Personalized Approaches to Cardiovascular Disease: Insights into FDA-Approved Interventions and Clinical Pharmacogenetics


Cite item

Full Text

Abstract

Cardiovascular diseases place a considerable burden on global health systems, contributing to high rates of morbidity and mortality. Current approaches to detecting and treating Cardiovascular Diseases (CVD) often focus on symptomatic management and are initiated after the disease has progressed. Personalized medicine, which tailors medical interventions to individual characteristics, has emerged as a promising strategy for improving cardiovascular health outcomes. This article provides an overview of personalized medicine in the context of CVD, with a specific emphasis on FDA-approved interventions. It explores the potential benefits, challenges, and future directions of personalized medicine in cardiovascular disorders. By reviewing the advancements in this field, this article underscores the importance of early detection, intervention, and innovative treatment options in reducing the impact of CVD on individuals and society.

About the authors

Ramin Raoufinia

Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences

Email: info@benthamscience.net

Hamid Rahimi

Medical Genetics Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Mahla Abbaszadeh

Department of Paramedical Sciences, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Aida Gholoobi

Medical Genetics Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Ehsan Saburi

Medical Genetics Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Farhad Fakoor

Department University of of Paramedical Sciences, Iran University of Medical Sciences

Email: info@benthamscience.net

Hawraa Alshakarchi

Al-Zahraa Center for Medical and Pharmaceutical Research Sciences (ZCMRS), Al-Zahraa University for Women

Email: info@benthamscience.net

Ibrahim Gataa

College of Medicine, University of Warith Al-Anbiyaa

Email: info@benthamscience.net

Seyed Hassanian

Medical Genetics Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Gordon Ferns

