Advancing Novel Strategies against Post-surgical Tendon Adhesion Bands, Exploring New Frontiers


Citar

Texto integral

Resumo

Current interest in adhesion formation stems from its global impact on the function and quality of life, spanning a spectrum of subtle impairments to significant disabilities, based on the affected area and the extent of adhesion. Yet therapeutic agents are restricted to prophylactic anti-inflammatories, revision surgeries, and biological and physical techniques, none of which grant a decent outcome. Recent advancements in tissue- engineered biomaterials, drug delivery systems, and fabricating technologies such as nanoparticles, hydrogels, and weaving or braiding demonstrate potential for improved outcomes. However, none of the mentioned methods have reliable outcomes, thus this study aims to elucidate the mechanisms involved in the pathophysiology of tendon adhesion and post-surgical adhesion band formation (PSAB), with a closer look at inflammatory pathways stimulating the process. This article consolidates information on diverse therapeutic and prophylactic methods and cutting-edge technologies, aiming to provide a comprehensive update on this topic, and providing researchers an avenue for new and innovative ideas for further investigations.

Sobre autores

Maryam Alaei

Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Doaa Abdulhasan

Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Amirhossein Barjasteh

Faculty of Medicine, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Abdulridha Al-Asady

Department of Medical Sciences, Faculty of Nursing, Warith Al-Anbiyaa University

Email: info@benthamscience.net

Hanieh Latifi

Faculty of Medicine, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Ehsan Vahedi

Orthopedic Research Center, Shahid Kamyab Hospital, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Amir Avan

Metabolic Syndrome Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Majid Khazaei

Metabolic Syndrome Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Mikhail Ryzhikov

