the pathogenesis of lupus. Clin Exp Immunol 2017; 187(2): 185-92. doi: 10.1111/cei.12877 PMID: 27690369
  119. Shi X, Ye L, Xu S, et al. Downregulated miR-29a promotes B cell overactivation by upregulating Crk-like protein in systemic lupus erythematosus. Mol Med Rep 2020; 22(2): 841-9. doi: 10.3892/mmr.2020.11166 PMID: 32467986
  120. Liu Y, Dong J, Mu R, et al. MicroRNA-30a promotes B cell hyperactivity in patients with systemic lupus erythematosus by direct interaction with Lyn. Arthritis Rheum 2013; 65(6): 1603-11. doi: 10.1002/art.37912 PMID: 23450709
  121. Luo S, Ding S, Liao J, et al. Excessive miR-152-3p results in increased BAFF expression in SLE B-cells by inhibiting the KLF5 expression. Front Immunol 2019; 10: 1127. doi: 10.3389/fimmu.2019.01127 PMID: 31178864
  122. Wu X Ni. Defective PTEN regulation contributes to B cell hyperresponsiveness in systemic lupus erythematosus. Sci Transl Med 2014; 6(246): 246ra99. doi: 10.1126/scitranslmed.3009131
  123. Duroux-Richard I, Cuenca J, Ponsolles C, et al. MicroRNA profiling of B cell subsets from systemic lupus erythematosus patients reveals promising novel biomarkers. Int J Mol Sci 2015; 16(8): 16953-65. doi: 10.3390/ijms160816953 PMID: 26225955
  124. Chen JQ, Papp G, Póliska S, et al. MicroRNA expression profiles identify disease-specific alterations in systemic lupus erythematosus and primary Sjögren’s syndrome. PLoS One 2017; 12(3): e0174585. doi: 10.1371/journal.pone.0174585 PMID: 28339495
  125. Jin L, Fang X, Dai C, et al. The potential role of Ets-1 and miR-326 in CD19+B cells in the pathogenesis of patients with systemic lupus erythematosus. Clin Rheumatol 2019; 38(4): 1031-8. doi: 10.1007/s10067-018-4371-0 PMID: 30456527
  126. Luo S, Liu Y, Liang G, et al. The role of microRNA-1246 in the regulation of B cell activation and the pathogenesis of systemic lupus erythematosus. Clin Epigenetics 2015; 7(1): 24. doi: 10.1186/s13148-015-0063-7 PMID: 25789080
  127. You G, Cao H, Yan L, et al. MicroRNA-10a-3p mediates Th17/Treg cell balance and improves renal injury by inhibiting REG3A in lupus nephritis. Int Immunopharmacol 2020; 88: 106891. doi: 10.1016/j.intimp.2020.106891 PMID: 32853927
  128. Mishra R, Bhattacharya S, Rawat BS, et al. MicroRNA-30e-5p has an integrated role in the regulation of the innate immune response during virus infection and systemic lupus erythematosus. iScience 2020; 23(7): 101322. doi: 10.1016/j.isci.2020.101322 PMID: 32688283
  129. Yuan S, Tang C, Chen D, et al. miR-98 modulates cytokine production from human PBMCs in systemic lupus erythematosus by targeting IL-6 mRNA. J Immunol Res 2019; 2019: 1-11. doi: 10.1155/2019/9827574 PMID: 31886314
  130. Sun H, Guo F, Xu L. Downregulation of microRNA-101-3p participates in systemic lupus erythematosus progression via negatively regulating HDAC9. J Cell Biochem 2020; 121(10): 4310-20. doi: 10.1002/jcb.29624 PMID: 31904179
  131. Yan L, Jiang L, Wang B, et al. Novel microRNA biomarkers of systemic lupus erythematosus in plasma: MiR-124-3p and miR-377-3p. Clin Biochem 2022; 107: 55-61. doi: 10.1016/j.clinbiochem.2022.05.004 PMID: 35598633
  132. Gu Y, Tang J, Zhang H, Wu Q, Luo L, Sun J. MicroRNA-125b mediates Interferon-γ-induced downregulation of the vitamin D receptor in systemic lupus erythematosus. Z Rheumatol 2024; 83(S1) (Suppl. 1): 132-9. doi: 10.1007/s00393-023-01319-4 PMID: 36732450
  133. Tang Y, Luo X, Cui H, et al. MicroRNA-146a contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 2009; 60(4): 1065-75. doi: 10.1002/art.24436 PMID: 19333922