Division of Medical Education,, Brighton & Sussex Medical School

Email: info@benthamscience.net

Majid Khazaei

Metabolic Syndrome Research Center, Mashhad University of Medical Science

Email: info@benthamscience.net

Amir Avan

Medical Genetics Research Center, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Amini M, Zayeri F, Salehi M. Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: Results from global burden of disease study 2017. BMC Public Health 2021; 21(1): 401. doi: 10.1186/s12889-021-10429-0 PMID: 33632204
  2. Coronado F, Melvin SC, Bell RA, Zhao G. Global responses to prevent, manage, and control cardiovascular diseases. Prev Chronic Dis 2022; 19: 220347. doi: 10.5888/pcd19.220347 PMID: 36480801
  3. Taverne YJ, Bogers AJ, Duncker DJ, Merkus D. Reactive oxygen species and the cardiovascular system. Oxidative medicine and cellular longevity 2013; 2013. doi: 10.1155/2013/862423
  4. Frąk W, Wojtasińska A, Lisińska W, Młynarska E, Franczyk B, Rysz J. Pathophysiology of cardiovascular diseases: New insights into molecular mechanisms of atherosclerosis, arterial hypertension, and coronary artery disease. Biomedicines 2022; 10(8): 1938. doi: 10.3390/biomedicines10081938 PMID: 36009488
  5. Roberts JA, Rainbow RD, Sharma P. Mitigation of cardiovascular disease and toxicity through NRF2 signalling. Int J Mol Sci 2023; 24(7): 6723. doi: 10.3390/ijms24076723 PMID: 37047696
  6. Zaiou M, Amri EH. Cardiovascular pharmacogenetics: A promise for genomically-guided therapy and personalized medicine. Clin Genet 2017; 91(3): 355-70. doi: 10.1111/cge.12881 PMID: 27714756
  7. Hayıroğlu Mİ. Telemedicine: Current concepts and future perceptions. Anatol J Cardiol 2019; 22(S2): 21-2. PMID: 31670712
  8. Krishnan A, Fuska M, Dixon R, Sable CA. The evolution of pediatric tele-echocardiography: 15-year experience of over 10,000 transmissions. Telemed J E Health 2014; 20(8): 681-6. doi: 10.1089/tmj.2013.0279 PMID: 24841367
  9. Marcolino MS, Maia LM, Oliveira JAQ, et al. Impact of telemedicine interventions on mortality in patients with acute myocardial infarction: A systematic review and meta-analysis. Heart 2019; 105(19): 1479-86. doi: 10.1136/heartjnl-2018-314539 PMID: 31253696
  10. Marcolino MS, Santos TMM, Stefanelli FC, et al. Cardiovascular emergencies in primary care: An observational retrospective study of a large-scale telecardiology service. Sao Paulo Med J 2017; 135(5): 481-7. doi: 10.1590/1516-3180.2017.0090110617 PMID: 29116311
  11. Klersy C, De Silvestri A, Gabutti G, Regoli F, Auricchio A. A meta-analysis of remote monitoring of heart failure patients. J Am Coll Cardiol 2009; 54(18): 1683-94. doi: 10.1016/j.jacc.2009.08.017 PMID: 19850208
  12. Colet CJ, Enjuanes C, Rotellar VJM, et al. Impact on clinical events and healthcare costs of adding telemedicine to multidisciplinary disease management programmes for heart failure: Results of a randomized controlled trial. J Telemed Telecare 2016; 22(5): 282-95. doi: 10.1177/1357633X15600583 PMID: 26350543
  13. Moyano FA, Maroto VI, Jimeno LW. Telehealth. N Engl J Med 2018; 378(4): 401-2. doi: 10.1056/NEJMc1715239 PMID: 29365293
  14. Brunetti ND, De Gennaro L, Correale M, et al. Pre-hospital electrocardiogram triage with telemedicine near halves time to treatment in STEMI: A meta-analysis and meta-regression analysis of non-randomized studies. Int J Cardiol 2017; 232: 5-11. doi: 10.1016/j.ijcard.2017.01.055 PMID: 28089154
  15. Clemmensen P, Schoos MM, Lindholm MG, et al. Pre-hospital diagnosis and transfer of patients with acute myocardial infarction-a decade long experience from one of Europe’s largest STEMI networks. J Electrocardiol 2013; 46(6): 546-52. doi: 10.1016/j.jelectrocard.2013.07.004 PMID: 23938107
  16. Melholt C, Joensson K, Spindler H, et al. Cardiac patients’ experiences with a telerehabilitation web portal: Implications for eHealth literacy. Patient Educ Couns 2018; 101(5): 854-61. doi: 10.1016/j.pec.2017.12.017 PMID: 29305064
  17. Hwang R, Mandrusiak A, Morris NR, Peters R, Korczyk D, Russell T. Assessing functional exercise capacity using telehealth: Is it valid and reliable in patients with chronic heart failure? J Telemed Telecare 2017; 23(2): 225-32. doi: 10.1177/1357633X16634258 PMID: 26915366
  18. Wood DA, Kotseva K, Connolly S, et al. Nurse-coordinated multidisciplinary, family-based cardiovascular disease prevention programme (EUROACTION) for patients with coronary heart disease and asymptomatic individuals at high risk of cardiovascular disease: A paired, cluster-randomised controlled trial. Lancet 2008; 371(9629): 1999-2012. doi: 10.1016/S0140-6736(08)60868-5 PMID: 18555911