School of Medicine, Saint Louis University

Email: info@benthamscience.net

Seyed Hassanian

Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Gaut L, Duprez D. Tendon development and diseases. Wiley Interdiscip Rev Dev Biol 2016; 5(1): 5-23. doi: 10.1002/wdev.201 PMID: 26256998
  2. Yan Z, Yan H, Nerlich M, Pfeifer CG, Docheva D. Boosting tendon repair: Interplay of cells, growth factors and scaffold-free and gel-based carriers. J Exp Orthop 2018; 5(1): 1. doi: 10.1186/s40634-017-0117-1
  3. Docheva D, Müller SA, Majewski M, Evans CH. Biologics for tendon repair. Adv Drug Deliv Rev 2015; 84: 222-39. doi: 10.1016/j.addr.2014.11.015 PMID: 25446135
  4. Nichols AEC, Best KT, Loiselle AE. The cellular basis of fibrotic tendon healing: Challenges and opportunities. Transl Res 2019; 209: 156-68. doi: 10.1016/j.trsl.2019.02.002 PMID: 30776336
  5. Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 2014; 9(1): 18. doi: 10.1186/1749-799X-9-18 PMID: 24628910
  6. Tang JB, Zhou YL, Wu YF, Liu PY, Wang XT. Gene therapy strategies to improve strength and quality of flexor tendon healing. Expert Opin Biol Ther 2016; 16(3): 291-301. doi: 10.1517/14712598.2016.1134479 PMID: 26853840
  7. Snedeker JG, Foolen J. Tendon injury and repair: A perspective on the basic mechanisms of tendon disease and future clinical therapy. Acta Biomater 2017; 63: 18-36. doi: 10.1016/j.actbio.2017.08.032 PMID: 28867648
  8. Yao Z, Wang W, Ning J, et al. Hydroxycamptothecin inhibits peritendinous adhesion via the endoplasmic reticulum stress-dependent apoptosis. Front Pharmacol 2019; 10: 967. doi: 10.3389/fphar.2019.00967 PMID: 31551777
  9. Zheng W, Song J, Zhang Y, Chen S, Ruan H, Fan C. Metformin prevents peritendinous fibrosis by inhibiting transforming growth factor-β signaling. Oncotarget 2017; 8(60): 101784-94. doi: 10.18632/oncotarget.21695 PMID: 29254204
  10. Sarver DC, Sugg KB. Prostaglandin D(2) signaling is not involved in the recovery of rat hind limb tendons from injury. Physiol Rep 2019; 7(22): e14289.
  11. Güleç A, Türk Y, Aydin BK. Effect of curcumin on tendon healing: An experimental study in a rat model of Achilles tendon injury. Int Orthop 2018; 42(8): 1905-10.
  12. Cashman JD, Kennah E, Shuto A, Winternitz C, Springate CMK. Fucoidan film safely inhibits surgical adhesions in a rat model. J Surg Res 2011; 171(2): 495-503. doi: 10.1016/j.jss.2010.04.043 PMID: 20638689
  13. Akhlaghi S, Ebrahimnia M, Niaki DS, Solhi M, Rabbani S, Haeri A. Recent advances in the preventative strategies for postoperative adhesions using biomaterial-based membranes and micro/nano- drug delivery systems. J Drug Deliv Sci Technol 2023; 85: 104539. doi: 10.1016/j.jddst.2023.104539
  14. Lin LX, Yuan F, Zhang HH, Liao NN, Luo JW, Sun YL. Evaluation of surgical anti-adhesion products to reduce postsurgical intra-abdominal adhesion formation in a rat model. PLoS One 2017; 12(2): e0172088. doi: 10.1371/journal.pone.0172088 PMID: 28207824
  15. Briskin DP. Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol 2000; 124(2): 507-14. doi: 10.1104/pp.124.2.507 PMID: 11027701
  16. Zhang W, Li X, Comes Franchini M, et al. Controlled release of curcumin from curcumin-loaded nanomicelles to prevent peritendinous adhesion during Achilles tendon healing in rats. Int J Nanomedicine 2016; 11: 2873-81. PMID: 27382278
  17. Liang Y, Xu K, Zhang P, et al. Quercetin reduces tendon adhesion in rat through suppression of oxidative stress. BMC Musculoskelet Disord 2020; 21(1): 608. doi: 10.1186/s12891-020-03618-2 PMID: 32917186
  18. Zhou H, Jiang S, Li P, et al. Improved tendon healing by a combination of Tanshinone IIA and miR-29b inhibitor treatment through preventing tendon adhesion and enhancing tendon strength. Int J Med Sci 2020; 17(8): 1083-94. doi: 10.7150/ijms.44138 PMID: 32410838