  134. Zhu Y, Xue Z, Di L. Regulation of MiR-146a and TRAF6 in the diagnose of lupus nephritis. Med Sci Monit 2017; 23: 2550-7. doi: 10.12659/MSM.900667 PMID: 28549054
  135. Aboelenein HR, Hamza MT, Marzouk H, et al. Reduction of CD19 autoimmunity marker on B cells of paediatric SLE patients through repressing PU.1/TNF-α/BAFF axis pathway by miR-155. Growth Factors 2017; 35(2-3): 49-60. doi: 10.1080/08977194.2017.1345900 PMID: 28683581
  136. Kaga H, Komatsuda A, Omokawa A, et al. Downregulated expression of miR-155, miR-17, and miR-181b, and upregulated expression of activation-induced cytidine deaminase and interferon-α in PBMCs from patients with SLE. Mod Rheumatol 2015; 25(6): 865-70. doi: 10.3109/14397595.2015.1030102 PMID: 25775145
  137. Li Z, Wang R, Wang D, et al. Circulating miR-320b contributes to CD4+ T-cell proliferation in systemic lupus erythematosus via MAP3K1. J Immunol Res 2023; 2023: 1-14. doi: 10.1155/2023/6696967 PMID: 37928434
  138. Tu Y, Guo R, Li J, et al. MiRNA regulation of MIF in SLE and attenuation of murine lupus nephritis with miR-654. Front Immunol 2019; 10: 2229. doi: 10.3389/fimmu.2019.02229 PMID: 31608058
  139. Liu L, Liu Y, Yuan M, Xu L, Sun H. Elevated expression of microRNA-873 facilitates Th17 differentiation by targeting forkhead box O1 (Foxo1) in the pathogenesis of systemic lupus erythematosus. Biochem Biophys Res Commun 2017; 492(3): 453-60. doi: 10.1016/j.bbrc.2017.08.075 PMID: 28837808
  140. Yang B, Huang X, Xu S, et al. Decreased miR-4512 levels in monocytes and macrophages of individuals with systemic lupus erythematosus contribute to innate immune activation and neutrsophil NETosis by targeting TLR4 and CXCL2. Front Immunol 2021; 12: 756825. doi: 10.3389/fimmu.2021.756825 PMID: 34721432
  141. Costa-Reis P, Russo PA, Zhang Z, et al. The role of MicroRNAs and human epidermal growth factor receptor 2 in proliferative lupus nephritis. Arthritis Rheumatol 2015; 67(9): 2415-26. doi: 10.1002/art.39219 PMID: 26016809
  142. Qingjuan L, Xiaojuan F, Wei Z, et al. miR-148a-3p overexpression contributes to glomerular cell proliferation by targeting PTEN in lupus nephritis. Am J Physiol Cell Physiol 2016; 310(6): C470-8. doi: 10.1152/ajpcell.00129.2015 PMID: 26791485
  143. Cui D, Zhu D, Ren H, et al. MicroRNA-198 contributes to lupus nephritis progression by inhibition of phosphatase and tensin homology deleted on chromosome ten expression. Mol Med Rep 2017; 16(5): 7813-20. doi: 10.3892/mmr.2017.7527 PMID: 28944868
  144. Zheng J, Guo R, Tang Y, et al. miR-152 attenuates the severity of lupus nephritis through the downregulation of macrophage migration inhibitory factor (MIF)-induced expression of COL1A1. Front Immunol 2019; 10: 158. doi: 10.3389/fimmu.2019.00158 PMID: 30787934
  145. Zhang L, Zhang X, Si F. MicroRNA-124 represents a novel diagnostic marker in human lupus nephritis and plays an inhibitory effect on the growth and inflammation of renal mesangial cells by targeting TRAF6. Int J Clin Exp Pathol 2019; 12(5): 1578-88. PMID: 31933975
  146. Han X, Wang Y, Zhang X, et al. MicroRNA-130b ameliorates murine lupus nephritis through targeting the type I interferon pathway on renal mesangial cells. Arthritis Rheumatol 2016; 68(9): 2232-43. doi: 10.1002/art.39725 PMID: 27111096
  147. Huang Z, Pang G, Huang YG, Li C. miR-133 inhibits proliferation and promotes apoptosis by targeting LASP1 in lupus nephritis. Exp Mol Pathol 2020; 114: 104384. doi: 10.1016/j.yexmp.2020.104384 PMID: 31987844