  19. Patel A, Praveen D, Maharani A, et al. Association of multifaceted mobile technology-enabled primary care intervention with cardiovascular disease risk management in rural indonesia. JAMA Cardiol 2019; 4(10): 978-86. doi: 10.1001/jamacardio.2019.2974 PMID: 31461123
  20. Tang YH, Chong MC, Chua YP, Chui PL, Tang LY, Rahmat N. The effect of mobile messaging apps on cardiac patient knowledge of coronary artery disease risk factors and adherence to a healthy lifestyle. J Clin Nurs 2018; 27(23-24): 4311-20. doi: 10.1111/jocn.14538 PMID: 29777560
  21. Koole MAC, Kauw D, Winter MM, et al. First real-world experience with mobile health telemonitoring in adult patients with congenital heart disease. Neth Heart J 2019; 27(1): 30-7. doi: 10.1007/s12471-018-1201-6 PMID: 30488380
  22. Wongvibulsin S, Martin SS, Steinhubl SR, Muse ED. Connected health technology for cardiovascular disease prevention and management. Curr Treat Options Cardiovasc Med 2019; 21(6): 29. doi: 10.1007/s11936-019-0729-0 PMID: 31104157
  23. Tekkeşin Aİ, Hayıroğlu Mİ, Çinier G, et al. Lifestyle intervention using mobile technology and smart devices in patients with high cardiovascular risk: A pragmatic randomised clinical trial. Atherosclerosis 2021; 319: 21-7. doi: 10.1016/j.atherosclerosis.2020.12.020 PMID: 33465658
  24. Hayıroğlu Mİ, Çınar T, Çinier G, et al. The effect of 1-year mean step count on the change in the atherosclerotic cardiovascular disease risk calculation in patients with high cardiovascular risk: A sub-study of the LIGHT randomized clinical trial. Kardiol Pol 2021; 79(10): 1140-2. doi: 10.33963/KP.a2021.0108 PMID: 34506630
  25. Gala D, Behl H, Shah M, Makaryus AN. The role of artificial intelligence in improving patient outcomes and future of healthcare delivery in cardiology: A narrative review of the literature. Healthcare 2024; 12(4): 481. doi: 10.3390/healthcare12040481 PMID: 38391856
  26. Poalelungi DG, Musat CL, Fulga A, et al. Advancing patient care: How artificial intelligence is transforming healthcare. J Pers Med 2023; 13(8): 1214. doi: 10.3390/jpm13081214 PMID: 37623465
  27. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer 2018; 18(8): 500-10. doi: 10.1038/s41568-018-0016-5 PMID: 29777175
  28. Hossain E, Rana R, Higgins N, et al. Natural language processing in electronic health records in relation to healthcare decision-making: A systematic review. Comput Biol Med 2023; 155: 106649. doi: 10.1016/j.compbiomed.2023.106649 PMID: 36805219
  29. Nadkarni PM, Machado OL, Chapman WW. Natural language processing: An introduction. J Am Med Inform Assoc 2011; 18(5): 544-51. doi: 10.1136/amiajnl-2011-000464 PMID: 21846786
  30. Nedadur R, Wang B, Yanagawa B. The cardiac surgeon’s guide to artificial intelligence. Curr Opin Cardiol 2021; 36(5): 637-43. doi: 10.1097/HCO.0000000000000888 PMID: 34397469
  31. Doulamis IP, Spartalis E, Machairas N, et al. The role of robotics in cardiac surgery: A systematic review. J Robot Surg 2019; 13(1): 41-52. doi: 10.1007/s11701-018-0875-5 PMID: 30255360
  32. Kwan AC, Salto G, Cheng S, Ouyang D. Artificial intelligence in computer vision: Cardiac MRI and multimodality imaging segmentation. Curr Cardiovasc Risk Rep 2021; 15(9): 18. doi: 10.1007/s12170-021-00678-4 PMID: 35693045
  33. Dey D, Slomka PJ, Leeson P, et al. Artificial intelligence in cardiovascular imaging. J Am Coll Cardiol 2019; 73(11): 1317-35. doi: 10.1016/j.jacc.2018.12.054 PMID: 30898208
  34. Luneski A, Konstantinidis E, Bamidis PD. Affective medicine. Methods Inf Med 2010; 49(3): 207-18. doi: 10.3414/ME0617 PMID: 20411209
  35. Dinari F, Bahaadinbeigy K, Bassiri S, Mashouf E, Bastaminejad S, Moulaei K. Benefits, barriers, and facilitators of using speech recognition technology in nursing documentation and reporting: A cross-sectional study. Health Sci Rep 2023; 6(6): e1330. doi: 10.1002/hsr2.1330 PMID: 37313530
  36. Sotirakos S, Fouda B, Razif MNA, et al. Harnessing artificial intelligence in cardiac rehabilitation, a systematic review. Future Cardiol 2022; 18(2): 154-64. doi: 10.2217/fca-2021-0010 PMID: 33860679
  37. Alowais SA, Alghamdi SS, Alsuhebany N, et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med Educ 2023; 23(1): 689. doi: 10.1186/s12909-023-04698-z PMID: 37740191
  38. Jeyaraman M, Balaji S, Jeyaraman N, Yadav S. Unraveling the ethical enigma: Artificial intelligence in healthcare. Cureus 2023; 15(8): e43262. doi: 10.7759/cureus.43262 PMID: 37692617
  39. Shetty MK, Kunal S, Girish MP, et al. Machine learning based model for risk prediction after ST-Elevation myocardial infarction: Insights from the North India ST elevation myocardial infarction (NORIN-STEMI) registry. Int J Cardiol 2022; 362: 6-13. doi: 10.1016/j.ijcard.2022.05.023 PMID: 35577162
