Ayurvedic and Chinese Herbs against Coronaviruses
- Авторы: Gasmi A.1, Kanwal S.2, Oliinyk P.3, Lysiuk R.4, Shanaida M.5, Gasmi Benahmed A.6, Dushmantha W.7, Arshad M.8, Kernychna I.9, Lenchyk L.10, Upyr T.11, Shanaida V.12, Bjørklund G.13
-
Учреждения:
- Département de Recherche, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée
- Biosciences Department, COMSATS Institute of Information Technology
- Department of Disaster Medicine and Military Medicine, Danylo Halytsky Lviv National Medical University
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University
- Département de Recherche,, Académie Internationale de Médecine Dentaire Intégrative
- Institute of Indigenous Medicine, University of Colombo
- Département de Recherche, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée,
- Department of Pharmacognosy and Medical Botany,, I. Horbachevsky Ternopil National Medical University
- Department of Quality, Certification and Standardization of Medicines, Institute for Advanced Training of Pharmacy Specialists,, National University of Pharmacy
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University
- Department of Research,, CounCouncil for Nutritional and Environmental Medicine (CONEM)cil for Nutritional and Environmental Medicine (CONEM)
- Выпуск: Том 30, № 21 (2024)
- Страницы: 1681-1698
- Раздел: Immunology, Inflammation & Allergy
- URL: https://vestnikugrasu.org/1381-6128/article/view/645796
- DOI: https://doi.org/10.2174/0113816128269864231112094917
- ID: 645796
Цитировать
Полный текст
Аннотация
Coronavirus disease 2019 (COVID-19) is a viral disease that infects the lower airways, causing severe acute respiratory syndrome (SARS) and fatal pneumonia. The ripple effect of the COVID-19 outbreak has created serious problems in the healthcare systems of many countries and had far-reaching consequences for the global economy. Thus, effective control measures should be implemented for this coronavirus infection in the future. The ongoing episode of the SARS-CoV-2 sickness, COVID-19, in China, and the subsequent irregular spread of contamination to different nations, has alarmed the clinical and academic community primarily due to the deadly nature of this disease. Being a newly identified virus in the viral classification and having the highest mutation rate, rapid therapeutics are not readily available for treating this ailment, leading to the widespread of the disease and causing social issues for affected individuals. Evidence of Ayurveda and traditional Chinese medicine (TCM) has been found in ancient civilizations, such as those of the Hindus, Babylonians, Hebrews, and Arabs. Although TCM and Ayurvedic herbs do not promise to be very effective treatments for this pandemic, they can reduce infectivity and virulence by enhancing immunity and showing effectiveness in rehabilitation after COVID-19 disease. Thus, they could be used as sources of inhibitor molecules for certain phenomena, such as viral replication, attachment to the host, 3CL protease inhibition, 3a ion channel inhibitors, and reverse transcription inhibition. Medicinal plants from TCM and Ayurveda and their biologically active phytoconstituents can effectively modulate the targets and pathways relevant to inflammation and immune responses in human bodies. The present review analyzes the role of certain TCM and Ayurvedic medicinal plants in healing COVID-19 infection. Medicinal plants such as Glycyrrhiza glabra (licorice), Curcuma longa (turmeric), and Zingiber officinale (ginger) are regarded as the main antiviral herbs. Their extracts and individual bioactive compounds could be used as potential substances for developing remedies to prevent or cure the coronavirus disease. Generally, antiviral phytochemicals obtained from natural sources are considered potent candidates for fighting COVID-19 infection and rehabilitation after it.
Ключевые слова
Об авторах
Amin Gasmi
Département de Recherche, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée
Email: info@benthamscience.net
Sonia Kanwal
Biosciences Department, COMSATS Institute of Information Technology
Email: info@benthamscience.net
Petro Oliinyk
Department of Disaster Medicine and Military Medicine, Danylo Halytsky Lviv National Medical University
Email: info@benthamscience.net
Roman Lysiuk
CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University
Email: info@benthamscience.net
Mariia Shanaida
Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University
Email: info@benthamscience.net
Asma Gasmi Benahmed
Département de Recherche,, Académie Internationale de Médecine Dentaire Intégrative
Email: info@benthamscience.net
Walallawita Dushmantha
Institute of Indigenous Medicine, University of Colombo
Email: info@benthamscience.net
Maria Arshad
Département de Recherche, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée,
Email: info@benthamscience.net
Ivanna Kernychna
Department of Pharmacognosy and Medical Botany,, I. Horbachevsky Ternopil National Medical University
Email: info@benthamscience.net
Larysa Lenchyk
Department of Quality, Certification and Standardization of Medicines, Institute for Advanced Training of Pharmacy Specialists,, National University of Pharmacy
Email: info@benthamscience.net
Taras Upyr
CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy
Email: info@benthamscience.net
Volodymyr Shanaida
CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University
Email: info@benthamscience.net
Geir Bjørklund
Department of Research,, CounCouncil for Nutritional and Environmental Medicine (CONEM)cil for Nutritional and Environmental Medicine (CONEM)
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Gorbalenya AE, Baker SC, Baric RS, et al. The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5(4): 536-44. doi: 10.1038/s41564-020-0695-z
- Kupferschmidt K, Cohen J. Will novel virus go pandemic or be contained? Science 2020; 367(6478): 610-1. doi: 10.1126/science.367.6478.610 PMID: 32029604
- Adithya J, Nair B, Aishwarya TS, Nath LR. The plausible role of indian traditional medicine in combating corona virus (SARS- CoV 2): A mini-review. Curr Pharm Biotechnol 2021; 22(7): 906-19. doi: 10.2174/18734316MTA4hOTEvx PMID: 32767920
- Chen J, Ding Z. Advances in natural product anti-coronavirus research (2002-2022). Chin Med 2023; 18(1): 13. doi: 10.1186/s13020-023-00715-x PMID: 36782317
- Shanaida M, Klishch I. Sedative effect of infusions from five lamiaceae martinov species. Pharmacologyonline 2021; 3: 1292-8.