  148. Zhou H, Hasni SA, Perez P, et al. miR-150 promotes renal fibrosis in lupus nephritis by downregulating SOCS1. J Am Soc Nephrol 2013; 24(7): 1073-87. doi: 10.1681/ASN.2012080849 PMID: 23723424
  149. Wang X, Wang G, Zhang X, et al. Inhibition of microRNA-182-5p contributes to attenuation of lupus nephritis via Foxo1 signaling. Exp Cell Res 2018; 373(1-2): 91-8. doi: 10.1016/j.yexcr.2018.09.026 PMID: 30308195
  150. Li X, Luo F, Li J, Luo C. MiR-183 delivery attenuates murine lupus nephritis-related injuries via targeting mTOR. Scand J Immunol 2019; 90(5): e12810. doi: 10.1111/sji.12810 PMID: 31325389
  151. Yao F, Sun L, Fang W, et al. Hsa-miR-371-5p inhibits human mesangial cell proliferation and promotes apoptosis in lupus nephritis by directly targeting hypoxia-inducible factor 1α. Mol Med Rep 2016; 14(6): 5693-8. doi: 10.3892/mmr.2016.5939 PMID: 27878241
  152. Krasoudaki E, Banos A, Stagakis E, et al. Micro-RNA analysis of renal biopsies in human lupus nephritis demonstrates up-regulated miR-422a driving reduction of kallikrein-related peptidase 4. Nephrol Dial Transplant 2016; 31(10): 1676-86. doi: 10.1093/ndt/gfv374 PMID: 26546590
  153. Wang W, Gao J, Wang F. MiR-663a/MiR-423-5p are involved in the pathogenesis of lupus nephritis via modulating the activation of NF-κB by targeting TNIP2. Am J Transl Res 2017; 9(8): 3796-803. PMID: 28861170
  154. Dosil SG, Rodríguez-Galán A, Sánchez-Madrid F, Fernández-Messina L. MicroRNAs in T cell-immunotherapy. Int J Mol Sci 2022; 24(1): 250. doi: 10.3390/ijms24010250 PMID: 36613706
  155. Asakiya C, Zhu L, Yuhan J, Zhu L, Huang K, Xu W. Current progress of miRNA-derivative nucleotide drugs: Modifications, delivery systems, applications. Expert Opin Drug Deliv 2022; 19(4): 435-50. doi: 10.1080/17425247.2022.2063835 PMID: 35387533
  156. Kamali MJ, Salehi M, Fatemi S, Moradi F, Khoshghiafeh A, Ahmadifard M. Locked nucleic acid (LNA): A modern approach to cancer diagnosis and treatment. Exp Cell Res 2023; 423(1): 113442. doi: 10.1016/j.yexcr.2022.113442 PMID: 36521777
  157. Lennox KA, Behlke MA. Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther 2011; 18(12): 1111-20. doi: 10.1038/gt.2011.100 PMID: 21753793
  158. Deprey K, Batistatou N, Kritzer JA. A critical analysis of methods used to investigate the cellular uptake and subcellular localization of RNA therapeutics. Nucleic Acids Res 2020; 48(14): 7623-39. doi: 10.1093/nar/gkaa576 PMID: 32644123
  159. Prabha J, Kumar M, Kumar D, Chopra S, Bhatia A. Nano-platform strategies of herbal components for the management of rheumatoid arthritis: A review on the battle for next-generation formulations. Curr Drug Deliv 2023. doi: 10.2174/1567201821666230825102748 PMID: 37622715
  160. Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 2019; 21(1): 9-17. doi: 10.1038/s41556-018-0250-9 PMID: 30602770
  161. Hung ME, Leonard JN. A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery. J Extracell Vesicles 2016; 5(1): 31027. doi: 10.3402/jev.v5.31027 PMID: 27189348
  162. Mateescu B, Kowal EJK, van Balkom BWM, et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA – an ISEV position paper. J Extracell Vesicles 2017; 6(1): 1286095. doi: 10.1080/20013078.2017.1286095 PMID: 28326170
  163. Aboeleneen SB, Scully MA, Harris JC, Sterin EH, Day ES. Membrane-wrapped nanoparticles for photothermal cancer therapy. Nano Converg 2022; 9(1): 37. doi: 10.1186/s40580-022-00328-4 PMID: 35960404