  40. Bai Z, Lu J, Li T, et al. Clinical feature-based machine learning model for 1-year mortality risk prediction of ST-segment elevation myocardial infarction in patients with hyperuricemia: A retrospective study. Comput Math Methods Med 2021; 2021: 1-9. doi: 10.1155/2021/7252280 PMID: 34285708
  41. Backhaus SJ, Aldehayat H, Kowallick JT, et al. Artificial intelligence fully automated myocardial strain quantification for risk stratification following acute myocardial infarction. Sci Rep 2022; 12(1): 12220. doi: 10.1038/s41598-022-16228-w PMID: 35851282
  42. Wolterink JM, Leiner T, de Vos BD, et al. An evaluation of automatic coronary artery calcium scoring methods with cardiac CT using the orCaScore framework. Med Phys 2016; 43(5): 2361-73. doi: 10.1118/1.4945696 PMID: 27147348
  43. Wolterink JM, Leiner T, de Vos BD, van Hamersvelt RW, Viergever MA, Išgum I. Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med Image Anal 2016; 34: 123-36. doi: 10.1016/j.media.2016.04.004 PMID: 27138584
  44. Wilson PWF, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97(18): 1837-47. doi: 10.1161/01.CIR.97.18.1837 PMID: 9603539
  45. Chang SN, Tseng YH, Chen JJ, et al. An artificial intelligence-enabled ECG algorithm for identifying ventricular premature contraction during sinus rhythm. Eur J Med Res 2022; 27(1): 289. doi: 10.1186/s40001-022-00929-z PMID: 36517841
  46. Nagarajan VD, Lee SL, Robertus JL, Nienaber CA, Trayanova NA, Ernst S. Artificial intelligence in the diagnosis and management of arrhythmias. Eur Heart J 2021; 42(38): 3904-16. doi: 10.1093/eurheartj/ehab544 PMID: 34392353
  47. Javaid A, Zghyer F, Kim C, et al. Medicine 2032: The future of cardiovascular disease prevention with machine learning and digital health technology. American J Preventive Cardiology 2022; 12: 100379. doi: 10.1016/j.ajpc.2022.100379 PMID: 36090536
  48. Van Mens K, Lokkerbol J, Wijnen B, Janssen R, de Lange R, Tiemens B. Predicting undesired treatment outcomes with machine learning in mental health care: Multisite study. JMIR Med Inform 2023; 11: v11i1e44322. doi: 10.2196/44322 PMID: 37623374
  49. Ahmed MU, Saaem I, Wu PC, Brown AS. Personalized diagnostics and biosensors: A review of the biology and technology needed for personalized medicine. Crit Rev Biotechnol 2014; 34(2): 180-96. doi: 10.3109/07388551.2013.778228 PMID: 23607309
  50. Ho D, Quake SR, McCabe ERB, et al. Enabling technologies for personalized and precision medicine. Trends Biotechnol 2020; 38(5): 497-518. doi: 10.1016/j.tibtech.2019.12.021 PMID: 31980301
  51. Chen CB, Hsu JS, Chen PL, et al. Combining panel-based next- generation sequencing and exome sequencing for genetic liver diseases. J Pediatr 2023; 258: 113408. doi: 10.1016/j.jpeds.2023.113408 PMID: 37019333
  52. Goetz LH, Schork NJ. Personalized medicine: Motivation, challenges, and progress. Fertil Steril 2018; 109(6): 952-63. doi: 10.1016/j.fertnstert.2018.05.006 PMID: 29935653
  53. Jørgensen JT. A challenging drug development process in the era of personalized medicine. Drug Discov Today 2011; 16(19-20): 891-7. doi: 10.1016/j.drudis.2011.09.010 PMID: 21945860
  54. Aquilante C. Pharmacogenomics: The promise of personalized medicine. Denver, CO: University of Colorado 2007.
  55. Braig ZV. Personalized medicine: From diagnostic to adaptive. Biomedical J 2022; 45(1): 132-42.
  56. Chan IS, Ginsburg GS. Personalized medicine: Progress and promise. Annu Rev Genomics Hum Genet 2011; 12(1): 217-44. doi: 10.1146/annurev-genom-082410-101446 PMID: 21721939
  57. Smith WD. Hippocrates. Harvard University Press 1994.
  58. Aspinall MG, Hamermesh RG. Realizing the promise of personalized medicine. Harv Bus Rev 2007; 85(10): 108-117, 165. PMID: 17972499
  59. Miller PM, Grant D. The art and science of personalized medicine. Clin Pharmacol Ther 2007; 81(1): 311-5.
  60. Spear BB, Chiozzi HM, Huff J. Clinical application of pharmacogenetics. Trends Mol Med 2001; 7(5): 201-4. doi: 10.1016/S1471-4914(01)01986-4 PMID: 11325631
  61. Lunshof JE, Pirmohamed M, Gurwitz D. Personalized medicine: Decades away? Pharmacogenomics 2006; 7(2): 237-41. doi: 10.2217/14622416.7.2.237
  62. Uffelmann E, Huang QQ, Munung NS, et al. Genome-wide association studies. Nat Rev Methods Prim 2021; 1(1): 59. doi: 10.1038/s43586-021-00056-9
  63. Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet 2019; 20(8): 467-84. doi: 10.1038/s41576-019-0127-1 PMID: 31068683
  64. Lee MS, Flammer AJ, Lerman LO, Lerman A. Personalized medicine in cardiovascular diseases. Korean Circ J 2012; 42(9): 583-91. doi: 10.4070/kcj.2012.42.9.583 PMID: 23091501
  65. Pun J. Personalized medicine in Canada: A survey of adoption and practice in oncology, cardiology and family medicine. BMJ Open 2011; 1(1): e000110.
  66. Bates S. Progress towards personalized medicine. Drug Discov Today 2010; 15(3-4): 115-20. doi: 10.1016/j.drudis.2009.11.001 PMID: 19914397