  19. Dogramaci Y, Kalac A, Atik E, et al. Effects of a single application of extractum cepae on the peritendinous adhesion: An experimental study in rabbits. Ann Plast Surg 2010; 64(3): 338-41. doi: 10.1097/SAP.0b013e3181afa428 PMID: 20179487
  20. Liu B, Luo C, Ouyang L, et al. An experimental study on the effect of safflower yellow on tendon injury-repair in chickens. J Surg Res 2011; 169(2): e175-84. doi: 10.1016/j.jss.2011.03.079 PMID: 21601885
  21. Fu SC, Hui CWC, Li LC, et al. Total flavones of Hippophae rhamnoides promotes early restoration of ultimate stress of healing patellar tendon in a rat model. Med Eng Phys 2005; 27(4): 313-21. doi: 10.1016/j.medengphy.2004.12.011 PMID: 15823472
  22. Aiyegbusi AI, Olabiyi OO, Duru FIO, Noronha CC, Okanlawon AO. A comparative study of the effects of bromelain and fresh pineapple juice on the early phase of healing in acute crush achilles tendon injury. J Med Food 2011; 14(4): 348-52. doi: 10.1089/jmf.2010.0078 PMID: 21254908
  23. Jiang D, Gao P, Lin H, Geng H. Curcumin improves tendon healing in rats: A histological, biochemical, and functional evaluation. Connect Tissue Res 2016; 57(1): 20-7. doi: 10.3109/03008207.2015.1087517 PMID: 26540017
  24. Chan K, Fu S, Hui W, et al. Radix Dipsaci does not improve tendon healing in a rat model of patellar tendon donor site injury. Orthop Surg 2010; 2(3): 187-93. doi: 10.1111/j.1757-7861.2010.00085.x PMID: 22009947
  25. Aro AA, Simões GF, Esquisatto MAM, et al. Arrabidaea chica extract improves gait recovery and changes collagen content during healing of the Achilles tendon. Injury 2013; 44(7): 884-92. doi: 10.1016/j.injury.2012.08.055 PMID: 23047299
  26. Chen ZY, Chen SH. Polysaccharide extracted from Bletilla striata promotes proliferation and migration of human tenocytes. Polymers 2020; 12(11): 2567. doi: 10.3390/polym12112567
  27. Akali A, Khan U, Khaw PT, McGrouther AD. Decrease in adhesion formation by a single application of 5-fluorouracil after flexor tendon injury. Plast Reconstr Surg 1999; 103(1): 151-8. doi: 10.1097/00006534-199901000-00024 PMID: 9915176
  28. Moran SL, Ryan CK, Orlando GS, Pratt CE, Michalko KB. Effects of 5-fluorouracil on flexor tendon repair. J Hand Surg Am 2000; 25(2): 242-51. doi: 10.1053/jhsu.2000.jhsu25a0242 PMID: 10722815
  29. Karaaltin MV, Ozalp B, Dadaci M, Kayıkcıoglu A, Kecik A, Oner F. The effects of 5-fluorouracil on flexor tendon healing by using a biodegradable gelatin, slow releasing system: Experimental study in a hen model. J Hand Surg Eur Vol 2013; 38(6): 651-7. doi: 10.1177/1753193412458646 PMID: 22918883
  30. Duci SB, Arifi HM, Ahmeti HR, et al. Histological evaluation of the effects of 5-fluorouracil on partially divided flexor tendon injuries in rabbits. Eur J Plast Surg 2017; 40(1): 1-10. doi: 10.1007/s00238-016-1237-z
  31. Ragoowansi R, Khan U, Brown RA, McGrouther DA. Reduction in matrix metalloproteinase production by tendon and synovial fibroblasts after a single exposure to 5-fluorouracil. Br J Plast Surg 2001; 54(4): 283-7. doi: 10.1054/bjps.2000.3580 PMID: 11355979
  32. Fatemi MJ, Shirani S, Sobhani R, et al. Prevention of peritendinous adhesion formation after the flexor tendon surgery in rabbits. Ann Plast Surg 2018; 80(2): 171-5. doi: 10.1097/SAP.0000000000001169 PMID: 28671883
  33. Zhao C, Zobitz ME, Sun YL, et al. Surface treatment with 5-fluorouracil after flexor tendon repair in a canine in vivo model. J Bone Joint Surg Am 2009; 91(11): 2673-82. doi: 10.2106/JBJS.H.01695 PMID: 19884442
  34. Zheng W, Qian Y, Chen S, Ruan H, Fan C. Rapamycin protects against peritendinous fibrosis through activation of autophagy. Front Pharmacol 2018; 9: 402. doi: 10.3389/fphar.2018.00402 PMID: 29731718
  35. Farhat YM, Al-Maliki AA, Chen T, et al. Gene expression analysis of the pleiotropic effects of TGF-β1 in an in vitro model of flexor tendon healing. PLoS One 2012; 7(12): e51411. doi: 10.1371/journal.pone.0051411 PMID: 23251524