  164. Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev 2016; 106(Pt A): 148-56. doi: 10.1016/j.addr.2016.02.006 PMID: 26928656
  165. Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol 2021; 16(7): 748-59. doi: 10.1038/s41565-021-00931-2 PMID: 34211166
  166. Matsumoto A, Takahashi Y, Chang HY, et al. Blood concentrations of small extracellular vesicles are determined by a balance between abundant secretion and rapid clearance. J Extracell Vesicles 2020; 9(1): 1696517. doi: 10.1080/20013078.2019.1696517 PMID: 31807238
  167. Herrera-Carrillo E, Liu YP, Berkhout B. Improving miRNA delivery by optimizing miRNA expression cassettes in diverse virus vectors. Hum Gene Ther Methods 2017; 28(4): 177-90. doi: 10.1089/hgtb.2017.036 PMID: 28712309
  168. Li YT, Chen SY, Wang CR, et al. Brief report: Amelioration of collagen-induced arthritis in mice by lentivirus-mediated silencing of microRNA-223. Arthritis Rheum 2012; 64(10): 3240-5. doi: 10.1002/art.34550 PMID: 22674011
  169. Long H, Wang X, Chen Y, Wang L, Zhao M, Lu Q. Dysregulation of microRNAs in autoimmune diseases: Pathogenesis, biomarkers and potential therapeutic targets. Cancer Lett 2018; 428: 90-103. doi: 10.1016/j.canlet.2018.04.016 PMID: 29680223
  170. Lam IKY, Chow JX, Lau CS, Chan VSF. MicroRNA-mediated immune regulation in rheumatic diseases. Cancer Lett 2018; 431: 201-12. doi: 10.1016/j.canlet.2018.05.044 PMID: 29859876
  171. Zhang L, Wu H, Zhao M, Chang C, Lu Q. Clinical significance of miRNAs in autoimmunity. J Autoimmun 2020; 109: 102438. doi: 10.1016/j.jaut.2020.102438 PMID: 32184036
  172. Peng X, Wang Q, Li W, et al. Comprehensive overview of microRNA function in rheumatoid arthritis. Bone Res 2023; 11(1): 8. doi: 10.1038/s41413-023-00244-1 PMID: 36690624
  173. Ouyang T, Liu Z, Han Z, Ge Q. MicroRNA detection specificity: Recent advances and future perspective. Anal Chem 2019; 91(5): 3179-86. doi: 10.1021/acs.analchem.8b05909 PMID: 30702270
  174. Pan Y, Jia T, Zhang Y, et al. MS2 VLP-based delivery of microRNA-146a inhibits autoantibody production in lupus-prone mice. Int J Nanomed 2012; 7: 5957-67. doi: 10.2147/IJN.S37990 PMID: 23233803
  175. Zhou S, Wang Y, Meng Y, et al. In vivo therapeutic success of MicroRNA-155 antagomir in a mouse model of lupus alveolar hemorrhage. Arthritis Rheumatol 2016; 68(4): 953-64. doi: 10.1002/art.39485 PMID: 26556607
  176. Garchow BG, Bartulos Encinas O, Leung YT, et al. Silencing of microRNA-21 in vivo ameliorates autoimmune splenomegaly in lupus mice. EMBO Mol Med 2011; 3(10): 605-15. doi: 10.1002/emmm.201100171 PMID: 21882343
  177. Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug Discov 2021; 20(8): 629-51. doi: 10.1038/s41573-021-00219-z PMID: 34145432
  178. Beg MS, Brenner AJ, Sachdev J. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Invest New Drugs 2017; 35(2): 180-8. doi: 10.1007/s10637-016-0407-y PMID: 27917453
  179. Hong DS, Kang YK, Borad M, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer 2020; 122(11): 1630-7. doi: 10.1038/s41416-020-0802-1 PMID: 32238921
  180. van Zandwijk N, Pavlakis N, Kao SC, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol 2017; 18(10): 1386-96. doi: 10.1016/S1470-2045(17)30621-6 PMID: 28870611
  181. Gebert LFR, Rebhan MAE, Crivelli SEM, Denzler R, Stoffel M, Hall J. Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res 2014; 42(1): 609-21. doi: 10.1093/nar/gkt852 PMID: 24068553

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024