  67. Wright CF, Kroese M. Evaluation of genetic tests for susceptibility to common complex diseases: Why, when and how? Hum Genet 2010; 127(2): 125-34. doi: 10.1007/s00439-009-0767-x PMID: 19936793
  68. Prasugrel.LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases 2012.
  69. Bonney PA, Yim B, Brinjikji W, Walcott BP. Pharmacogenomic considerations for antiplatelet agents: The era of precision medicine in stroke prevention and neurointerventional practice. Mol Case Stud 2019; 5(2): a003731. doi: 10.1101/mcs.a003731 PMID: 30936195
  70. Dogan Z, Yurtdas M, Bektasoglu G. Prasugrel-related hepatotoxicity. J Pak Med Assoc 2022; 72(11): 2295-7. PMID: 37013306
  71. Shah RP, Shafiq A, Hamza M, et al. Ticagrelor versus prasugrel in patients with acute coronary syndrome: A systematic review and meta-analysis. Am J Cardiol 2023; 207: 206-14. doi: 10.1016/j.amjcard.2023.08.117 PMID: 37751668
  72. Xia P, He C, Chen L, et al. Efficacy and safety of prasugrel therapy for intracranial aneurysms with endovascular treatment: A meta-analysis. J Neurol Sci 2019; 397: 174-8. doi: 10.1016/j.jns.2019.01.005 PMID: 30641247
  73. Nuding S, Schröder J, Presek P, et al. Reducing elevated heart rates in patients with multiple organ dysfunction syndrome with the if (funny channel current) inhibitor ivabradine. Shock 2018; 49(4): 402-11. doi: 10.1097/SHK.0000000000000992 PMID: 28930912
  74. Reed M, Kerndt CC, Nicolas D. Ivabradine, in StatPearls. Treasure Island (FL).: StatPearls Publishing LLC. 2024.
  75. DiFrancesco D, Camm JA. Heart rate lowering by specific and selective I(f) current inhibition with ivabradine: A new therapeutic perspective in cardiovascular disease. Drugs 2004; 64(16): 1757-65. doi: 10.2165/00003495-200464160-00003 PMID: 15301560
  76. Fox K, Ford I, Steg PG, Tendera M, Ferrari R. Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): A randomised, double-blind, placebo-controlled trial. Lancet 2008; 372(9641): 807-16. doi: 10.1016/S0140-6736(08)61170-8 PMID: 18757088
  77. Swedberg K, Komajda M, Böhm M, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): A randomised placebo- controlled study. Lancet 2010; 376(9744): 875-85. doi: 10.1016/S0140-6736(10)61198-1 PMID: 20801500
  78. Volterrani M, Cice G, Caminiti G, et al. Effect of Carvedilol, Ivabradine or their combination on exercise capacity in patients with heart failure (the CARVIVA HF trial). Int J Cardiol 2011; 151(2): 218-24. doi: 10.1016/j.ijcard.2011.06.098 PMID: 21764469
  79. Ekman I, Chassany O, Komajda M, et al. Heart rate reduction with ivabradine and health related quality of life in patients with chronic heart failure: Results from the SHIFT study. Eur Heart J 2011; 32(19): 2395-404. doi: 10.1093/eurheartj/ehr343 PMID: 21875859
  80. Reil JC, Tardif JC, Ford I, et al. Selective heart rate reduction with ivabradine unloads the left ventricle in heart failure patients. J Am Coll Cardiol 2013; 62(21): 1977-85. doi: 10.1016/j.jacc.2013.07.027 PMID: 23933545
  81. Fox K, Ford I, Steg PG, Tardif JC, Tendera M, Ferrari R. Ivabradine in stable coronary artery disease without clinical heart failure. N Engl J Med 2014; 371(12): 1091-9. doi: 10.1056/NEJMoa1406430 PMID: 25176136
  82. Legault MA, Sandoval J, Provost S, et al. A genetic model of ivabradine recapitulates results from randomized clinical trials. PLoS One 2020; 15(7): e0236193. doi: 10.1371/journal.pone.0236193 PMID: 32692755
  83. Ponikowski P, Voors AA, Anker SD, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur J Heart Fail 2016; 18(8): 891-975. doi: 10.1002/ejhf.592 PMID: 27207191
  84. Brugada J, Katritsis D, Arbelo E. The task force for the management of patients with supraventricular tachycardia of the European society of cardiology (ESC). 2019 ESC guidelines for the management of patients with supraventricular tachycardia. Eur Heart J 2020; 41: 655-720. doi: 10.1093/eurheartj/ehz467 PMID: 31504425
  85. Krishna MR, Kunde MF, Kumar RK, Balaji S. Ivabradine in post- operative junctional ectopic tachycardia (JET): Breaking new ground. Pediatr Cardiol 2019; 40(6): 1284-8. doi: 10.1007/s00246-019-02149-5 PMID: 31317219
  86. Custodis F, Baumhäkel M, Schlimmer N, et al. Heart rate reduction by ivabradine reduces oxidative stress, improves endothelial function, and prevents atherosclerosis in apolipoprotein E-deficient mice. Circulation 2008; 117(18): 2377-87. doi: 10.1161/CIRCULATIONAHA.107.746537 PMID: 18443241
  87. Rodriguez DA, Fard SS, Gonzalez AP, et al. Randomised, double-blind, placebo-controlled trial of ivabradine in patients with acute coronary syndrome: Effects of the If current inhibitor ivabradine on reduction of inflammation markers in patients with acute coronary syndrome-RIVIERA trial study design and rationale. Cardiovasc Drugs Ther 2009; 23(3): 243-7. doi: 10.1007/s10557-009-6164-9 PMID: 19229603
