Ayurvedic and Chinese Herbs against Coronaviruses

  • Авторы: Gasmi A.1, Kanwal S.2, Oliinyk P.3, Lysiuk R.4, Shanaida M.5, Gasmi Benahmed A.6, Dushmantha W.7, Arshad M.8, Kernychna I.9, Lenchyk L.10, Upyr T.11, Shanaida V.12, Bjørklund G.13
  • Учреждения:
    1. Département de Recherche, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée
    2. Biosciences Department, COMSATS Institute of Information Technology
    3. Department of Disaster Medicine and Military Medicine, Danylo Halytsky Lviv National Medical University
    4. CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University
    5. Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University
    6. Département de Recherche,, Académie Internationale de Médecine Dentaire Intégrative
    7. Institute of Indigenous Medicine, University of Colombo
    8. Département de Recherche, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée,
    9. Department of Pharmacognosy and Medical Botany,, I. Horbachevsky Ternopil National Medical University
    10. Department of Quality, Certification and Standardization of Medicines, Institute for Advanced Training of Pharmacy Specialists,, National University of Pharmacy
    11. CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy
    12. CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University
    13. Department of Research,, CounCouncil for Nutritional and Environmental Medicine (CONEM)cil for Nutritional and Environmental Medicine (CONEM)
  • Выпуск: Том 30, № 21 (2024)
  • Страницы: 1681-1698
  • Раздел: Immunology, Inflammation & Allergy
  • URL: https://vestnikugrasu.org/1381-6128/article/view/645796
  • DOI: https://doi.org/10.2174/0113816128269864231112094917
  • ID: 645796

Цитировать

Полный текст

Аннотация

Coronavirus disease 2019 (COVID-19) is a viral disease that infects the lower airways, causing severe acute respiratory syndrome (SARS) and fatal pneumonia. The ripple effect of the COVID-19 outbreak has created serious problems in the healthcare systems of many countries and had far-reaching consequences for the global economy. Thus, effective control measures should be implemented for this coronavirus infection in the future. The ongoing episode of the SARS-CoV-2 sickness, COVID-19, in China, and the subsequent irregular spread of contamination to different nations, has alarmed the clinical and academic community primarily due to the deadly nature of this disease. Being a newly identified virus in the viral classification and having the highest mutation rate, rapid therapeutics are not readily available for treating this ailment, leading to the widespread of the disease and causing social issues for affected individuals. Evidence of Ayurveda and traditional Chinese medicine (TCM) has been found in ancient civilizations, such as those of the Hindus, Babylonians, Hebrews, and Arabs. Although TCM and Ayurvedic herbs do not promise to be very effective treatments for this pandemic, they can reduce infectivity and virulence by enhancing immunity and showing effectiveness in rehabilitation after COVID-19 disease. Thus, they could be used as sources of inhibitor molecules for certain phenomena, such as viral replication, attachment to the host, 3CL protease inhibition, 3a ion channel inhibitors, and reverse transcription inhibition. Medicinal plants from TCM and Ayurveda and their biologically active phytoconstituents can effectively modulate the targets and pathways relevant to inflammation and immune responses in human bodies. The present review analyzes the role of certain TCM and Ayurvedic medicinal plants in healing COVID-19 infection. Medicinal plants such as Glycyrrhiza glabra (licorice), Curcuma longa (turmeric), and Zingiber officinale (ginger) are regarded as the main antiviral herbs. Their extracts and individual bioactive compounds could be used as potential substances for developing remedies to prevent or cure the coronavirus disease. Generally, antiviral phytochemicals obtained from natural sources are considered potent candidates for fighting COVID-19 infection and rehabilitation after it.

Об авторах

Amin Gasmi

Département de Recherche, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée

Email: info@benthamscience.net

Sonia Kanwal

Biosciences Department, COMSATS Institute of Information Technology

Email: info@benthamscience.net

Petro Oliinyk

Department of Disaster Medicine and Military Medicine, Danylo Halytsky Lviv National Medical University

Email: info@benthamscience.net

Roman Lysiuk

CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University

Email: info@benthamscience.net

Mariia Shanaida

Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University

Email: info@benthamscience.net

Asma Gasmi Benahmed

Département de Recherche,, Académie Internationale de Médecine Dentaire Intégrative

Email: info@benthamscience.net

Walallawita Dushmantha

Institute of Indigenous Medicine, University of Colombo

Email: info@benthamscience.net

Maria Arshad

Département de Recherche, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée,

Email: info@benthamscience.net

Ivanna Kernychna

Department of Pharmacognosy and Medical Botany,, I. Horbachevsky Ternopil National Medical University

Email: info@benthamscience.net

Larysa Lenchyk

Department of Quality, Certification and Standardization of Medicines, Institute for Advanced Training of Pharmacy Specialists,, National University of Pharmacy

Email: info@benthamscience.net

Taras Upyr

CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy

Email: info@benthamscience.net

Volodymyr Shanaida

CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University

Email: info@benthamscience.net

Geir Bjørklund

Department of Research,, CounCouncil for Nutritional and Environmental Medicine (CONEM)cil for Nutritional and Environmental Medicine (CONEM)