- Caesar LK, Cech NB. Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat Prod Rep 2019; 36(6): 869-88. doi: 10.1039/C9NP00011A PMID: 31187844
- van Vuuren S, Viljoen A. Plant-based antimicrobial studies-methods and approaches to study the interaction between natural products. Planta Med 2011; 77(11): 1168-82. doi: 10.1055/s-0030-1250736 PMID: 21283954
- Lansky ES. A possible synergistic herbal solution for COVID-19. Front Biosci 2022; 14(2): 12. doi: 10.31083/j.fbs1402012 PMID: 35730437
- Luo H, Gao Y, Zou J, et al. Reflections on treatment of COVID-19 with traditional Chinese medicine. Chin Med 2020; 15(1): 94. doi: 10.1186/s13020-020-00375-1 PMID: 32905189
- Gasmi A, Tippairote T, Mujawdiya PK, et al. Traditional Chinese medicine as the preventive and therapeutic remedy for COVID-19. Curr Med Chem 2024; 31(21): 3118-31. PMID: 36999715
- Wan S, Xiang Y, Fang W, et al. Clinical features and treatment of COVID-19 patients in Northeast Chongqing. J Med Virol 2020; 92(7): 797-806. doi: 10.1002/jmv.25783 PMID: 32198776
- Li S, Chen C, Zhang H, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res 2005; 67(1): 18-23. doi: 10.1016/j.antiviral.2005.02.007 PMID: 15885816
- Rajan M, Gupta P, Kumar A. Promising antiviral molecules from ayurvedic herbs and spices against COVID-19. Chin J Integr Med 2021; 27(4): 243-4. doi: 10.1007/s11655-021-3331-8 PMID: 33544289
- Dharmendra KM, Deepak S. Evaluation of traditional ayurvedic Kadha for prevention and management of the novel Coronavirus (SARS-CoV-2) using in silico approach. J Biomol Struct Dyn 2020; 40(9): 3949-64.
- Fawzy NA, Abou Shaar B, Taha RM, et al. A systematic review of trials currently investigating therapeutic modalities for post- acute COVID-19 syndrome and registered on WHO International Clinical Trials Platform. Clin Microbiol Infect 2023; 29(5): 570-7. doi: 10.1016/j.cmi.2023.01.007 PMID: 36642173
- Das K, Das P, Almuqbil M, et al. Inhibition of SARS-CoV2 viral infection with natural antiviral plants constituents: An in-silico approach. J King Saud Univ Sci 2023; 35(3): 102534. doi: 10.1016/j.jksus.2022.102534 PMID: 36619666
- Kanchibhotla D, Harsora P, Subramanian S, Reddy MRK, Venkatesh HKR. Rate of recovery and symptomatic efficacy of a polyherbal ayush formulation in the treatment of SARS-CoV-2 disease: A single-arm trial. Altern Ther Health Med 2023; 29(4): 134-9. PMID: 35951065
- Chavda VP, Patel AB, Vihol D, et al. Herbal remedies, nutraceuticals, and dietary supplements for COVID-19 management: An update. CCMP 2022; 2(1): 100021. doi: 10.1016/j.ccmp.2022.100021 PMID: 36620357
- Trivedi A, Ahmad R, Siddiqui S, et al. Prophylactic and therapeutic potential of selected immunomodulatory agents from Ayurveda against coronaviruses amidst the current formidable scenario: An in silico analysis. J Biomol Struct Dyn 2022; 40(20): 9648-700. doi: 10.1080/07391102.2021.1932601 PMID: 34243689
- Verma S. In search of feasible interventions for the prevention and cure of novel coronavirus disease 2019. Preprints 2020.
- Luo H, Tang Q, Shang Y, et al. Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin J Integr Med 2020; 26(4): 243-50. doi: 10.1007/s11655-020-3192-6 PMID: 32065348
- Khazdair MR, Ghafari S, Sadeghi M. Possible therapeutic effects of Nigella sativa and its thymoquinone on COVID-19. Pharm Biol 2021; 59(1): 694-701. doi: 10.1080/13880209.2021.1931353 PMID: 34110959
- Korablova O, Shanaida M, Gontova T. Chromatographic analysis of volatile compounds isolated from the Nigella damascena L. and Nigella arvensis L. seeds. Pharmacologyonline 2022; 3: 21-9.
- Zhang D, Wu K, Zhang X, Deng S, Peng B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J Integr Med 2020; 18(2): 152-8. doi: 10.1016/j.joim.2020.02.005 PMID: 32113846
- Narula C. 5,000-year-old ancient scriptures describe something similar to coronavirus. 2020. Available from: https://www.indiatoday.in/india/story/5000-year-old-ancient-scriptures-describe-something-similar-coronavirus-1668405-2020-04-18
- Kumarasinghe A. Charaka Samhitha of Agnivesha elaborated by Charaka and Dridhabala. Nawinna, Sri Lanka: Department of Ayurveda Sri Lanka 1991.