  88. Cacciapuoti F, Magro V, Caturano M, Lama D, Cacciapuoti F. The role of ivabradine in diastolic heart failure with preserved ejection fraction. A doppler-echocardiographic study. J Cardiovasc Echogr 2017; 27(4): 126-31. doi: 10.4103/jcecho.jcecho_6_17 PMID: 29142810
  89. Gammone MA, Riccioni G, Massari F, D’Orazio N. Beneficial effect of ivabradine against cardiovascular diseases. Front Biosci 2020; 12(1): 161-72. doi: 10.2741/s545 PMID: 32114453
  90. Dallapellegrina L, Sciatti E, Vizzardi E. Ivabradine and endothelium: An update. Ther Adv Cardiovasc Dis 2020; 14: 1753944720934937. doi: 10.1177/1753944720934937 PMID: 32611276
  91. Kabil MF, Abo Dena AS, Sherbiny EIM. Profiles of drug substances, excipients and related methodology. Ticagrelor, Chapter 3, 2022; 47: 91-111. doi: 10.1016/bs.podrm.2021.10.003 PMID: 35396017
  92. Ticagrelor.LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases 2012.
  93. Knuuti J, Wijns W, Brentano FC. Anti-ischaemic medication must be adapted to each patient’s characteristics and preferences in patients with chronic coronary syndromes. Eur Heart J 2020; 41(3): 480-1. doi: 10.1093/eurheartj/ehz901 PMID: 31883326
  94. Thomas MR, Storey RF. The role of platelets in inflammation. Thromb Haemost 2015; 114(3): 449-58. PMID: 26293514
  95. Dorsam RT, Kunapuli SP. Central role of the P2Y12 receptor in platelet activation. J Clin Invest 2004; 113(3): 340-5. doi: 10.1172/JCI20986 PMID: 14755328
  96. Kim S, Kunapuli SP. P2Y12 receptor in platelet activation. Platelets 2011; 22(1): 54-8. doi: 10.3109/09537104.2010.497231 PMID: 21231822
  97. Léon C, Hechler B, Freund M, et al. Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y1 receptor-null mice. J Clin Invest 1999; 104(12): 1731-7. doi: 10.1172/JCI8399 PMID: 10606627
  98. Jin J, Kunapuli SP. Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc Natl Acad Sci USA 1998; 95(14): 8070-4. doi: 10.1073/pnas.95.14.8070 PMID: 9653141
  99. Sanderson NC, Parker WAE, Storey RF. Ticagrelor: Clinical development and future potential. Rev Cardiovasc Med 2021; 22(2): 373-94. doi: 10.31083/j.rcm2202044 PMID: 34258905
  100. Ahmad S, Storey RF. Development and clinical use of prasugrel and ticagrelor. Curr Pharm Des 2012; 18(33): 5240-60. doi: 10.2174/138161212803251989 PMID: 22724412
  101. Teng R, Oliver S, Hayes MA, Butler K. Absorption, distribution, metabolism, and excretion of ticagrelor in healthy subjects. Drug Metab Dispos 2010; 38(9): 1514-21. doi: 10.1124/dmd.110.032250 PMID: 20551239
  102. Van Giezen JJJ, Nilsson L, Berntsson P, et al. Ticagrelor binds to human P2Y12 independently from ADP but antagonizes ADP-induced receptor signaling and platelet aggregation. J Thromb Haemost 2009; 7(9): 1556-65. doi: 10.1111/j.1538-7836.2009.03527.x PMID: 19552634
  103. Parker WAE, Storey RF. Ticagrelor: Agonising over its mechanisms of action. Blood 2016; 128(23): 2595-7. doi: 10.1182/blood-2016-10-743930 PMID: 27932327
  104. Nylander S, Femia EA, Scavone M, et al. Ticagrelor inhibits human platelet aggregation via adenosine in addition to P2Y12 antagonism. J Thromb Haemost 2013; 11(10): 1867-76. doi: 10.1111/jth.12360 PMID: 23890048
  105. Wittfeldt A, Emanuelsson H, Wognsen BG, et al. Ticagrelor enhances adenosine-induced coronary vasodilatory responses in humans. J Am Coll Cardiol 2013; 61(7): 723-7. doi: 10.1016/j.jacc.2012.11.032 PMID: 23312702
  106. Alsharif KF, Thomas MR, Judge HM, et al. Ticagrelor potentiates adenosine-induced stimulation of neutrophil chemotaxis and phagocytosis. Vascul Pharmacol 2015; 71: 201-7. doi: 10.1016/j.vph.2015.02.006 PMID: 25869515
  107. Nanhwan MK, Ling S, Kodakandla M, Nylander S, Ye Y, Birnbaum Y. Chronic treatment with ticagrelor limits myocardial infarct size: An adenosine and cyclooxygenase-2-dependent effect. Arterioscler Thromb Vasc Biol 2014; 34(9): 2078-85. doi: 10.1161/ATVBAHA.114.304002 PMID: 25012137
  108. Alexopoulos D, Moulias A, Koutsogiannis N, et al. Differential effect of ticagrelor versus prasugrel on coronary blood flow velocity in patients with non-ST-elevation acute coronary syndrome undergoing percutaneous coronary intervention: An exploratory study. Circ Cardiovasc Interv 2013; 6(3): 277-83. doi: 10.1161/CIRCINTERVENTIONS.113.000293 PMID: 23735473
  109. Yang XM, Gadde S, Audia JP, Alvarez DF, Downey JM, Cohen MV. Ticagrelor does not protect isolated rat hearts, thus clouding its proposed cardioprotective role through ENT 1 in heart tissue. J Cardiovasc Pharmacol Ther 2019; 24(4): 371-6. doi: 10.1177/1074248419829169 PMID: 30744423