  36. Farhat YM, Al-Maliki AA, Easa A, O’Keefe RJ, Schwarz EM, Awad HA. TGF-β1 suppresses plasmin and mmp activity in flexor tendon cells via PAI-1: Implications for scarless flexor tendon repair. J Cell Physiol 2015; 230(2): 318-26. doi: 10.1002/jcp.24707 PMID: 24962629
  37. Chang J, Thunder R, Most D, Longaker MT, Lineaweaver WC. Studies in flexor tendon wound healing: Neutralizing antibody to TGF-beta1 increases postoperative range of motion. Plast Reconstr Surg 2000; 105(1): 148-55. doi: 10.1097/00006534-200001000-00025 PMID: 10626983
  38. Bates SJ, Morrow E, Zhang AY, Pham H, Longaker MT, Chang J. Mannose-6-phosphate, an inhibitor of transforming growth factor- beta, improves range of motion after flexor tendon repair. J Bone Joint Surg Am 2006; 88(11): 2465-72. PMID: 17079405
  39. Xia C, Yang XY, Wang Y, Sun K, Tian S. Inhibition effect of mannose-6-phosphate on expression of transforming growth factor Beta receptor in flexor tendon cells. Orthopedics 2011; 34(1): 01477447-20101123-09. doi: 10.3928/01477447-20101123-09 PMID: 21210624
  40. Xia C, Zuo J, Wang C, Wang Y. Tendon healing in vivo: Effect of mannose-6-phosphate on flexor tendon adhesion formation. Orthopedics 2012; 35(7): e1056-60. doi: 10.3928/01477447-20120621-21 PMID: 22784900
  41. Wong JKF, Metcalfe AD, Wong R, et al. Reduction of tendon adhesions following administration of Adaprev, a hypertonic solution of mannose-6-phosphate: Mechanism of action studies. PLoS One 2014; 9(11): e112672. doi: 10.1371/journal.pone.0112672 PMID: 25383548
  42. Jie Li Z, Bing Luo C, Liang Wang H, Sun J, Qian Yang Q, Lang Zhou Y. Metformin suppressed tendon injury-induced adhesion via hydrogel-nanoparticle sustained-release system. Int J Pharm 2023; 642: 123190. doi: 10.1016/j.ijpharm.2023.123190 PMID: 37391109
  43. Ferry ST, Dahners LE, Afshari HM, Weinhold PS. The effects of common anti-inflammatory drugs on the healing rat patellar tendon. Am J Sports Med 2007; 35(8): 1326-33. doi: 10.1177/0363546507301584 PMID: 17452512
  44. Cohen DB, Kawamura S, Ehteshami JR, Rodeo SA. Indomethacin and celecoxib impair rotator cuff tendon-to-bone healing. Am J Sports Med 2006; 34(3): 362-9. doi: 10.1177/0363546505280428 PMID: 16210573
  45. Behfar M, Hobbenaghi R, Sarrafzadeh-Rezaei F. Effects of flunixin meglumine on experimental tendon wound healing: A histopathological and mechanical study in rabbits. Vet Res Forum 2013; 4(4): 233-8. PMID: 25568677
  46. Geary MB, Orner CA, Bawany F, et al. Systemic EP4 inhibition increases adhesion formation in a murine model of flexor tendon repair. PLoS One 2015; 10(8): e0136351. doi: 10.1371/journal.pone.0136351 PMID: 26312751
  47. Akdemir O, Lineaweaver WC, Cavusoglu T, et al. Effect of taurine on rat Achilles tendon healing. Connect Tissue Res 2015; 56(4): 300-6. doi: 10.3109/03008207.2015.1026437 PMID: 25749029
  48. Ömeroğlu S, Peker T, Türközkan N, Ömeroğlu H. High-dose vitamin C supplementation accelerates the Achilles tendon healing in healthy rats. Arch Orthop Trauma Surg 2009; 129(2): 281-6. doi: 10.1007/s00402-008-0603-0 PMID: 18309503
  49. Hung LK, Fu SC, Lee YW, Mok TY, Chan KM. Local vitamin-C injection reduced tendon adhesion in a chicken model of flexor digitorum profundus tendon injury. J Bone Joint Surg Am 2013; 95(7): e41. doi: 10.2106/JBJS.K.00988 PMID: 23553304
  50. Lee YW, Fu SC, Mok TY, Chan KM, Hung LK. Local administration of Trolox, a vitamin E analog, reduced tendon adhesion in a chicken model of flexor digitorum profundus tendon injury. J Orthop Translat 2017; 10: 102-7. doi: 10.1016/j.jot.2016.10.002 PMID: 29662762
  51. Boz M, Çakıcı H, Pakdil M, et al. Does methylene blue reduce adhesion during the healing process after tendon repair? Eklem Hastalik Cerrahisi 2020; 31(2): 246-54. doi: 10.5606/ehc.2020.74405 PMID: 32584721
  52. Dabak TK, Sertkaya O, Acar N, Donmez BO, Ustunel I. The effect of Phospholipids (Surfactant) on adhesion and biomechanical properties of tendon: A rat achilles tendon repair model. BioMed Res Int 2015; 2015: 1-6. doi: 10.1155/2015/689314 PMID: 26101776
  53. Healy C, Mulhall KJ, Patrick DF, Kay EW, Bouchier-Hayes D. The effect of thermal preconditioning of the limb on Flexor tendon healing. J Hand Surg Eur Vol 2007; 32(3): 289-95. doi: 10.1016/J.JHSB.2007.01.004 PMID: 17321648
  54. Tan Y, Wu QF, Wu Q, Tan XT, Chen LB, Wang X. Thermal preconditioning may prevent tendon adhesion by up-regulating HSP72 in rats. Cell Physiol Biochem 2017; 42(4): 1623-34. doi: 10.1159/000479403 PMID: 28738356
  55. Tang XM, Dai J, Sun HL. Thermal pretreatment promotes the protective effect of HSP70 against tendon adhesion in tendon healing by increasing HSP70 expression. Mol Med Rep 2019; 20(1): 205-15. doi: 10.3892/mmr.2019.10240 PMID: 31115522
  56. Ermutlu C, Kaleli T, Yalcinkaya U, Cetintas S, Atici T. Efficacy of single-dose radiotherapy in preventing posttraumatic tendon adhesion. Cureus 2020; 12(6): e8410. doi: 10.7759/cureus.8410 PMID: 32626625
  57. Mortensen NHM, Skov O, Jensen PE. Early motion of the ankle after operative treatment of a rupture of the Achilles tendon. A prospective, randomized clinical and radiographic study. J Bone Joint Surg Am 1999; 81(7): 983-90. doi: 10.2106/00004623-199907000-00011 PMID: 10428130
  58. Sölveborn SA, Moberg A. Immediate free ankle motion after surgical repair of acute Achilles tendon ruptures. Am J Sports Med 1994; 22(5): 607-10. doi: 10.1177/036354659402200507 PMID: 7810783
  59. Chen Q, Hou D, Suo Y, Zhu Z. LncRNA XIST prevents tendon adhesion and promotes tendon repair through the miR-26a-5p/COX2 pathway. Mol Biotechnol 2022; 64(4): 424-33. doi: 10.1007/s12033-021-00419-3 PMID: 34714511
  60. Tavakkoli M, Aali S, Khaledifar B, et al. The potential association between the risk of post-surgical adhesion and the activated local angiotensin II type 1 receptors: Need for novel treatment strategies. Gastrointest Tumors 2021; 8(3): 107-14. doi: 10.1159/000514614 PMID: 34307308
  61. Waldron MG, Judge C, Farina L, O’Shaughnessy A, O’Halloran M. Barrier materials for prevention of surgical adhesions: Systematic review. BJS Open 2022; 6(3): zrac075. doi: 10.1093/bjsopen/zrac075 PMID: 35661871
  62. Wiig ME, Dahlin LB, Fridén J, et al. PXL01 in sodium hyaluronate for improvement of hand recovery after flexor tendon repair surgery: Randomized controlled trial. PLoS One 2014; 9(10): e110735-5. doi: 10.1371/journal.pone.0110735 PMID: 25340801
  63. Lees VC, Warwick D, Gillespie P, et al. A multicentre, randomized, double-blind trial of the safety and efficacy of mannose-6-phosphate in patients having Zone II flexor tendon repairs. J Hand Surg Eur Vol 2015; 40(7): 682-94. doi: 10.1177/1753193414553162 PMID: 25311934
  64. Ozgenel GY, Etöz A. Effects of repetitive injections of hyaluronic acid on peritendinous adhesions after flexor tendon repair: A preliminary randomized, placebo-controlled clinical trial. Ulus Travma Acil Cerrahi Derg 2012; 18(1): 11-7. doi: 10.5505/tjtes.2012.95530 PMID: 22290044
  65. Oh CH, Oh JH, Kim SH, Cho JH, Yoon JP, Kim JY. Effectiveness of subacromial anti-adhesive agent injection after arthroscopic rotator cuff repair: Prospective randomized comparison study. Clin Orthop Surg 2011; 3(1): 55-61. doi: 10.4055/cios.2011.3.1.55 PMID: 21369479
  66. Akbari H, Rahimi A, Ghavami Y, Mousavi S, Fatemi M. Effect of heparin on post-operative adhesion in flexor tendon surgery of the hand. J Hand Microsurg 2016; 7(2): 244-9. doi: 10.1007/s12593-015-0192-4 PMID: 26578825

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024