- Sendhilkumar M, Manickam P. Reactions from traditional medical systems to COVID-19 outbreak: Time to tread cautiously. J Ayurveda Integr Med 2022; 13(1): 100315. doi: 10.1016/j.jaim.2020.04.004 PMID: 32382221
- Rastogi S, Pandey DN, Singh RH. COVID-19 pandemic: A pragmatic plan for ayurveda intervention. J Ayurveda Integr Med 2022; 13(1): 100312. doi: 10.1016/j.jaim.2020.04.002 PMID: 32382220
- Islamie R, Iksen I, Buana BC, Gurning K, Syahputra HD, Winata HS. Construction of network pharmacology-based approach and potential mechanism from major components of Coriander sativum L. against COVID-19. Pharmacia 2022; 69(3): 689-97. doi: 10.3897/pharmacia.69.e84388
- Smith I, Wang LF. Bats and their virome: An important source of emerging viruses capable of infecting humans. Curr Opin Virol 2013; 3(1): 84-91. doi: 10.1016/j.coviro.2012.11.006 PMID: 23265969
- Liu L. Traditional Chinese medicine contributes to the treatment of COVID-19 patients. Chin Herb Med 2020; 12(2): 95-6. doi: 10.1016/j.chmed.2020.04.003 PMID: 32391065
- Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016; 24(6): 490-502. doi: 10.1016/j.tim.2016.03.003 PMID: 27012512
- Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33. doi: 10.1056/NEJMoa2001017 PMID: 31978945
- Wang N, Shang J, Jiang S, Du L. Subunit vaccines against emerging pathogenic human coronaviruses. Front Microbiol 2020; 11: 298. doi: 10.3389/fmicb.2020.00298 PMID: 32265848
- Spaan W, Cavanagh D, Horzinek MC. Coronaviruses: Structure and genome expression. J Gen Virol 1988; 69(12): 2939-52. doi: 10.1099/0022-1317-69-12-2939 PMID: 3058868
- Lai MM, Cavanagh D. The molecular biology of coronaviruse. Adv Virus Res. 1997; 48: pp. 1-100. doi: 10.1016/S0065-3527(08)60286-9
- Holmes KV. Coronaviruses (Coronaviridae). Encyclopedia of virology 1999; p. 291.
- Polansky H, Lori G. Coronavirus disease 2019 (COVID-19): First indication of efficacy of Gene-Eden-VIR/Novirin in SARS-CoV-2 infection. Int J Antimicrob Agents 2020; 55(6): 105971. doi: 10.1016/j.ijantimicag.2020.105971 PMID: 32283177
- Polansky H, Itzkovitz E, Javaherian A. Human papillomavirus (HPV): Systemic treatment with Gene-Eden-VIR/Novirin safely and effectively clears virus. Drug Des Devel Ther 2017; 11: 575-83. doi: 10.2147/DDDT.S123340 PMID: 28424535
- Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74. doi: 10.1016/S0140-6736(20)30251-8 PMID: 32007145
- Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol 2020; 92(4): 424-32. doi: 10.1002/jmv.25685 PMID: 31981224
- Liu C, Zhou Q, Li Y, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci 2020; 6(3): 315-31. doi: 10.1021/acscentsci.0c00272 PMID: 32226821
- Chen L, Gui C, Luo X, et al. Cinanserin is an inhibitor of the 3C- like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. J Virol 2005; 79(11): 7095-103. doi: 10.1128/JVI.79.11.7095-7103.2005 PMID: 15890949
- Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 2003; 361(9374): 2045-6. doi: 10.1016/S0140-6736(03)13615-X PMID: 12814717
- Jeong YS, Makino S. Mechanism of coronavirus transcription: Duration of primary transcription initiation activity and effects of subgenomic RNA transcription on RNA replication. J Virol 1992; 66(6): 3339-46. doi: 10.1128/jvi.66.6.3339-3346.1992 PMID: 1583719
- Yang H, Xie W, Xue X, et al. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol 2005; 3(10): e324. doi: 10.1371/journal.pbio.0030324 PMID: 16128623
- Adedeji AO, Singh K, Calcaterra NE, et al. Severe acute respiratory syndrome coronavirus replication inhibitor that interferes with the nucleic acid unwinding of the viral helicase. Antimicrob Agents Chemother 2012; 56(9): 4718-28. doi: 10.1128/AAC.00957-12 PMID: 22733076
- Liu Q, Xia S, Sun Z, et al. Testing of Middle East respiratory syndrome coronavirus replication inhibitors for the ability to block viral entry. Antimicrob Agents Chemother 2015; 59(1): 742-4. doi: 10.1128/AAC.03977-14 PMID: 25331705
- Xia S, Liu Q, Wang Q, et al. Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein. Virus Res 2014; 194: 200-10. doi: 10.1016/j.virusres.2014.10.007 PMID: 25451066
- Kilianski A, Baker SC. Cell-based antiviral screening against coronaviruses: Developing virus-specific and broad-spectrum inhibitors. Antiviral Res 2014; 101: 105-12. doi: 10.1016/j.antiviral.2013.11.004 PMID: 24269477
- Wen C-C, Shyur L-F, Jan J-T, et al. Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS- CoV replication. J Tradit Complement Med 2011; 1(1): 41-50.
- Pyrc K, Berkhout B, van der Hoek L. Antiviral strategies against human coronaviruses. Infect Disord Drug Targets 2007; 7: 59-66. doi: 10.2174/187152607780090757
- Keyaerts E, Vijgen L, Pannecouque C, et al. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res 2007; 75(3): 179-87. doi: 10.1016/j.antiviral.2007.03.003 PMID: 17428553
- Tahir ul Qamar M, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal 2020; 10(4): 313-9. doi: 10.1016/j.jpha.2020.03.009 PMID: 32296570
- Yang S, Chen SJ, Hsu MF, et al. Synthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor. J Med Chem 2006; 49(16): 4971-80. doi: 10.1021/jm0603926 PMID: 16884309
- Bacha U, Barrila J, Velazquez-Campoy A, Leavitt SA, Freire E. Identification of novel inhibitors of the SARS coronavirus main protease 3CLpro. Biochemistry 2004; 43(17): 4906-12. doi: 10.1021/bi0361766 PMID: 15109248
- Chen LR, Wang YC, Lin YW, et al. Synthesis and evaluation of isatin derivatives as effective SARS coronavirus 3CL protease inhibitors. Bioorg Med Chem Lett 2005; 15(12): 3058-62. doi: 10.1016/j.bmcl.2005.04.027 PMID: 15896959
- Kim Y, Mandadapu SR, Groutas WC, Chang KO. Potent inhibition of feline coronaviruses with peptidyl compounds targeting coronavirus 3C-like protease. Antiviral Res 2013; 97(2): 161-8. doi: 10.1016/j.antiviral.2012.11.005 PMID: 23219425
- Chen L, Chen S, Gui C, Shen J, Shen X, Jiang H. Discovering severe acute respiratory syndrome coronavirus 3CL protease inhibitors: Virtual screening, surface plasmon resonance, and fluorescence resonance energy transfer assays. SLAS Discov 2006; 11(8): 915-21. doi: 10.1177/1087057106293295 PMID: 17092912
- Sarkar PK, Das MC. Mechanistic insights from the review and evaluation of ayurvedic herbal medicines for the prevention and management of COVID-19 patients. J Herb Med 2022; 32: 100554. doi: 10.1016/j.hermed.2022.100554 PMID: 35251909
- Vimalanathan S, Ignacimuthu S, Hudson JB. Medicinal plants of Tamil Nadu (Southern India) are a rich source of antiviral activities. Pharm Biol 2009; 47(5): 422-9. doi: 10.1080/13880200902800196
- Yu MS, Lee J, Lee JM, et al. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett 2012; 22(12): 4049-54. doi: 10.1016/j.bmcl.2012.04.081 PMID: 22578462
- Liu H, Ye F, Sun Q, et al. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J Enzyme Inhib Med Chem 2021; 36(1): 497-503. doi: 10.1080/14756366.2021.1873977 PMID: 33491508
- Cho JK, Curtis-Long MJ, Lee KH, et al. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg Med Chem 2013; 21(11): 3051-7. doi: 10.1016/j.bmc.2013.03.027 PMID: 23623680
- Kim DW, Seo KH, Curtis-Long MJ, et al. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J Enzyme Inhib Med Chem 2014; 29(1): 59-63. doi: 10.3109/14756366.2012.753591 PMID: 23323951
- Alanagreh L, Alzoughool F, Atoum M. The human coronavirus disease COVID-19: Its origin, characteristics, and insights into potential drugs and its mechanisms. Pathogens 2020; 9(5): 331. doi: 10.3390/pathogens9050331 PMID: 32365466
- Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8. doi: 10.1016/j.cell.2020.02.052 PMID: 32142651
- Qian Z, Travanty EA, Oko L, et al. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus. Am J Respir Cell Mol Biol 2013; 48(6): 742-8. doi: 10.1165/rcmb.2012-0339OC PMID: 23418343
- Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - An update on the status. Mil Med Res 2020; 7(1): 11. doi: 10.1186/s40779-020-00240-0 PMID: 32169119
- Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5(4): 562-9. doi: 10.1038/s41564-020-0688-y PMID: 32094589
- Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020; 367(6485): 1444-8. doi: 10.1126/science.abb2762 PMID: 32132184
- Tanaka A, Nagate T, Matsuda H. Acceleration of wound healing by gelatin film dressings with epidermal growth factor. J Vet Med Sci 2005; 67: 909-13. doi: 10.1292/jvms.67.909
- Callebaut PE, Pensaert MB. Characterization and isolation of structural polypeptides in haemagglutinating encephalomyelitis virus. J Gen Virol 1980; 48(1): 193-204. doi: 10.1099/0022-1317-48-1-193 PMID: 7381432
- Corfield AP, Sander-Wewer M, Veh RW, Wember M, Schauer R. The action of sialidases on substrates containing O-acetylsialic acids. Biol Chem Hoppe Seyler 1986; 367(1): 433-40. doi: 10.1515/bchm3.1986.367.1.433 PMID: 3741623
- De Groot AS. Immunomics: Discovering new targets for vaccines and therapeutics. Drug Discov Today 2006; 11(5-6): 203-9. doi: 10.1016/S1359-6446(05)03720-7 PMID: 16580597
- Dveksler GS, Pensiero MN, Dieffenbach CW, et al. Mouse hepatitis virus strain A59 and blocking antireceptor monoclonal antibody bind to the N-terminal domain of cellular receptor. Proc Natl Acad Sci 1993; 90(5): 1716-20. doi: 10.1073/pnas.90.5.1716 PMID: 8383324
- Dveksler GS, Pensiero MN, Cardellichio CB, et al. Cloning of the mouse hepatitis virus (MHV) receptor: Expression in human and hamster cell lines confers susceptibility to MHV. J Virol 1991; 65(12): 6881-91. doi: 10.1128/jvi.65.12.6881-6891.1991 PMID: 1719235
- Gagneten S, Gout O, Dubois-Dalcq M, Rottier P, Rossen J, Holmes KV. Interaction of mouse hepatitis virus (MHV) spike glycoprotein with receptor glycoprotein MHVR is required for infection with an MHV strain that expresses the hemagglutinin-esterase glycoprotein. J Virol 1995; 69(2): 889-95. doi: 10.1128/jvi.69.2.889-895.1995 PMID: 7815557
- Hanaoka K, Pritchett TJ, Takasaki S, et al. 4-O-acetyl-N-acetylneuraminic acid in the N-linked carbohydrate structures of equine and guinea pig α2-macroglobulins, potent inhibitors of influenza virus infection. J Biol Chem 1989; 264(17): 9842-9. doi: 10.1016/S0021-9258(18)81735-5 PMID: 2470764
- Yi L, Li Z, Yuan K, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol 2004; 78(20): 11334-9. doi: 10.1128/JVI.78.20.11334-11339.2004 PMID: 15452254
- Cady SD, Schmidt-Rohr K, Wang J, Soto CS, DeGrado WF, Hong M. Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 2010; 463(7281): 689-92. doi: 10.1038/nature08722 PMID: 20130653
- Fischer WB, Hsu HJ. Viral channel forming proteins - Modeling the target. Biochim Biophys Acta Biomembr 2011; 1808(2): 561-71. doi: 10.1016/j.bbamem.2010.05.014 PMID: 20546700
- Griffin SDC, Harvey R, Clarke DS, Barclay WS, Harris M, Rowlands DJ. A conserved basic loop in hepatitis C virus p7 protein is required for amantadine-sensitive ion channel activity in mammalian cells but is dispensable for localization to mitochondria. J Gen Virol 2004; 85(2): 451-61. doi: 10.1099/vir.0.19634-0 PMID: 14769903
- Gurdon JB, Lane CD, Woodland HR, Marbaix G. Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 1971; 233(5316): 177-82. doi: 10.1038/233177a0 PMID: 4939175
- Wong YF, Cheung TH, Lo KWK, et al. Identification of molecular markers and signaling pathway in endometrial cancer in Hong Kong Chinese women by genome-wide gene expression profiling. Oncogene 2007; 26(13): 1971-82. doi: 10.1038/sj.onc.1209986 PMID: 17043662
- Kuhn JH, Li W, Choe H, Farzan M. Angiotensin-converting enzyme 2: A functional receptor for SARS coronavirus. Cell Mol Life Sci 2004; 61(21): 2738-43. doi: 10.1007/s00018-004-4242-5 PMID: 15549175
- Bingham RW, Madge MH, Tyrrell DAJ. Haemagglutination by avian infectious bronchitis virus-a coronavirus. J Gen Virol 1975; 28(3): 381-90. doi: 10.1099/0022-1317-28-3-381 PMID: 170378
- Bosch FX, Orlich M, Klenk HD, Rott R. The structure of the hemagglutinin, a determinant for the pathogenicity of influenza viruses. Virology 1979; 95(1): 197-207. doi: 10.1016/0042-6822(79)90414-8 PMID: 442540
- Cavanagh D. Structural polypeptides of coronavirus IBV. J Gen Virol 1981; 53(1): 93-103. doi: 10.1099/0022-1317-53-1-93 PMID: 6268743
- Cavanagh D. Coronavirus IBV: Structural characterization of the spike protein. J Gen Virol 1983; 64(12): 2577-83. doi: 10.1099/0022-1317-64-12-2577 PMID: 6319549
- Almanza M, Vega N. Isolating and characterising a lectin from galactia lindenii seeds that recognises blood group H determinants. Arch Biochem Biophys 2004; 429(2): 180-90.
- González-Moles MA, Mosqueda-Taylor A, Delgado-Rodríguez M, et al. Analysis of p53 protein by PAb240, Ki-67 expression and human papillomavirus DNA detection in different types of odontogenic keratocyst. Anticancer Res 2006; 26(1A): 175-81. PMID: 16475695
- Baker SC, Yokomori K, Dong S, et al. Identification of the catalytic sites of a papain-like cysteine proteinase of murine coronavirus. J Virol 1993; 67(10): 6056-63. doi: 10.1128/jvi.67.10.6056-6063.1993 PMID: 8396668
- Baric RS, Sims AC. Development of mouse hepatitis virus and SARS-CoV infectious cDNA constructs. Curr Top Microbiol Immunol 2005; 287: 229-52. doi: 10.1007/3-540-26765-4_8 PMID: 15609514
- Shirato K, Kawase M, Matsuyama S. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol 2013; 87(23): 12552-61. doi: 10.1128/JVI.01890-13 PMID: 24027332
- Adedeji AO, Sarafianos SG. Antiviral drugs specific for coronaviruses in preclinical development. Curr Opin Virol 2014; 8: 45-53. doi: 10.1016/j.coviro.2014.06.002 PMID: 24997250
- Ren X, Meng F, Yin J, et al. Action mechanisms of lithium chloride on cell infection by transmissible gastroenteritis coronavirus. PLoS One 2011; 6(5): e18669. doi: 10.1371/journal.pone.0018669 PMID: 21573100
- Yang Y, Islam MS, Wang J, Li Y, Chen X. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): A review and perspective. Int J Biol Sci 2020; 16(10): 1708-17. doi: 10.7150/ijbs.45538 PMID: 32226288
- Ling C. Traditional Chinese medicine is a resource for drug discovery against 2019 novel coronavirus (SARS-CoV-2). J Integr Med 2020; 18(2): 87-8. doi: 10.1016/j.joim.2020.02.004 PMID: 32122812
- Huang K, Zhang P, Zhang Z, et al. Traditional Chinese Medicine (TCM) in the treatment of COVID-19 and other viral infections: Efficacies and mechanisms. Pharmacol Ther 2021; 225: 107843. doi: 10.1016/j.pharmthera.2021.107843 PMID: 33811957
- Joshi RS, Jagdale SS, Bansode SB, et al. Discovery of potential multi-target-directed ligands by targeting host-specific SARS- CoV-2 structurally conserved main protease. J Biomol Struct Dyn 2021; 39(9): 3099-114. PMID: 32329408
- Patwardhan B, Chavan-Gautam P, Gautam M, et al. Ayurveda rasayana in prophylaxis of COVID-19. Curr Sci 2020; 118: 1158-60.
- Saggam A, Limgaokar K, Borse S, et al. Withania somnifera (L.) dunal: Opportunity for clinical repurposing in COVID-19 management. Front Pharmacol 2021; 12: 623795. doi: 10.3389/fphar.2021.623795 PMID: 34012390
- Shree P, Mishra P, Selvaraj C, et al. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) - A molecular docking study. J Biomol Struct Dyn 2022; 40(1): 190-203. PMID: 32851919
- India Go. Government of India. Guidelines for Ayurveda practitioners for COVID-19. New Delhi: Ayush Bhavan, 2020.
- Kundu D, Selvaraj C, Singh SK, Dubey VK. Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. J Biomol Struct Dyn 2021; 39(9): 3428-34. PMID: 32362243
- Shanaida M, Jasicka-Misiak I, Makowicz E, Stanek N, Shanaida V, Wieczorek P. Development of high-performance thin layer chromatography method for identification of phenolic compounds and quantification of rosmarinic acid content in some species of the Lamiaceae family. J Pharm Bioallied Sci 2020; 12(2): 139-45. doi: 10.4103/jpbs.JPBS_322_19 PMID: 32742112
- Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: The Indian solid gold. Adv Exp Med Biol 2007; 595: 1-75. doi: 10.1007/978-0-387-46401-5_1 PMID: 17569205
- Slika L, Patra D. Traditional uses, therapeutic effects and recent advances of curcumin: A mini-review. Mini Rev Med Chem 2020; 20(12): 1072-82. doi: 10.2174/1389557520666200414161316 PMID: 32286941
- Zahedipour F, Hosseini SA, Sathyapalan T, et al. Potential effects of curcumin in the treatment of COVID-19 infection. Phytother Res 2020; 34(11): 2911-20. doi: 10.1002/ptr.6738 PMID: 32430996
- Chen L, Hu C, Hood M, et al. A novel combination of vitamin C, curcumin and glycyrrhizic acid potentially regulates immune and inflammatory response associated with coronavirus infections: A perspective from system biology analysis. Nutrients 2020; 12(4): 1193. doi: 10.3390/nu12041193 PMID: 32344708
- Gasmi A, Mujawdiya PK, Noor S, et al. Polyphenols in metabolic diseases. Molecules 2022; 27(19): 6280. doi: 10.3390/molecules27196280 PMID: 36234817
- Goyal M. Potential of Ayurveda in the prevention and management of post-COVID complications. Ayu 2020; 41(2): 69-71. doi: 10.4103/ayu.ayu_284_21 PMID: 34908790
- Girija PLT, Sivan N. Ayurvedic treatment of COVID-19: A case report. J Ayurveda Integr Med 2022; 13(1): 100329. doi: 10.1016/j.jaim.2020.06.001 PMID: 32680602
- Kumar Verma A, Kumar V, Singh S, et al. Repurposing potential of Ayurvedic medicinal plants derived active principles against SARS-CoV-2 associated target proteins revealed by molecular docking, molecular dynamics and MM-PBSA studies. Biomed Pharmacother 2021; 137: 111356. doi: 10.1016/j.biopha.2021.111356 PMID: 33561649
- Haridas M, Sasidhar V, Nath P, Abhithaj J, Sabu A, Rammanohar P. Compounds of Citrus medica and Zingiber officinale for COVID-19 inhibition: In silico evidence for cues from Ayurveda. Futur J Pharm Sci 2021; 7(1): 13. doi: 10.1186/s43094-020-00171-6 PMID: 33457429
- Arora R, Chawla R, Marwah R, et al. Potential of complementary and alternative medicine in preventive management of novel H1N1 Flu (Swine Flu) pandemic: Thwarting potential disasters in the bud. Evid Based Complement Alternat Med 2011; 2011: 1-16. doi: 10.1155/2011/586506 PMID: 20976081
- Gomaa AA, Abdel-Wadood YA. The potential of glycyrrhizin and licorice extract in combating COVID-19 and associated conditions. Phytomedicine Plus 2021; 1(3): 100043. doi: 10.1016/j.phyplu.2021.100043 PMID: 35399823
- Maurya D, Sharma D. Evaluation of traditional ayurvedic preparation for prevention and management of the novel coronavirus (SARS-CoV-2) using molecular docking approach. ChemRxiv 2020.
- Zhao Z, Li Y, Zhou L, et al. Prevention and treatment of COVID-19 using traditional Chinese medicine: A review. Phytomedicine 2021; 85: 153308. doi: 10.1016/j.phymed.2020.153308 PMID: 32843234
- Tang W, Eisenbrand G. Chinese drugs of plant origin. Chemistry, Pharmacology, and Use in Traditional and Modern Medicine. Berlin, Heidelberg: Springer 1992. doi: 10.1007/978-3-642-73739-8
- Ali I, Alharbi OML. COVID-19: Disease, management, treatment, and social impact. Sci Total Environ 2020; 728: 138861. doi: 10.1016/j.scitotenv.2020.138861 PMID: 32344226
- Wang L, Yang R, Yuan B, Liu Y, Liu C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm Sin B 2015; 5(4): 310-5. doi: 10.1016/j.apsb.2015.05.005 PMID: 26579460
- Pavlova LV, Platonov IA, Kurkin VA, Novikova EA, Kolesnichenko IN. Determination of glycyrrhizic acid in roots of licorice by hplc method with subcritical dynamic extraction. Analytics and Control 2018; 22(3): 229-35. doi: 10.15826/analitika.2018.22.3.004
- Damle Joshi M. Glycyrrhiza glabra (Liquorice) - A potent medicinal herb. Int J Herb Med 2014; 132: 132-6.
- Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res 2008; 22(6): 709-24. doi: 10.1002/ptr.2362 PMID: 18446848
- Asl N, Hosseinzadeh H. Review of antiviral effects of Glycyrrhiza glabra L. and its active component, glycyrrhizin. Faslnamah-i Giyahan-i Daruyi 2007; 6: 1-12.
- Fiore C, Eisenhut M, Krausse R, et al. Antiviral effects of Glycyrrhiza species. Phytother Res 2008; 22(2): 141-8. doi: 10.1002/ptr.2295 PMID: 17886224
- Anagha K, Deshpande DM, Priya L, Meera M. Scope of Glycyrrhiza glabra (Yashtimadhu) as an antiviral agent: A review. Int J Curr Microbiol App Sci 2014; 3(1): 657-65.
- El-Saber Batiha G, Magdy Beshbishy A, El-Mleeh A, Abdel- Daim MM, Prasad Devkota H. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020; 10(3): 10. doi: 10.3390/biom10030352 PMID: 32106571
- Harwansh R, Patra K, Pareta S, Singh J, Biswas R. Pharmacological studies of Glycyrrhiza glabra- A review. Pharmacology. 2013; pp. 1032-8.
- Thangavelu L, Geetha RV. Glycyrrhiza glabra Linn commonly known as liquorice: A therapeutic review. Int J Pharm Pharm Sci 2011; 3: 20-5.
- Sun ZG, Zhao TT, Lu N, Yang YA, Zhu HL. Research progress of glycyrrhizic acid on antiviral activity. Mini Rev Med Chem 2019; 19(10): 826-32. doi: 10.2174/1389557519666190119111125 PMID: 30659537
- Jayasinghe DM, Kumarasinghe A, Weerasinghe L, Ramanayaka HAL. Ayurveda Aushadha Samgrahaya. Nawinna, Sri Lanka: Department of Ayurveda 1985.
- Jafarzadeh A, Nemati M. Therapeutic potentials of ginger for treatment of Multiple sclerosis: A review with emphasis on its immunomodulatory, anti-inflammatory and anti-oxidative properties. J Neuroimmunol 2018; 324: 54-75. doi: 10.1016/j.jneuroim.2018.09.003 PMID: 30243185
- Prajapati ND, Purohit SS, Sharma AK, Kumar T. A Handbook of Medicinal Plants (A complete source book). Jodhpur, India: Dr. Updesh Purohit for Agrobios 2003.
- Kaushik S, Jangra G, Kundu V, Yadav JP, Kaushik S. Anti-viral activity of Zingiber officinale (Ginger) ingredients against the Chikungunya virus. Virusdisease 2020; 31(3): 270-6. doi: 10.1007/s13337-020-00584-0 PMID: 32420412
- India Go. Post COVID Management Protocol. Delhi: Ministry of Health & Family Welfare 2020.
- Krup V, Prakash H, Harini A. Pharmacological activities of turmeric (Curcuma longa Linn): A review. J Homeop Ayurv Med 2013; 2: 133.
- Esatbeyoglu T, Huebbe P, Ernst IMA, Chin D, Wagner AE, Rimbach G. Curcumin-from molecule to biological function. Angew Chem Int Ed 2012; 51(22): 5308-32. doi: 10.1002/anie.201107724 PMID: 22566109
- Kapustin MA, Chubavora AS, Cigankov VG, Kurchenko VP. Isolation of curcuminoids from the Curcuma longa and investigation of the composition of the obtained preparation using chromatographic methods of analysis. BSUTP 2016; 11: 248-62.
- Jayasinghe DM, Kumarasinghe A, Weerasinghe L, Ramanayaka HAL. Ayurveda Aushadha Samgrahaya. Nawinna, Sri Lanka: Department of Ayurveda 1985.
- Mythri HS, Mahto R. Multimodal ayurvedic approach in the management of moderate SARS-COV2 infection with co-morbidities A case report. J Family Med Prim Care 2022; 11(1): 344-9. doi: 10.4103/jfmpc.jfmpc_495_21 PMID: 35309621
- Upadhyay A, Kumar K, Kumar A, Mishra H. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi) - validation of the Ayurvedic pharmacology through experimental and clinical studies. Int J Ayurveda Res 2010; 1(2): 112-21. doi: 10.4103/0974-7788.64405 PMID: 20814526
- Nadeem M, Muhammad Anjum F, Issa Khan M, Tehseen S, El-Ghorab A, Iqbal Sultan J. Nutritional and medicinal aspects of coriander (Coriandrum sativum L.). Br Food J 2013; 115(5): 743-55. doi: 10.1108/00070701311331526
- Wiggers HJ, Zaioncz S, Cheleski J, Mainardes R, Khalil N. Curcumin, a multitarget phytochemical: Challenges and perspectives. Stud Nat Prod Chem 2017; 53: 243-76. doi: 10.1016/B978-0-444-63930-1.00007-7
- Priyadarsini K. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014; 19(12): 20091-112. doi: 10.3390/molecules191220091 PMID: 25470276
- Conti P, Caraffa A, Gallenga CE, et al. Coronavirus-19 (SARS- CoV-2) induces acute severe lung inflammation via IL-1 causing cytokine storm in COVID-19: A promising inhibitory strategy. J Biol Regul Homeost Agents 2020; 34(6): 1971-5. PMID: 33016027
- Valizadeh H, Abdolmohammadi-vahid S, Danshina S, et al. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int Immunopharmacol 2020; 89(Pt B): 107088. doi: 10.1016/j.intimp.2020.107088 PMID: 33129099
- Quispe C, Cruz-Martins N, Manca ML, et al. Nano-derived therapeutic formulations with curcumin in inflammation-related diseases. Oxid Med Cell Longev 2021; 2021: 1-15. doi: 10.1155/2021/3149223 PMID: 34584616
- Jena D, Kanungo N, Nayak V, Chainy G, Dandapat J. Catechin and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell membrane: Insights from computational studies. Sci Rep 2020; 11: 2043.
- Chen TY, Chen DY, Wen HW, et al. Inhibition of enveloped viruses infectivity by curcumin. PLoS One 2013; 8(5): e62482. doi: 10.1371/journal.pone.0062482 PMID: 23658730
- Mounce BC, Cesaro T, Carrau L, Vallet T, Vignuzzi M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res 2017; 142: 148-57. doi: 10.1016/j.antiviral.2017.03.014 PMID: 28343845
- Srivastava A, Singh D. Destabilizing the structural integrity of SARS-CoV2 receptor proteins by curcumin along with hydroxychloroquine: An insilco approach for a combination therapy. ChemRxiv 2020.
- Rai D, Singh JK, Roy N, Panda D. Curcumin inhibits FtsZ assembly: An attractive mechanism for its antibacterial activity. Biochem J 2008; 410(1): 147-55. doi: 10.1042/BJ20070891 PMID: 17953519
- Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res Int 2014; 2014: 186864. PMID: 24877064
- Zhuang M, Jiang H, Suzuki Y, et al. Procyanidins and butanol extract of Cinnamomi cortex inhibit SARS-CoV infection. Antiviral Res 2009; 82(1): 73-81. doi: 10.1016/j.antiviral.2009.02.001 PMID: 19428598
- Nguyen TTH, Woo HJ, Kang HK, et al. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol Lett 2012; 34(5): 831-8. doi: 10.1007/s10529-011-0845-8 PMID: 22350287
- Gasmi A, Mujawdiya PK, Lysiuk R, et al. Quercetin in the prevention and treatment of coronavirus infections: A focus on SARS- CoV-2. Pharmaceuticals (Basel) 2022; 15(9): 1049. doi: 10.3390/ph15091049 PMID: 36145270
- Nabirotchkin S, Peluffo A, Bouaziz J, Cohen D. Focusing on the unfolded protein response and autophagy related pathways to reposition common approved drugs against COVID-19. Preprints 2020; 2020030302.2020;
- Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem 2020; 35(1): 145-51. doi: 10.1080/14756366.2019.1690480 PMID: 31724441
- Ryu YB, Jeong HJ, Kim JH, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorg Med Chem 2010; 18(22): 7940-7. doi: 10.1016/j.bmc.2010.09.035 PMID: 20934345
- Pandey P, Rane JS, Chatterjee A, et al. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: An in silico study for drug development. J Biomol Struct Dyn 2021; 39(16): 6306-16. doi: 10.1080/07391102.2020.1796811 PMID: 32698689
- Gidwani B, Bhattacharya R, Shukla SS, Pandey RK. Indian spices: Past, present and future challenges as the engine for bio-enhancement of drugs: Impact of COVID-19. J Sci Food Agric 2022; 102(8): 3065-77. doi: 10.1002/jsfa.11771 PMID: 35043421
- Yücel Ç, Şeker Karatoprak G, Bahadir O, Akkol E, Barak TH. Immunomodulatory and anti-inflammatory therapeutic potential of gingerols and their nanoformulations. Front Pharmacol 2022; 13: 902551.
- Hudson J, Vimalanathan S. Echinacea-a source of potent antivirals for respiratory virus infections. Pharmaceuticals 2011; 4(7): 1019-31. doi: 10.3390/ph4071019
- Zhang P, Liu X, Liu H, et al. Astragalus polysaccharides inhibit avian infectious bronchitis virus infection by regulating viral replication. Microb Pathog 2018; 114: 124-8. doi: 10.1016/j.micpath.2017.11.026 PMID: 29170045
- Chen CJ, Michaelis M, Hsu HK, et al. Toona sinensis Roem tender leaf extract inhibits SARS coronavirus replication. J Ethnopharmacol 2008; 120(1): 108-11. doi: 10.1016/j.jep.2008.07.048 PMID: 18762235
- Schwarz S, Wang K, Yu W, Sun B, Schwarz W. Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Res 2011; 90(1): 64-9. doi: 10.1016/j.antiviral.2011.02.008 PMID: 21356245
Дополнительные файлы