  110. Thomas MR, Outteridge SN, Ajjan RA, et al. Platelet P2Y12 inhibitors reduce systemic inflammation and its prothrombotic effects in an experimental human model. Arterioscler Thromb Vasc Biol 2015; 35(12): 2562-70. doi: 10.1161/ATVBAHA.115.306528 PMID: 26515417
  111. Rahman M, Gustafsson D, Wang Y, Thorlacius H, Braun OÖ. Ticagrelor reduces neutrophil recruitment and lung damage in abdominal sepsis. Platelets 2014; 25(4): 257-63. doi: 10.3109/09537104.2013.809520 PMID: 23855479
  112. van der Ven AJ, Riksen N, Rongen G, et al. Differential effects of platelets and platelet inhibition by ticagrelor on TLR2- and TLR4- mediated inflammatory responses. Thromb Haemost 2015; 113(5): 1035-45. doi: 10.1160/TH14-07-0579 PMID: 25716539
  113. Sexton TR, Zhang G, Macaulay TE, et al. Ticagrelor reduces thromboinflammatory markers in patients with pneumonia. JACC Basic Transl Sci 2018; 3(4): 435-49. doi: 10.1016/j.jacbts.2018.05.005 PMID: 30175268
  114. Storey RF, James SK, Siegbahn A, et al. Lower mortality following pulmonary adverse events and sepsis with ticagrelor compared to clopidogrel in the PLATO study. Platelets 2014; 25(7): 517-25. doi: 10.3109/09537104.2013.842965 PMID: 24127651
  115. Reiner M, Stivala S, Akhmedov A, et al. Cell-specific off-target effects of ticagrelor but not clopidogrel-active metabolite in endothelial dysfunction. European Heart J. ENGLAND: OXFORD UNIV PRESS GREAT CLARENDON ST, OXFORD OX2 6DP 2014; 35: p. 199.
  116. Edoxaban.LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases 2012.
  117. Yeh CH, Hogg K, Weitz JI. Overview of the new oral anticoagulants: Opportunities and challenges. Arterioscler Thromb Vasc Biol 2015; 35(5): 1056-65. doi: 10.1161/ATVBAHA.115.303397 PMID: 25792448
  118. Ogata K, Harary MJ, Tachibana M, et al. Clinical safety, tolerability, pharmacokinetics, and pharmacodynamics of the novel factor Xa inhibitor edoxaban in healthy volunteers. J Clin Pharmacol 2010; 50(7): 743-53. doi: 10.1177/0091270009351883 PMID: 20081065
  119. Zhu W, Ye Z, Chen S, et al. Comparative effectiveness and safety of non-vitamin k antagonist oral anticoagulants in atrial fibrillation patients. Stroke 2021; 52(4): 1225-33. doi: 10.1161/STROKEAHA.120.031007 PMID: 33596677
  120. Chan L, Pisano M. Edoxaban (Savaysa): A factor Xa inhibitor. P&T 2015; 40(10): 651-95. PMID: 26535021
  121. Raymond J, Imbert L, Cousin T, et al. Pharmacogenetics of direct oral anticoagulants: A systematic review. J Pers Med 2021; 11(1): 37. doi: 10.3390/jpm11010037 PMID: 33440670
  122. Ašić A, Marjanović D, Mirat J, Primorac D. Pharmacogenetics of novel oral anticoagulants: A review of identified gene variants & future perspectives. Per Med 2018; 15(3): 209-21. doi: 10.2217/pme-2017-0092 PMID: 29767545
  123. Sherry ST, Ward MH, Kholodov M, et al. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res 2001; 29(1): 308-11. doi: 10.1093/nar/29.1.308 PMID: 11125122
  124. Albertsen IE, Rasmussen LH, Overvad TF, Graungaard T, Larsen TB, Lip GYH. Risk of stroke or systemic embolism in atrial fibrillation patients treated with warfarin: A systematic review and meta-analysis. Stroke 2013; 44(5): 1329-36. doi: 10.1161/STROKEAHA.113.000883 PMID: 23482597
  125. Turpie AGG. New oral anticoagulants in atrial fibrillation. Eur Heart J 2007; 29(2): 155-65. doi: 10.1093/eurheartj/ehm575 PMID: 18096568
  126. Parasrampuria DA, Truitt KE. Pharmacokinetics and pharmacodynamics of edoxaban, a non-vitamin k antagonist oral anticoagulant that inhibits clotting factor Xa. Clin Pharmacokinet 2016; 55(6): 641-55. doi: 10.1007/s40262-015-0342-7 PMID: 26620048
  127. Giugliano RP, Ruff CT, Braunwald E, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2013; 369(22): 2093-104. doi: 10.1056/NEJMoa1310907 PMID: 24251359
  128. Vilain K, Li H, Kwong WJ, et al. Cardiovascular-and bleeding-related hospitalization rates with edoxaban versus warfarin in patients with atrial fibrillation based on results of the ENGAGE AF- TIMI 48 trial. Circ Cardiovasc Qual Outcomes 2020; 13(11): e006511. doi: 10.1161/CIRCOUTCOMES.120.006511 PMID: 33148013
  129. Goette A, Merino JL, Ezekowitz MD, et al. Edoxaban versus enoxaparin-warfarin in patients undergoing cardioversion of atrial fibrillation (ENSURE-AF): A randomised, open-label, phase 3b trial. Lancet 2016; 388(10055): 1995-2003. doi: 10.1016/S0140-6736(16)31474-X PMID: 27590218
  130. Hohnloser SH, Camm J, Cappato R, et al. Uninterrupted edoxaban vs. vitamin K antagonists for ablation of atrial fibrillation: The ELIMINATE-AF trial. Eur Heart J 2019; 40(36): 3013-21. doi: 10.1093/eurheartj/ehz190 PMID: 30976787
  131. Lee SR, Choi EK, Han KD, Jung JH, Oh S, Lip GYH. Comparison of once-daily administration of edoxaban and rivaroxaban in Asian patients with atrial fibrillation. Sci Rep 2019; 9(1): 6690. doi: 10.1038/s41598-019-43224-4 PMID: 31040359