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Gorbalenya AE, Baker SC, Baric RS, et al. The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5(4): 536-44. doi: 10.1038/s41564-020-0695-z
  2. Kupferschmidt K, Cohen J. Will novel virus go pandemic or be contained? Science 2020; 367(6478): 610-1. doi: 10.1126/science.367.6478.610 PMID: 32029604
  3. Adithya J, Nair B, Aishwarya TS, Nath LR. The plausible role of indian traditional medicine in combating corona virus (SARS- CoV 2): A mini-review. Curr Pharm Biotechnol 2021; 22(7): 906-19. doi: 10.2174/18734316MTA4hOTEvx PMID: 32767920
  4. Chen J, Ding Z. Advances in natural product anti-coronavirus research (2002-2022). Chin Med 2023; 18(1): 13. doi: 10.1186/s13020-023-00715-x PMID: 36782317
  5. Shanaida M, Klishch I. Sedative effect of infusions from five lamiaceae martinov species. Pharmacologyonline 2021; 3: 1292-8.
  6. Caesar LK, Cech NB. Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat Prod Rep 2019; 36(6): 869-88. doi: 10.1039/C9NP00011A PMID: 31187844
  7. van Vuuren S, Viljoen A. Plant-based antimicrobial studies-methods and approaches to study the interaction between natural products. Planta Med 2011; 77(11): 1168-82. doi: 10.1055/s-0030-1250736 PMID: 21283954
  8. Lansky ES. A possible synergistic herbal solution for COVID-19. Front Biosci 2022; 14(2): 12. doi: 10.31083/j.fbs1402012 PMID: 35730437
  9. Luo H, Gao Y, Zou J, et al. Reflections on treatment of COVID-19 with traditional Chinese medicine. Chin Med 2020; 15(1): 94. doi: 10.1186/s13020-020-00375-1 PMID: 32905189
  10. Gasmi A, Tippairote T, Mujawdiya PK, et al. Traditional Chinese medicine as the preventive and therapeutic remedy for COVID-19. Curr Med Chem 2024; 31(21): 3118-31. PMID: 36999715
  11. Wan S, Xiang Y, Fang W, et al. Clinical features and treatment of COVID-19 patients in Northeast Chongqing. J Med Virol 2020; 92(7): 797-806. doi: 10.1002/jmv.25783 PMID: 32198776
  12. Li S, Chen C, Zhang H, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res 2005; 67(1): 18-23. doi: 10.1016/j.antiviral.2005.02.007 PMID: 15885816
  13. Rajan M, Gupta P, Kumar A. Promising antiviral molecules from ayurvedic herbs and spices against COVID-19. Chin J Integr Med 2021; 27(4): 243-4. doi: 10.1007/s11655-021-3331-8 PMID: 33544289
  14. Dharmendra KM, Deepak S. Evaluation of traditional ayurvedic Kadha for prevention and management of the novel Coronavirus (SARS-CoV-2) using in silico approach. J Biomol Struct Dyn 2020; 40(9): 3949-64.
  15. Fawzy NA, Abou Shaar B, Taha RM, et al. A systematic review of trials currently investigating therapeutic modalities for post- acute COVID-19 syndrome and registered on WHO International Clinical Trials Platform. Clin Microbiol Infect 2023; 29(5): 570-7. doi: 10.1016/j.cmi.2023.01.007 PMID: 36642173
  16. Das K, Das P, Almuqbil M, et al. Inhibition of SARS-CoV2 viral infection with natural antiviral plants constituents: An in-silico approach. J King Saud Univ Sci 2023; 35(3): 102534. doi: 10.1016/j.jksus.2022.102534 PMID: 36619666
  17. Kanchibhotla D, Harsora P, Subramanian S, Reddy MRK, Venkatesh HKR. Rate of recovery and symptomatic efficacy of a polyherbal ayush formulation in the treatment of SARS-CoV-2 disease: A single-arm trial. Altern Ther Health Med 2023; 29(4): 134-9. PMID: 35951065
  18. Chavda VP, Patel AB, Vihol D, et al. Herbal remedies, nutraceuticals, and dietary supplements for COVID-19 management: An update. CCMP 2022; 2(1): 100021. doi: 10.1016/j.ccmp.2022.100021 PMID: 36620357
  19. Trivedi A, Ahmad R, Siddiqui S, et al. Prophylactic and therapeutic potential of selected immunomodulatory agents from Ayurveda against coronaviruses amidst the current formidable scenario: An in silico analysis. J Biomol Struct Dyn 2022; 40(20): 9648-700. doi: 10.1080/07391102.2021.1932601 PMID: 34243689
  20. Verma S. In search of feasible interventions for the prevention and cure of novel coronavirus disease 2019. Preprints 2020.
  21. Luo H, Tang Q, Shang Y, et al. Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin J Integr Med 2020; 26(4): 243-50. doi: 10.1007/s11655-020-3192-6 PMID: 32065348
  22. Khazdair MR, Ghafari S, Sadeghi M. Possible therapeutic effects of Nigella sativa and its thymoquinone on COVID-19. Pharm Biol 2021; 59(1): 694-701. doi: 10.1080/13880209.2021.1931353 PMID: 34110959
  23. Korablova O, Shanaida M, Gontova T. Chromatographic analysis of volatile compounds isolated from the Nigella damascena L. and Nigella arvensis L. seeds. Pharmacologyonline 2022; 3: 21-9.
  24. Zhang D, Wu K, Zhang X, Deng S, Peng B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J Integr Med 2020; 18(2): 152-8. doi: 10.1016/j.joim.2020.02.005 PMID: 32113846
  25. Narula C. 5,000-year-old ancient scriptures describe something similar to coronavirus. 2020. Available from: https://www.indiatoday.in/india/story/5000-year-old-ancient-scriptures-describe-something-similar-coronavirus-1668405-2020-04-18
  26. Kumarasinghe A. Charaka Samhitha of Agnivesha elaborated by Charaka and Dridhabala. Nawinna, Sri Lanka: Department of Ayurveda Sri Lanka 1991.
  27. Sendhilkumar M, Manickam P. Reactions from traditional medical systems to COVID-19 outbreak: Time to tread cautiously. J Ayurveda Integr Med 2022; 13(1): 100315. doi: 10.1016/j.jaim.2020.04.004 PMID: 32382221
  28. Rastogi S, Pandey DN, Singh RH. COVID-19 pandemic: A pragmatic plan for ayurveda intervention. J Ayurveda Integr Med 2022; 13(1): 100312. doi: 10.1016/j.jaim.2020.04.002 PMID: 32382220
  29. Islamie R, Iksen I, Buana BC, Gurning K, Syahputra HD, Winata HS. Construction of network pharmacology-based approach and potential mechanism from major components of Coriander sativum L. against COVID-19. Pharmacia 2022; 69(3): 689-97. doi: 10.3897/pharmacia.69.e84388
  30. Smith I, Wang LF. Bats and their virome: An important source of emerging viruses capable of infecting humans. Curr Opin Virol 2013; 3(1): 84-91. doi: 10.1016/j.coviro.2012.11.006 PMID: 23265969
  31. Liu L. Traditional Chinese medicine contributes to the treatment of COVID-19 patients. Chin Herb Med 2020; 12(2): 95-6. doi: 10.1016/j.chmed.2020.04.003 PMID: 32391065
  32. Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016; 24(6): 490-502. doi: 10.1016/j.tim.2016.03.003 PMID: 27012512
  33. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33. doi: 10.1056/NEJMoa2001017 PMID: 31978945
  34. Wang N, Shang J, Jiang S, Du L. Subunit vaccines against emerging pathogenic human coronaviruses. Front Microbiol 2020; 11: 298. doi: 10.3389/fmicb.2020.00298 PMID: 32265848
  35. Spaan W, Cavanagh D, Horzinek MC. Coronaviruses: Structure and genome expression. J Gen Virol 1988; 69(12): 2939-52. doi: 10.1099/0022-1317-69-12-2939 PMID: 3058868
  36. Lai MM, Cavanagh D. The molecular biology of coronaviruse. Adv Virus Res. 1997; 48: pp. 1-100. doi: 10.1016/S0065-3527(08)60286-9
  37. Holmes KV. Coronaviruses (Coronaviridae). Encyclopedia of virology 1999; p. 291.
  38. Polansky H, Lori G. Coronavirus disease 2019 (COVID-19): First indication of efficacy of Gene-Eden-VIR/Novirin in SARS-CoV-2 infection. Int J Antimicrob Agents 2020; 55(6): 105971. doi: 10.1016/j.ijantimicag.2020.105971 PMID: 32283177
  39. Polansky H, Itzkovitz E, Javaherian A. Human papillomavirus (HPV): Systemic treatment with Gene-Eden-VIR/Novirin safely and effectively clears virus. Drug Des Devel Ther 2017; 11: 575-83. doi: 10.2147/DDDT.S123340 PMID: 28424535
  40. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74. doi: 10.1016/S0140-6736(20)30251-8 PMID: 32007145
  41. Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol 2020; 92(4): 424-32. doi: 10.1002/jmv.25685 PMID: 31981224
  42. Liu C, Zhou Q, Li Y, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci 2020; 6(3): 315-31. doi: 10.1021/acscentsci.0c00272 PMID: 32226821
  43. Chen L, Gui C, Luo X, et al. Cinanserin is an inhibitor of the 3C- like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. J Virol 2005; 79(11): 7095-103. doi: 10.1128/JVI.79.11.7095-7103.2005 PMID: 15890949
  44. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 2003; 361(9374): 2045-6. doi: 10.1016/S0140-6736(03)13615-X PMID: 12814717
  45. Jeong YS, Makino S. Mechanism of coronavirus transcription: Duration of primary transcription initiation activity and effects of subgenomic RNA transcription on RNA replication. J Virol 1992; 66(6): 3339-46. doi: 10.1128/jvi.66.6.3339-3346.1992 PMID: 1583719
  46. Yang H, Xie W, Xue X, et al. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol 2005; 3(10): e324. doi: 10.1371/journal.pbio.0030324 PMID: 16128623
  47. Adedeji AO, Singh K, Calcaterra NE, et al. Severe acute respiratory syndrome coronavirus replication inhibitor that interferes with the nucleic acid unwinding of the viral helicase. Antimicrob Agents Chemother 2012; 56(9): 4718-28. doi: 10.1128/AAC.00957-12 PMID: 22733076
  48. Liu Q, Xia S, Sun Z, et al. Testing of Middle East respiratory syndrome coronavirus replication inhibitors for the ability to block viral entry. Antimicrob Agents Chemother 2015; 59(1): 742-4. doi: 10.1128/AAC.03977-14 PMID: 25331705
  49. Xia S, Liu Q, Wang Q, et al. Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein. Virus Res 2014; 194: 200-10. doi: 10.1016/j.virusres.2014.10.007 PMID: 25451066
  50. Kilianski A, Baker SC. Cell-based antiviral screening against coronaviruses: Developing virus-specific and broad-spectrum inhibitors. Antiviral Res 2014; 101: 105-12. doi: 10.1016/j.antiviral.2013.11.004 PMID: 24269477
  51. Wen C-C, Shyur L-F, Jan J-T, et al. Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS- CoV replication. J Tradit Complement Med 2011; 1(1): 41-50.
  52. Pyrc K, Berkhout B, van der Hoek L. Antiviral strategies against human coronaviruses. Infect Disord Drug Targets 2007; 7: 59-66. doi: 10.2174/187152607780090757
  53. Keyaerts E, Vijgen L, Pannecouque C, et al. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res 2007; 75(3): 179-87. doi: 10.1016/j.antiviral.2007.03.003 PMID: 17428553
  54. Tahir ul Qamar M, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal 2020; 10(4): 313-9. doi: 10.1016/j.jpha.2020.03.009 PMID: 32296570
  55. Yang S, Chen SJ, Hsu MF, et al. Synthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor. J Med Chem 2006; 49(16): 4971-80. doi: 10.1021/jm0603926 PMID: 16884309
  56. Bacha U, Barrila J, Velazquez-Campoy A, Leavitt SA, Freire E. Identification of novel inhibitors of the SARS coronavirus main protease 3CLpro. Biochemistry 2004; 43(17): 4906-12. doi: 10.1021/bi0361766 PMID: 15109248
  57. Chen LR, Wang YC, Lin YW, et al. Synthesis and evaluation of isatin derivatives as effective SARS coronavirus 3CL protease inhibitors. Bioorg Med Chem Lett 2005; 15(12): 3058-62. doi: 10.1016/j.bmcl.2005.04.027 PMID: 15896959
  58. Kim Y, Mandadapu SR, Groutas WC, Chang KO. Potent inhibition of feline coronaviruses with peptidyl compounds targeting coronavirus 3C-like protease. Antiviral Res 2013; 97(2): 161-8. doi: 10.1016/j.antiviral.2012.11.005 PMID: 23219425
  59. Chen L, Chen S, Gui C, Shen J, Shen X, Jiang H. Discovering severe acute respiratory syndrome coronavirus 3CL protease inhibitors: Virtual screening, surface plasmon resonance, and fluorescence resonance energy transfer assays. SLAS Discov 2006; 11(8): 915-21. doi: 10.1177/1087057106293295 PMID: 17092912
  60. Sarkar PK, Das MC. Mechanistic insights from the review and evaluation of ayurvedic herbal medicines for the prevention and management of COVID-19 patients. J Herb Med 2022; 32: 100554. doi: 10.1016/j.hermed.2022.100554 PMID: 35251909
  61. Vimalanathan S, Ignacimuthu S, Hudson JB. Medicinal plants of Tamil Nadu (Southern India) are a rich source of antiviral activities. Pharm Biol 2009; 47(5): 422-9. doi: 10.1080/13880200902800196
  62. Yu MS, Lee J, Lee JM, et al. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett 2012; 22(12): 4049-54. doi: 10.1016/j.bmcl.2012.04.081 PMID: 22578462
  63. Liu H, Ye F, Sun Q, et al. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J Enzyme Inhib Med Chem 2021; 36(1): 497-503. doi: 10.1080/14756366.2021.1873977 PMID: 33491508
  64. Cho JK, Curtis-Long MJ, Lee KH, et al. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg Med Chem 2013; 21(11): 3051-7. doi: 10.1016/j.bmc.2013.03.027 PMID: 23623680
  65. Kim DW, Seo KH, Curtis-Long MJ, et al. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J Enzyme Inhib Med Chem 2014; 29(1): 59-63. doi: 10.3109/14756366.2012.753591 PMID: 23323951
  66. Alanagreh L, Alzoughool F, Atoum M. The human coronavirus disease COVID-19: Its origin, characteristics, and insights into potential drugs and its mechanisms. Pathogens 2020; 9(5): 331. doi: 10.3390/pathogens9050331 PMID: 32365466
  67. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8. doi: 10.1016/j.cell.2020.02.052 PMID: 32142651
  68. Qian Z, Travanty EA, Oko L, et al. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus. Am J Respir Cell Mol Biol 2013; 48(6): 742-8. doi: 10.1165/rcmb.2012-0339OC PMID: 23418343
  69. Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - An update on the status. Mil Med Res 2020; 7(1): 11. doi: 10.1186/s40779-020-00240-0 PMID: 32169119
  70. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5(4): 562-9. doi: 10.1038/s41564-020-0688-y PMID: 32094589
  71. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020; 367(6485): 1444-8. doi: 10.1126/science.abb2762 PMID: 32132184
  72. Tanaka A, Nagate T, Matsuda H. Acceleration of wound healing by gelatin film dressings with epidermal growth factor. J Vet Med Sci 2005; 67: 909-13. doi: 10.1292/jvms.67.909
  73. Callebaut PE, Pensaert MB. Characterization and isolation of structural polypeptides in haemagglutinating encephalomyelitis virus. J Gen Virol 1980; 48(1): 193-204. doi: 10.1099/0022-1317-48-1-193 PMID: 7381432
  74. Corfield AP, Sander-Wewer M, Veh RW, Wember M, Schauer R. The action of sialidases on substrates containing O-acetylsialic acids. Biol Chem Hoppe Seyler 1986; 367(1): 433-40. doi: 10.1515/bchm3.1986.367.1.433 PMID: 3741623
  75. De Groot AS. Immunomics: Discovering new targets for vaccines and therapeutics. Drug Discov Today 2006; 11(5-6): 203-9. doi: 10.1016/S1359-6446(05)03720-7 PMID: 16580597
  76. Dveksler GS, Pensiero MN, Dieffenbach CW, et al. Mouse hepatitis virus strain A59 and blocking antireceptor monoclonal antibody bind to the N-terminal domain of cellular receptor. Proc Natl Acad Sci 1993; 90(5): 1716-20. doi: 10.1073/pnas.90.5.1716 PMID: 8383324
  77. Dveksler GS, Pensiero MN, Cardellichio CB, et al. Cloning of the mouse hepatitis virus (MHV) receptor: Expression in human and hamster cell lines confers susceptibility to MHV. J Virol 1991; 65(12): 6881-91. doi: 10.1128/jvi.65.12.6881-6891.1991 PMID: 1719235
  78. Gagneten S, Gout O, Dubois-Dalcq M, Rottier P, Rossen J, Holmes KV. Interaction of mouse hepatitis virus (MHV) spike glycoprotein with receptor glycoprotein MHVR is required for infection with an MHV strain that expresses the hemagglutinin-esterase glycoprotein. J Virol 1995; 69(2): 889-95. doi: 10.1128/jvi.69.2.889-895.1995 PMID: 7815557
  79. Hanaoka K, Pritchett TJ, Takasaki S, et al. 4-O-acetyl-N-acetylneuraminic acid in the N-linked carbohydrate structures of equine and guinea pig α2-macroglobulins, potent inhibitors of influenza virus infection. J Biol Chem 1989; 264(17): 9842-9. doi: 10.1016/S0021-9258(18)81735-5 PMID: 2470764
  80. Yi L, Li Z, Yuan K, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol 2004; 78(20): 11334-9. doi: 10.1128/JVI.78.20.11334-11339.2004 PMID: 15452254
  81. Cady SD, Schmidt-Rohr K, Wang J, Soto CS, DeGrado WF, Hong M. Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 2010; 463(7281): 689-92. doi: 10.1038/nature08722 PMID: 20130653
  82. Fischer WB, Hsu HJ. Viral channel forming proteins - Modeling the target. Biochim Biophys Acta Biomembr 2011; 1808(2): 561-71. doi: 10.1016/j.bbamem.2010.05.014 PMID: 20546700
  83. Griffin SDC, Harvey R, Clarke DS, Barclay WS, Harris M, Rowlands DJ. A conserved basic loop in hepatitis C virus p7 protein is required for amantadine-sensitive ion channel activity in mammalian cells but is dispensable for localization to mitochondria. J Gen Virol 2004; 85(2): 451-61. doi: 10.1099/vir.0.19634-0 PMID: 14769903
  84. Gurdon JB, Lane CD, Woodland HR, Marbaix G. Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 1971; 233(5316): 177-82. doi: 10.1038/233177a0 PMID: 4939175
  85. Wong YF, Cheung TH, Lo KWK, et al. Identification of molecular markers and signaling pathway in endometrial cancer in Hong Kong Chinese women by genome-wide gene expression profiling. Oncogene 2007; 26(13): 1971-82. doi: 10.1038/sj.onc.1209986 PMID: 17043662
  86. Kuhn JH, Li W, Choe H, Farzan M. Angiotensin-converting enzyme 2: A functional receptor for SARS coronavirus. Cell Mol Life Sci 2004; 61(21): 2738-43. doi: 10.1007/s00018-004-4242-5 PMID: 15549175
  87. Bingham RW, Madge MH, Tyrrell DAJ. Haemagglutination by avian infectious bronchitis virus-a coronavirus. J Gen Virol 1975; 28(3): 381-90. doi: 10.1099/0022-1317-28-3-381 PMID: 170378
  88. Bosch FX, Orlich M, Klenk HD, Rott R. The structure of the hemagglutinin, a determinant for the pathogenicity of influenza viruses. Virology 1979; 95(1): 197-207. doi: 10.1016/0042-6822(79)90414-8 PMID: 442540
  89. Cavanagh D. Structural polypeptides of coronavirus IBV. J Gen Virol 1981; 53(1): 93-103. doi: 10.1099/0022-1317-53-1-93 PMID: 6268743
  90. Cavanagh D. Coronavirus IBV: Structural characterization of the spike protein. J Gen Virol 1983; 64(12): 2577-83. doi: 10.1099/0022-1317-64-12-2577 PMID: 6319549
  91. Almanza M, Vega N. Isolating and characterising a lectin from galactia lindenii seeds that recognises blood group H determinants. Arch Biochem Biophys 2004; 429(2): 180-90.
  92. González-Moles MA, Mosqueda-Taylor A, Delgado-Rodríguez M, et al. Analysis of p53 protein by PAb240, Ki-67 expression and human papillomavirus DNA detection in different types of odontogenic keratocyst. Anticancer Res 2006; 26(1A): 175-81. PMID: 16475695
  93. Baker SC, Yokomori K, Dong S, et al. Identification of the catalytic sites of a papain-like cysteine proteinase of murine coronavirus. J Virol 1993; 67(10): 6056-63. doi: 10.1128/jvi.67.10.6056-6063.1993 PMID: 8396668
  94. Baric RS, Sims AC. Development of mouse hepatitis virus and SARS-CoV infectious cDNA constructs. Curr Top Microbiol Immunol 2005; 287: 229-52. doi: 10.1007/3-540-26765-4_8 PMID: 15609514
  95. Shirato K, Kawase M, Matsuyama S. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol 2013; 87(23): 12552-61. doi: 10.1128/JVI.01890-13 PMID: 24027332
  96. Adedeji AO, Sarafianos SG. Antiviral drugs specific for coronaviruses in preclinical development. Curr Opin Virol 2014; 8: 45-53. doi: 10.1016/j.coviro.2014.06.002 PMID: 24997250
  97. Ren X, Meng F, Yin J, et al. Action mechanisms of lithium chloride on cell infection by transmissible gastroenteritis coronavirus. PLoS One 2011; 6(5): e18669. doi: 10.1371/journal.pone.0018669 PMID: 21573100
  98. Yang Y, Islam MS, Wang J, Li Y, Chen X. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): A review and perspective. Int J Biol Sci 2020; 16(10): 1708-17. doi: 10.7150/ijbs.45538 PMID: 32226288
  99. Ling C. Traditional Chinese medicine is a resource for drug discovery against 2019 novel coronavirus (SARS-CoV-2). J Integr Med 2020; 18(2): 87-8. doi: 10.1016/j.joim.2020.02.004 PMID: 32122812
  100. Huang K, Zhang P, Zhang Z, et al. Traditional Chinese Medicine (TCM) in the treatment of COVID-19 and other viral infections: Efficacies and mechanisms. Pharmacol Ther 2021; 225: 107843. doi: 10.1016/j.pharmthera.2021.107843 PMID: 33811957
  101. Joshi RS, Jagdale SS, Bansode SB, et al. Discovery of potential multi-target-directed ligands by targeting host-specific SARS- CoV-2 structurally conserved main protease. J Biomol Struct Dyn 2021; 39(9): 3099-114. PMID: 32329408
  102. Patwardhan B, Chavan-Gautam P, Gautam M, et al. Ayurveda rasayana in prophylaxis of COVID-19. Curr Sci 2020; 118: 1158-60.
  103. Saggam A, Limgaokar K, Borse S, et al. Withania somnifera (L.) dunal: Opportunity for clinical repurposing in COVID-19 management. Front Pharmacol 2021; 12: 623795. doi: 10.3389/fphar.2021.623795 PMID: 34012390
  104. Shree P, Mishra P, Selvaraj C, et al. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) - A molecular docking study. J Biomol Struct Dyn 2022; 40(1): 190-203. PMID: 32851919
  105. India Go. Government of India. Guidelines for Ayurveda practitioners for COVID-19. New Delhi: Ayush Bhavan, 2020.
  106. Kundu D, Selvaraj C, Singh SK, Dubey VK. Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. J Biomol Struct Dyn 2021; 39(9): 3428-34. PMID: 32362243
  107. Shanaida M, Jasicka-Misiak I, Makowicz E, Stanek N, Shanaida V, Wieczorek P. Development of high-performance thin layer chromatography method for identification of phenolic compounds and quantification of rosmarinic acid content in some species of the Lamiaceae family. J Pharm Bioallied Sci 2020; 12(2): 139-45. doi: 10.4103/jpbs.JPBS_322_19 PMID: 32742112
  108. Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: The Indian solid gold. Adv Exp Med Biol 2007; 595: 1-75. doi: 10.1007/978-0-387-46401-5_1 PMID: 17569205
  109. Slika L, Patra D. Traditional uses, therapeutic effects and recent advances of curcumin: A mini-review. Mini Rev Med Chem 2020; 20(12): 1072-82. doi: 10.2174/1389557520666200414161316 PMID: 32286941
  110. Zahedipour F, Hosseini SA, Sathyapalan T, et al. Potential effects of curcumin in the treatment of COVID-19 infection. Phytother Res 2020; 34(11): 2911-20. doi: 10.1002/ptr.6738 PMID: 32430996
  111. Chen L, Hu C, Hood M, et al. A novel combination of vitamin C, curcumin and glycyrrhizic acid potentially regulates immune and inflammatory response associated with coronavirus infections: A perspective from system biology analysis. Nutrients 2020; 12(4): 1193. doi: 10.3390/nu12041193 PMID: 32344708
  112. Gasmi A, Mujawdiya PK, Noor S, et al. Polyphenols in metabolic diseases. Molecules 2022; 27(19): 6280. doi: 10.3390/molecules27196280 PMID: 36234817
  113. Goyal M. Potential of Ayurveda in the prevention and management of post-COVID complications. Ayu 2020; 41(2): 69-71. doi: 10.4103/ayu.ayu_284_21 PMID: 34908790
  114. Girija PLT, Sivan N. Ayurvedic treatment of COVID-19: A case report. J Ayurveda Integr Med 2022; 13(1): 100329. doi: 10.1016/j.jaim.2020.06.001 PMID: 32680602
  115. Kumar Verma A, Kumar V, Singh S, et al. Repurposing potential of Ayurvedic medicinal plants derived active principles against SARS-CoV-2 associated target proteins revealed by molecular docking, molecular dynamics and MM-PBSA studies. Biomed Pharmacother 2021; 137: 111356. doi: 10.1016/j.biopha.2021.111356 PMID: 33561649
  116. Haridas M, Sasidhar V, Nath P, Abhithaj J, Sabu A, Rammanohar P. Compounds of Citrus medica and Zingiber officinale for COVID-19 inhibition: In silico evidence for cues from Ayurveda. Futur J Pharm Sci 2021; 7(1): 13. doi: 10.1186/s43094-020-00171-6 PMID: 33457429
  117. Arora R, Chawla R, Marwah R, et al. Potential of complementary and alternative medicine in preventive management of novel H1N1 Flu (Swine Flu) pandemic: Thwarting potential disasters in the bud. Evid Based Complement Alternat Med 2011; 2011: 1-16. doi: 10.1155/2011/586506 PMID: 20976081
  118. Gomaa AA, Abdel-Wadood YA. The potential of glycyrrhizin and licorice extract in combating COVID-19 and associated conditions. Phytomedicine Plus 2021; 1(3): 100043. doi: 10.1016/j.phyplu.2021.100043 PMID: 35399823
  119. Maurya D, Sharma D. Evaluation of traditional ayurvedic preparation for prevention and management of the novel coronavirus (SARS-CoV-2) using molecular docking approach. ChemRxiv 2020.
  120. Zhao Z, Li Y, Zhou L, et al. Prevention and treatment of COVID-19 using traditional Chinese medicine: A review. Phytomedicine 2021; 85: 153308. doi: 10.1016/j.phymed.2020.153308 PMID: 32843234
  121. Tang W, Eisenbrand G. Chinese drugs of plant origin. Chemistry, Pharmacology, and Use in Traditional and Modern Medicine. Berlin, Heidelberg: Springer 1992. doi: 10.1007/978-3-642-73739-8
  122. Ali I, Alharbi OML. COVID-19: Disease, management, treatment, and social impact. Sci Total Environ 2020; 728: 138861. doi: 10.1016/j.scitotenv.2020.138861 PMID: 32344226
  123. Wang L, Yang R, Yuan B, Liu Y, Liu C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm Sin B 2015; 5(4): 310-5. doi: 10.1016/j.apsb.2015.05.005 PMID: 26579460
  124. Pavlova LV, Platonov IA, Kurkin VA, Novikova EA, Kolesnichenko IN. Determination of glycyrrhizic acid in roots of licorice by hplc method with subcritical dynamic extraction. Analytics and Control 2018; 22(3): 229-35. doi: 10.15826/analitika.2018.22.3.004
  125. Damle Joshi M. Glycyrrhiza glabra (Liquorice) - A potent medicinal herb. Int J Herb Med 2014; 132: 132-6.
  126. Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res 2008; 22(6): 709-24. doi: 10.1002/ptr.2362 PMID: 18446848
  127. Asl N, Hosseinzadeh H. Review of antiviral effects of Glycyrrhiza glabra L. and its active component, glycyrrhizin. Faslnamah-i Giyahan-i Daruyi 2007; 6: 1-12.
  128. Fiore C, Eisenhut M, Krausse R, et al. Antiviral effects of Glycyrrhiza species. Phytother Res 2008; 22(2): 141-8. doi: 10.1002/ptr.2295 PMID: 17886224
  129. Anagha K, Deshpande DM, Priya L, Meera M. Scope of Glycyrrhiza glabra (Yashtimadhu) as an antiviral agent: A review. Int J Curr Microbiol App Sci 2014; 3(1): 657-65.
  130. El-Saber Batiha G, Magdy Beshbishy A, El-Mleeh A, Abdel- Daim MM, Prasad Devkota H. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020; 10(3): 10. doi: 10.3390/biom10030352 PMID: 32106571
  131. Harwansh R, Patra K, Pareta S, Singh J, Biswas R. Pharmacological studies of Glycyrrhiza glabra- A review. Pharmacology. 2013; pp. 1032-8.
  132. Thangavelu L, Geetha RV. Glycyrrhiza glabra Linn commonly known as liquorice: A therapeutic review. Int J Pharm Pharm Sci 2011; 3: 20-5.
  133. Sun ZG, Zhao TT, Lu N, Yang YA, Zhu HL. Research progress of glycyrrhizic acid on antiviral activity. Mini Rev Med Chem 2019; 19(10): 826-32. doi: 10.2174/1389557519666190119111125 PMID: 30659537
  134. Jayasinghe DM, Kumarasinghe A, Weerasinghe L, Ramanayaka HAL. Ayurveda Aushadha Samgrahaya. Nawinna, Sri Lanka: Department of Ayurveda 1985.
  135. Jafarzadeh A, Nemati M. Therapeutic potentials of ginger for treatment of Multiple sclerosis: A review with emphasis on its immunomodulatory, anti-inflammatory and anti-oxidative properties. J Neuroimmunol 2018; 324: 54-75. doi: 10.1016/j.jneuroim.2018.09.003 PMID: 30243185
  136. Prajapati ND, Purohit SS, Sharma AK, Kumar T. A Handbook of Medicinal Plants (A complete source book). Jodhpur, India: Dr. Updesh Purohit for Agrobios 2003.
  137. Kaushik S, Jangra G, Kundu V, Yadav JP, Kaushik S. Anti-viral activity of Zingiber officinale (Ginger) ingredients against the Chikungunya virus. Virusdisease 2020; 31(3): 270-6. doi: 10.1007/s13337-020-00584-0 PMID: 32420412
  138. India Go. Post COVID Management Protocol. Delhi: Ministry of Health & Family Welfare 2020.
  139. Krup V, Prakash H, Harini A. Pharmacological activities of turmeric (Curcuma longa Linn): A review. J Homeop Ayurv Med 2013; 2: 133.
  140. Esatbeyoglu T, Huebbe P, Ernst IMA, Chin D, Wagner AE, Rimbach G. Curcumin-from molecule to biological function. Angew Chem Int Ed 2012; 51(22): 5308-32. doi: 10.1002/anie.201107724 PMID: 22566109
  141. Kapustin MA, Chubavora AS, Cigankov VG, Kurchenko VP. Isolation of curcuminoids from the Curcuma longa and investigation of the composition of the obtained preparation using chromatographic methods of analysis. BSUTP 2016; 11: 248-62.
  142. Jayasinghe DM, Kumarasinghe A, Weerasinghe L, Ramanayaka HAL. Ayurveda Aushadha Samgrahaya. Nawinna, Sri Lanka: Department of Ayurveda 1985.
  143. Mythri HS, Mahto R. Multimodal ayurvedic approach in the management of moderate SARS-COV2 infection with co-morbidities – A case report. J Family Med Prim Care 2022; 11(1): 344-9. doi: 10.4103/jfmpc.jfmpc_495_21 PMID: 35309621
  144. Upadhyay A, Kumar K, Kumar A, Mishra H. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi) - validation of the Ayurvedic pharmacology through experimental and clinical studies. Int J Ayurveda Res 2010; 1(2): 112-21. doi: 10.4103/0974-7788.64405 PMID: 20814526
  145. Nadeem M, Muhammad Anjum F, Issa Khan M, Tehseen S, El-Ghorab A, Iqbal Sultan J. Nutritional and medicinal aspects of coriander (Coriandrum sativum L.). Br Food J 2013; 115(5): 743-55. doi: 10.1108/00070701311331526
  146. Wiggers HJ, Zaioncz S, Cheleski J, Mainardes R, Khalil N. Curcumin, a multitarget phytochemical: Challenges and perspectives. Stud Nat Prod Chem 2017; 53: 243-76. doi: 10.1016/B978-0-444-63930-1.00007-7
  147. Priyadarsini K. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014; 19(12): 20091-112. doi: 10.3390/molecules191220091 PMID: 25470276
  148. Conti P, Caraffa A, Gallenga CE, et al. Coronavirus-19 (SARS- CoV-2) induces acute severe lung inflammation via IL-1 causing cytokine storm in COVID-19: A promising inhibitory strategy. J Biol Regul Homeost Agents 2020; 34(6): 1971-5. PMID: 33016027
  149. Valizadeh H, Abdolmohammadi-vahid S, Danshina S, et al. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int Immunopharmacol 2020; 89(Pt B): 107088. doi: 10.1016/j.intimp.2020.107088 PMID: 33129099
  150. Quispe C, Cruz-Martins N, Manca ML, et al. Nano-derived therapeutic formulations with curcumin in inflammation-related diseases. Oxid Med Cell Longev 2021; 2021: 1-15. doi: 10.1155/2021/3149223 PMID: 34584616
  151. Jena D, Kanungo N, Nayak V, Chainy G, Dandapat J. Catechin and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell membrane: Insights from computational studies. Sci Rep 2020; 11: 2043.
  152. Chen TY, Chen DY, Wen HW, et al. Inhibition of enveloped viruses infectivity by curcumin. PLoS One 2013; 8(5): e62482. doi: 10.1371/journal.pone.0062482 PMID: 23658730
  153. Mounce BC, Cesaro T, Carrau L, Vallet T, Vignuzzi M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res 2017; 142: 148-57. doi: 10.1016/j.antiviral.2017.03.014 PMID: 28343845
  154. Srivastava A, Singh D. Destabilizing the structural integrity of SARS-CoV2 receptor proteins by curcumin along with hydroxychloroquine: An insilco approach for a combination therapy. ChemRxiv 2020.
  155. Rai D, Singh JK, Roy N, Panda D. Curcumin inhibits FtsZ assembly: An attractive mechanism for its antibacterial activity. Biochem J 2008; 410(1): 147-55. doi: 10.1042/BJ20070891 PMID: 17953519
  156. Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res Int 2014; 2014: 186864. PMID: 24877064
  157. Zhuang M, Jiang H, Suzuki Y, et al. Procyanidins and butanol extract of Cinnamomi cortex inhibit SARS-CoV infection. Antiviral Res 2009; 82(1): 73-81. doi: 10.1016/j.antiviral.2009.02.001 PMID: 19428598
  158. Nguyen TTH, Woo HJ, Kang HK, et al. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol Lett 2012; 34(5): 831-8. doi: 10.1007/s10529-011-0845-8 PMID: 22350287
  159. Gasmi A, Mujawdiya PK, Lysiuk R, et al. Quercetin in the prevention and treatment of coronavirus infections: A focus on SARS- CoV-2. Pharmaceuticals (Basel) 2022; 15(9): 1049. doi: 10.3390/ph15091049 PMID: 36145270
  160. Nabirotchkin S, Peluffo A, Bouaziz J, Cohen D. Focusing on the unfolded protein response and autophagy related pathways to reposition common approved drugs against COVID-19. Preprints 2020; 2020030302.2020;
  161. Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem 2020; 35(1): 145-51. doi: 10.1080/14756366.2019.1690480 PMID: 31724441
  162. Ryu YB, Jeong HJ, Kim JH, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorg Med Chem 2010; 18(22): 7940-7. doi: 10.1016/j.bmc.2010.09.035 PMID: 20934345
  163. Pandey P, Rane JS, Chatterjee A, et al. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: An in silico study for drug development. J Biomol Struct Dyn 2021; 39(16): 6306-16. doi: 10.1080/07391102.2020.1796811 PMID: 32698689
  164. Gidwani B, Bhattacharya R, Shukla SS, Pandey RK. Indian spices: Past, present and future challenges as the engine for bio-enhancement of drugs: Impact of COVID-19. J Sci Food Agric 2022; 102(8): 3065-77. doi: 10.1002/jsfa.11771 PMID: 35043421
  165. Yücel Ç, Şeker Karatoprak G, Bahadir O, Akkol E, Barak TH. Immunomodulatory and anti-inflammatory therapeutic potential of gingerols and their nanoformulations. Front Pharmacol 2022; 13: 902551.
  166. Hudson J, Vimalanathan S. Echinacea-a source of potent antivirals for respiratory virus infections. Pharmaceuticals 2011; 4(7): 1019-31. doi: 10.3390/ph4071019
  167. Zhang P, Liu X, Liu H, et al. Astragalus polysaccharides inhibit avian infectious bronchitis virus infection by regulating viral replication. Microb Pathog 2018; 114: 124-8. doi: 10.1016/j.micpath.2017.11.026 PMID: 29170045
  168. Chen CJ, Michaelis M, Hsu HK, et al. Toona sinensis Roem tender leaf extract inhibits SARS coronavirus replication. J Ethnopharmacol 2008; 120(1): 108-11. doi: 10.1016/j.jep.2008.07.048 PMID: 18762235
  169. Schwarz S, Wang K, Yu W, Sun B, Schwarz W. Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Res 2011; 90(1): 64-9. doi: 10.1016/j.antiviral.2011.02.008 PMID: 21356245

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024