  132. Marston XL, Wang R, Yeh YC, et al. Comparison of clinical outcomes with edoxaban versus apixaban, dabigatran, rivaroxaban, and vitamin K antagonist in patients with atrial fibrillation in Germany: A real-world cohort study. Eur Heart J 2020; 41: ehaa946-0401. doi: 10.1093/ehjci/ehaa946.0401
  133. Srinivasan S, Ajmal M, Pecci C, Lassar T. Edoxaban in cardiovascular disease management: Review. Br J Clin Pharmacol 2022; 88(2): 535-40. doi: 10.1111/bcp.15026 PMID: 34365675
  134. Kearon C, Akl EA, Ornelas J, et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest 2016; 149(2): 315-52. doi: 10.1016/j.chest.2015.11.026 PMID: 26867832
  135. Moll F, Baumgartner I, Jaff M, et al. Edoxaban plus aspirin vs. dual antiplatelet therapy in endovascular treatment of patients with peripheral artery disease: Results of the ePAD trial. J Endovasc Ther 2018; 25(2): 158-68. doi: 10.1177/1526602818760488 PMID: 29552984
  136. Mega JL, Walker JR, Ruff CT, et al. Genetics and the clinical response to warfarin and edoxaban: Findings from the randomised, double-blind ENGAGE AF-TIMI 48 trial. Lancet 2015; 385(9984): 2280-7. doi: 10.1016/S0140-6736(14)61994-2 PMID: 25769357
  137. Piccini JP, Patel MR, Mahaffey KW, Fox KAA, Califf RM. Rivaroxaban, an oral direct factor Xa inhibitor. Expert Opin Investig Drugs 2008; 17(6): 925-37. doi: 10.1517/13543784.17.6.925 PMID: 18491993
  138. Rivaroxaban. Drugs and Lactation Database (LactMed®). Bethesda, MD: National Institute of Child Health and Human Development 2006.
  139. Singh R, Emmady PD. Rivaroxaban, in StatPearls. Treasure Island (FL): StatPearls Publishing LLC. 2024.
  140. Imberti D, Dall’Asta C, Pierfranceschi MG. Oral factor Xa inhibitors for thromboprophylaxis in major orthopedic surgery: A review. Intern Emerg Med 2009; 4(6): 471-7. doi: 10.1007/s11739-009-0293-9 PMID: 19696978
  141. Alban S. Pharmacological strategies for inhibition of thrombin activity. Curr Pharm Des 2008; 14(12): 1152-75. doi: 10.2174/138161208784246135 PMID: 18473863
  142. Stevenson M, Scope A, Holmes M, Rees A, Kaltenthaler E. Rivaroxaban for the prevention of venous thromboembolism: A single technology appraisal. Health Technol Assess 2009; 13(S3): 43-8. doi: 10.3310/hta13suppl3-07 PMID: 19846028
  143. Sychev DA, Vardanyan A, Rozhkov A, et al. CYP3A activity and rivaroxaban serum concentrations in russian patients with deep vein thrombosis. Genet Test Mol Biomarkers 2018; 22(1): 51-4. doi: 10.1089/gtmb.2017.0152 PMID: 29345985
  144. Sychev D, Minnigulov R, Bochkov P, et al. Effect of CYP3A4, CYP3A5, ABCB1 gene polymorphisms on rivaroxaban pharmacokinetics in patients undergoing total hip and knee replacement surgery. High Blood Press Cardiovasc Prev 2019; 26(5): 413-20. doi: 10.1007/s40292-019-00342-4 PMID: 31617197
  145. Alexander D, Jeremias A. Rivaroxaban in the contemporary treatment of acute coronary syndromes. Expert Opin Investig Drugs 2011; 20(6): 849-57. doi: 10.1517/13543784.2011.580274 PMID: 21554163
  146. Sanmartín M, Bellmunt S, Sales CJ, et al. Role of rivaroxaban in the prevention of atherosclerotic events. Expert Rev Clin Pharmacol 2019; 12(8): 771-80. doi: 10.1080/17512433.2019.1637732 PMID: 31269825
  147. Gao Y, Jin H. Rivaroxaban for treatment of livedoid vasculopathy: A systematic review. Dermatol Ther 2021; 34(5): e15051. doi: 10.1111/dth.15051 PMID: 34197012
  148. Shah GL, Majhail N, Khera N, Giralt S. Value-based care in hematopoietic cell transplantation and cellular therapy: Challenges and opportunities. Curr Hematol Malig Rep 2018; 13(2): 125-34. doi: 10.1007/s11899-018-0444-z PMID: 29484578
  149. Davis PB, Yasothan U, Kirkpatrick P. Ivacaftor. Nat Rev Drug Discov 2012; 11(5): 349-50. doi: 10.1038/nrd3723 PMID: 22543461
  150. Gulland A. Cystic fibrosis drug is not cost effective, says NICE. British Medical Journal Publishing Group 2016. doi: 10.1136/bmj.i3409
  151. Check Hayden E. Promising gene therapies pose million-dollar conundrum. Nature 2016; 534(7607): 305-6. doi: 10.1038/534305a PMID: 27306167
  152. Mooney SJ, Pejaver V. Big data in public health: Terminology, machine learning, and privacy. Annu Rev Public Health 2018; 39(1): 95-112. doi: 10.1146/annurev-publhealth-040617-014208 PMID: 29261408
  153. Shen H, Ma J. Privacy challenges of genomic big data. Healthcare and Big Data Management 2017; pp. 139-48.
  154. Vayena E, Blasimme A. Biomedical big data: New models of control over access, use and governance. J Bioeth Inq 2017; 14(4): 501-13. doi: 10.1007/s11673-017-9809-6 PMID: 28983835
  155. Hughes DA. Economics of pharmacogenetic-guided treatments: Underwhelming or overstated? Clin Pharmacol Ther 2018; 103(5): 749-51. doi: 10.1002/cpt.1030 PMID: 29435984

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers