The Regulation of Selenoproteins in Diabetes: A New Way to Treat Diabetes

  • Authors: Liang J.1, He Y.2, Huang C.3, Ji F.4, Zhou X.5, Yin Y.6
  • Affiliations:
    1. Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences
    2. Key Laboratory of Agro-ecological Processes in Subtropical Region,, Institute of Subtropical Agriculture, The Chinese Academy of Sciences,
    3. School of Stomatology, Changsha Medical University
    4. TTropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences
    5. Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences,
    6. Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences
  • Issue: Vol 30, No 20 (2024)
  • Pages: 1541-1547
  • Section: Immunology, Inflammation & Allergy
  • URL: https://vestnikugrasu.org/1381-6128/article/view/645752
  • DOI: https://doi.org/10.2174/0113816128302667240422110226
  • ID: 645752

Cite item

Full Text

Abstract

Selenium is an essential micronutrient required for the synthesis and function of selenoproteins, most of which are enzymes involved in maintaining oxidative balance in the body. Diabetes is a group of metabolic disorders characterized by high blood glucose levels over a prolonged period of time. There are three main types of diabetes: type 1, type 2, and gestational diabetes. This review summarizes recent advances in the field of diabetes research with an emphasis on the roles of selenoproteins on metabolic disturbance in diabetes. We also discuss the interaction between selenoproteins and glucose and lipid metabolism to provide new insights into the prevention and treatment of diabetes.

About the authors

Jing Liang

Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences

Email: info@benthamscience.net

Yiwen He

Key Laboratory of Agro-ecological Processes in Subtropical Region,, Institute of Subtropical Agriculture, The Chinese Academy of Sciences,

Email: info@benthamscience.net

Chunxia Huang

School of Stomatology, Changsha Medical University

Email: info@benthamscience.net

Fengjie Ji

TTropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences

Email: info@benthamscience.net

Xihong Zhou

Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences,

Author for correspondence.
Email: info@benthamscience.net

Yulong Yin

Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Ramírez-Acosta S, Selma-Royo M, Collado MC, Navarro-Roldán F, Abril N, García-Barrera T. Selenium supplementation influences mice testicular selenoproteins driven by gut microbiota. Sci Rep 2022; 12(1): 4218. doi: 10.1038/s41598-022-08121-3 PMID: 35273298
  2. Mehdi Y, Hornick JL, Istasse L, Dufrasne I. Selenium in the environment, metabolism and involvement in body functions. Molecules 2013; 18(3): 3292-311. doi: 10.3390/molecules18033292 PMID: 23486107
  3. Mariotti M, Salinas G, Gabaldón T, Gladyshev VN. Utilization of selenocysteine in early-branching fungal phyla. Nat Microbiol 2019; 4(5): 759-65. doi: 10.1038/s41564-018-0354-9 PMID: 30742068
  4. Ha HY, Alfulaij N, Berry MJ, Seale LA. From selenium absorption to selenoprotein degradation. Biol Trace Elem Res 2019; 192(1): 26-37. doi: 10.1007/s12011-019-01771-x PMID: 31222623
  5. Baltaci AK, Mogulkoc R, Akil M, Bicer M. Review - Selenium - Its metabolism and relation to exercise. Pak J Pharm Sci 2016; 29(5): 1719-25. PMID: 27731835
  6. Barrera LN, Cassidy A, Wang W, et al. TrxR1 and GPx2 are potently induced by isothiocyanates and selenium, and mutually cooperate to protect Caco-2 cells against free radical-mediated cell death. Biochim Biophys Acta Mol Cell Res 2012; 1823(10): 1914-24. doi: 10.1016/j.bbamcr.2012.07.007 PMID: 22820176
  7. Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: A review of current trends. Oman Med J 2012; 27(4): 269-73. doi: 10.5001/omj.2012.68 PMID: 23071876
  8. Robertson RP. Nrf2 and antioxidant response in animal models of type 2 diabetes. Int J Mol Sci 2023; 24(4): 3082. doi: 10.3390/ijms24043082 PMID: 36834496
  9. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2022. Diab Care 2022; 45 (Suppl. 1): S17-38. doi: 10.2337/dc22-S002 PMID: 34964875
  10. Standards of medical care in diabetes-2022 abridged for primary care providers. Clin Diabetes 2022; 40(1): 10-38. doi: 10.2337/cd22-as01 PMID: 35221470
  11. Amirani E, Asemi Z, Taghizadeh M. The effects of selenium plus probiotics supplementation on glycemic status and serum lipoproteins in patients with gestational diabetes mellitus: A randomized, double-blind, placebo-controlled trial. Clin Nutr ESPEN 2022; 48: 56-62. doi: 10.1016/j.clnesp.2022.02.010 PMID: 35331534
  12. Chellan B, Zhao L, Landeche M, Carmean CM, Dumitrescu AM, Sargis RM. Selenocysteine insertion sequence binding protein 2 (Sbp2) in the sex-specific regulation of selenoprotein gene expression in mouse pancreatic islets. Sci Rep 2020; 10(1): 18568. doi: 10.1038/s41598-020-75595-4 PMID: 33122797
  13. Roden M, Prskavec M, Fürnsinn C, et al. Metabolic effect of sodium selenite: Insulin-like inhibition of glucagon-stimulated glycogenolysis in the isolated perfused rat liver. Hepatology 1995; 22(1): 169-74. PMID: 7601409
  14. Bicer M, Akil M, Baltaci AK, Mogulkoc R, Sivrikaya A, Akkus H. Effect of melatonin on element distribution in the liver tissue of diabetic rats subjected to forced exercise. Bratisl Med J 2015; 116(2): 119-23. doi: 10.4149/BLL_2015_023 PMID: 25665479
  15. Bicer M, Akil M, Sivrikaya A, Kara E, Baltaci AK, Mogulkoc R. Effect of zinc supplementation on the distribution of various elements in the serum of diabetic rats subjected to an acute swimming exercise. J Physiol Biochem 2011; 67(4): 511-7. doi: 10.1007/s13105-011-0096-0 PMID: 21607732
  16. Zhao J, Zou H, Huo Y, Wei X, Li Y. Emerging roles of selenium on metabolism and type 2 diabetes. Front Nutr 2022; 9: 1027629. doi: 10.3389/fnut.2022.1027629 PMID: 36438755
  17. Shimada BK, Swanson S, Toh P, Seale LA. Metabolism of selenium, selenocysteine, and selenoproteins in ferroptosis in solid tumor cancers. Biomolecules 2022; 12(11): 1581. doi: 10.3390/biom12111581 PMID: 36358931
  18. Huang Z, Rose AH, Hoffmann PR. The role of selenium in inflammation and immunity: From molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2012; 16(7): 705-43. doi: 10.1089/ars.2011.4145 PMID: 21955027
  19. Schwarz K, Foltz CM. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J Am Chem Soc 1957; 79(12): 3292-3. doi: 10.1021/ja01569a087
  20. Papp LV, Lu J, Holmgren A, Khanna KK. From selenium to selenoproteins: Synthesis, identity, and their role in human health. Antioxid Redox Signal 2007; 9(7): 775-806. doi: 10.1089/ars.2007.1528 PMID: 17508906
  21. Nogales F, Ojeda ML, Fenutría M, Murillo ML, Carreras O. Role of selenium and glutathione peroxidase on development, growth, and oxidative balance in rat offspring. Reproduction 2013; 146(6): 659-67. doi: 10.1530/REP-13-0267 PMID: 24080144
  22. Lei L, Mu J, Zheng Y, Liu Y. Selenium deficiency-induced oxidative stress causes myocardial injury in calves by activating inflammation, apoptosis, and necroptosis. Antioxidants 2023; 12(2): 229. doi: 10.3390/antiox12020229 PMID: 36829789
  23. Irudayaraj SS, Jincy J, Sunil C, et al. Antidiabetic with antilipidemic and antioxidant effects of flindersine by enhanced glucose uptake through GLUT4 translocation and PPARγ agonism in type 2 diabetic rats. J Ethnopharmacol 2022; 285: 114883. doi: 10.1016/j.jep.2021.114883 PMID: 34861363
  24. Ng CF, Schafer FQ, Buettner GR, Rodgers VGJ. The rate of cellular hydrogen peroxide removal shows dependency on GSH: Mathematical insight into in vivo H2O2 and GPx concentrations. Free Radic Res 2007; 41(11): 1201-11. doi: 10.1080/10715760701625075 PMID: 17886026
  25. Lee SH, Takahashi K, Hatakawa Y, Oe T. Lipid peroxidation-derived modification and its effect on the activity of glutathione peroxidase 1. Free Radic Biol Med 2023; 208: 252-9. doi: 10.1016/j.freeradbiomed.2023.08.014 PMID: 37549755
  26. Huang JQ, Zhou JC, Wu YY, Ren FZ, Lei XG. Role of glutathione peroxidase 1 in glucose and lipid metabolism-related diseases. Free Radic Biol Med 2018; 127: 108-15. doi: 10.1016/j.freeradbiomed.2018.05.077 PMID: 29800654
  27. Burk RF, Hill KE, Selenoprotein P. Selenoprotein P: An extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu Rev Nutr 2005; 25(1): 215-35. doi: 10.1146/annurev.nutr.24.012003.132120 PMID: 16011466
  28. Burk RF, Hill KE. Regulation of selenium metabolism and transport. Annu Rev Nutr 2015; 35(1): 109-34. doi: 10.1146/annurev-nutr-071714-034250 PMID: 25974694
  29. Oo SM, Oo HK, Takayama H, et al. Selenoprotein P-mediated reductive stress impairs cold-induced thermogenesis in brown fat. Cell Rep 2022; 38(13): 110566. doi: 10.1016/j.celrep.2022.110566 PMID: 35354056
  30. Shimada BK, Watanabe LM, Swanson S, Toh P, Seale LA. Selenium and selenoproteins in thermogenic adipocytes. Arch Biochem Biophys 2022; 731: 109445. doi: 10.1016/j.abb.2022.109445 PMID: 36265651
  31. Köhrle J, Frädrich C. Deiodinases control local cellular and systemic thyroid hormone availability. Free Radic Biol Med 2022; 193(Pt 1): 59-79. doi: 10.1016/j.freeradbiomed.2022.09.024 PMID: 36206932
  32. Liu YY, Brent GA. The role of thyroid hormone in neuronal protection. Compr Physiol 2021; 11(3): 2075-95. doi: 10.1002/cphy.c200019 PMID: 34061976
  33. Russo SC, Salas-Lucia F, Bianco AC. Deiodinases and the metabolic code for thyroid hormone action. Endocrinology 2021; 162(8): bqab059. doi: 10.1210/endocr/bqab059 PMID: 33720335
  34. Choi YM, Kim MK, Kwak MK, Kim D, Hong EG. Association between thyroid hormones and insulin resistance indices based on the Korean national health and nutrition examination survey. Sci Rep 2021; 11(1): 21738. doi: 10.1038/s41598-021-01101-z PMID: 34741077
  35. Men L, Yu S, Yao J, Li Y, Ren D, Du J. Selenoprotein S protects against adipocyte death through mediation of the IRE1α-sXBP1 pathway. Biochem Biophys Res Commun 2018; 503(4): 2866-71. doi: 10.1016/j.bbrc.2018.08.057 PMID: 30146262
  36. Yu S, Du J, Selenoprotein S. Selenoprotein S: A therapeutic target for diabetes and macroangiopathy? Cardiovasc Diabetol 2017; 16(1): 101. doi: 10.1186/s12933-017-0585-8 PMID: 28797256
  37. Li F, Mao A, Fu X, She Y, Wei X. Correlation between SEPS1 gene polymorphism and type 2 diabetes mellitus: A preliminary study. J Clin Lab Anal 2019; 33(8): e22967. doi: 10.1002/jcla.22967 PMID: 31265177
  38. Qiao L, Men L, Yu S, et al. Hepatic deficiency of selenoprotein S exacerbates hepatic steatosis and insulin resistance. Cell Death Dis 2022; 13(3): 275. doi: 10.1038/s41419-022-04716-w PMID: 35347118
  39. Mao J, Teng W. The relationship between selenoprotein P and glucose metabolism in experimental studies. Nutrients 2013; 5(6): 1937-48. doi: 10.3390/nu5061937 PMID: 23760059
  40. Mita Y, Nakayama K, Inari S, et al. Selenoprotein P-neutralizing antibodies improve insulin secretion and glucose sensitivity in type 2 diabetes mouse models. Nat Commun 2017; 8(1): 1658. doi: 10.1038/s41467-017-01863-z PMID: 29162828
  41. Steinbrenner H. Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism. Free Radic Biol Med 2013; 65: 1538-47. doi: 10.1016/j.freeradbiomed.2013.07.016 PMID: 23872396
  42. Stancill J S, Hansen P A, Mathison A J, Schmidt E E, Corbett J A. Deletion of thioredoxin reductase disrupts redox homeostasis and impairs beta-cell function. Function 2022; 3: zqac034.
  43. Akahoshi N, Anan Y, Hashimoto Y, et al. Dietary selenium deficiency or selenomethionine excess drastically alters organ selenium contents without altering the expression of most selenoproteins in mice. J Nutr Biochem 2019; 69: 120-9. doi: 10.1016/j.jnutbio.2019.03.020 PMID: 31078905
  44. Li M, Zhang Y, Zhou J, Liu H, Selenoprotein F. Selenoprotein F knockout caused glucose metabolism disorder in young mice by disrupting redox homeostasis. Antioxidants 2022; 11(11): 2105. doi: 10.3390/antiox11112105 PMID: 36358477
  45. Zheng X, Ren B, Li X, et al. Selenoprotein F knockout leads to glucose and lipid metabolism disorders in mice. J Biol Inorg Chem 2020; 25(7): 1009-22. doi: 10.1007/s00775-020-01821-z PMID: 32995962
  46. Seo JA, Kang MC, Yang WM, et al. Apolipoprotein J is a hepatokine regulating muscle glucose metabolism and insulin sensitivity. Nat Commun 2020; 11(1): 2024. doi: 10.1038/s41467-020-15963-w PMID: 32332780
  47. Rubio-Navarro A, Gómez-Banoy N, Stoll L, et al. A beta cell subset with enhanced insulin secretion and glucose metabolism is reduced in type 2 diabetes. Nat Cell Biol 2023; 25(4): 565-78. doi: 10.1038/s41556-023-01103-1 PMID: 36928765
  48. Jablonska E, Reszka E, Gromadzinska J, et al. The effect of selenium supplementation on glucose homeostasis and the expression of genes related to glucose metabolism. Nutrients 2016; 8(12): 772. doi: 10.3390/nu8120772 PMID: 27983572
  49. Gorini F, Vassalle C. Selenium and selenoproteins at the intersection of type 2 diabetes and thyroid pathophysiology. Antioxidants 2022; 11(6): 1188. doi: 10.3390/antiox11061188 PMID: 35740085
  50. Saleh SR, Zaki R, Hassan R, El-Kersh MA, El-Sayed MM, Abd Elmoneam AA. The impact of vitamin A supplementation on thyroid function and insulin sensitivity: Implication of deiodinases and phosphoenolpyruvate carboxykinase in male Wistar rats. Eur J Nutr 2022; 61(8): 4091-105. doi: 10.1007/s00394-022-02945-5 PMID: 35804266
  51. Guebre-Egziabher F, Alix PM, Koppe L, et al. Ectopic lipid accumulation: A potential cause for metabolic disturbances and a contributor to the alteration of kidney function. Biochimie 2013; 95(11): 1971-9. doi: 10.1016/j.biochi.2013.07.017 PMID: 23896376
  52. Su K, Yi B, Yao B, et al. Liraglutide attenuates renal tubular ectopic lipid deposition in rats with diabetic nephropathy by inhibiting lipid synthesis and promoting lipolysis. Pharmacol Res 2020; 156: 104778. doi: 10.1016/j.phrs.2020.104778 PMID: 32247822
  53. Johar DR, Bernstein LH. Biomarkers of stress-mediated metabolic deregulation in diabetes mellitus. Diabetes Res Clin Pract 2017; 126: 222-9. doi: 10.1016/j.diabres.2017.02.023 PMID: 28273645
  54. Merk D, Ptok J, Jakobs P, et al. Selenoprotein T protects endothelial cells against lipopolysaccharide-induced activation and apoptosis. Antioxidants 2021; 10(9): 1427. doi: 10.3390/antiox10091427 PMID: 34573059
  55. Prattichizzo F, De Nigris V, Spiga R, et al. Inflammageing and metaflammation: The yin and yang of type 2 diabetes. Ageing Res Rev 2018; 41: 1-17. doi: 10.1016/j.arr.2017.10.003 PMID: 29081381
  56. Krümmel B, Plötz T, Jörns A, Lenzen S, Mehmeti I. The central role of glutathione peroxidase 4 in the regulation of ferroptosis and its implications for pro-inflammatory cytokine-mediated beta- cell death. Biochim Biophys Acta Mol Basis Dis 2021; 1867(6): 166114. doi: 10.1016/j.bbadis.2021.166114 PMID: 33662571
  57. Forcina GC, Dixon SJ. GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics 2019; 19(18): 1800311. doi: 10.1002/pmic.201800311 PMID: 30888116
  58. Alghobashy AA, Alkholy UM, Talat M, et al. Trace elements and oxidative stress in children with type 1 diabetes mellitus. Diabetes Metab Syndr Obes 2018; 11: 85-92. doi: 10.2147/DMSO.S157348 PMID: 29618936
  59. Lubos E, Loscalzo J, Handy DE. Glutathione peroxidase-1 in health and disease: From molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011; 15(7): 1957-97. doi: 10.1089/ars.2010.3586 PMID: 21087145
  60. Benson M, Hossain J, Darmaun D. Improved glycemic control either alone, or combined with antioxidant supplementation, fails to restore blood glutathione or markers of oxidative stress in adolescents with poorly controlled type 1 diabetes. Nutr Res 2023; 117: 83-90. doi: 10.1016/j.nutres.2023.05.010 PMID: 37515943
  61. Schomburg L. Selenium deficiency due to diet, pregnancy, severe illness, or COVID-19-A preventable trigger for autoimmune disease. Int J Mol Sci 2021; 22(16): 8532. doi: 10.3390/ijms22168532 PMID: 34445238
  62. Guo S, Dai C, Guo M, et al. Inactivation of specific β cell transcription factors in type 2 diabetes. J Clin Invest 2013; 123(8): 3305-16. doi: 10.1172/JCI65390 PMID: 23863625
  63. Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 2015; 5(1): 194-222. doi: 10.3390/biom5010194 PMID: 25786107
  64. Wang X, Wu B, Sun G, et al. Dietary selenomethionine attenuates obesity by enhancing beiging process in white adipose tissue. J Nutr Biochem 2023; 113: 109230. doi: 10.1016/j.jnutbio.2022.109230 PMID: 36435293
  65. Huang YC, Combs GF Jr, Wu TL, Zeng H, Cheng WH. Selenium status and type 2 diabetes risk. Arch Biochem Biophys 2022; 730: 109400. doi: 10.1016/j.abb.2022.109400 PMID: 36122760
  66. Afsharpour F, Javadi M, Hashemipour S, Koushan Y, haghighian HK. Propolis supplementation improves glycemic and antioxidant status in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled study. Complement Ther Med 2019; 43: 283-8. doi: 10.1016/j.ctim.2019.03.001 PMID: 30935545
  67. Chen CW, Guan BJ, Alzahrani MR, et al. Adaptation to chronic ER stress enforces pancreatic β-cell plasticity. Nat Commun 2022; 13(1): 4621. doi: 10.1038/s41467-022-32425-7 PMID: 35941159
  68. Pitts MW, Hoffmann PR. Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis. Cell Calcium 2018; 70: 76-86. doi: 10.1016/j.ceca.2017.05.001 PMID: 28506443
  69. Lee JH, Jang JK, Ko KY, et al. Degradation of selenoprotein S and selenoprotein K through PPARγ-mediated ubiquitination is required for adipocyte differentiation. Cell Death Differ 2019; 26(6): 1007-23. doi: 10.1038/s41418-018-0180-x PMID: 30082770
  70. Anouar Y, Lihrmann I, Falluel-Morel A, Boukhzar L. Selenoprotein T is a key player in ER proteostasis, endocrine homeostasis and neuroprotection. Free Radic Biol Med 2018; 127: 145-52. doi: 10.1016/j.freeradbiomed.2018.05.076 PMID: 29800653
  71. Chernorudskiy A, Varone E, Colombo SF, et al. Selenoprotein N is an endoplasmic reticulum calcium sensor that links luminal calcium levels to a redox activity. Proc Natl Acad Sci USA 2020; 117(35): 21288-98. doi: 10.1073/pnas.2003847117 PMID: 32817544
  72. Wang Y, Chang D, Zhao M, Chen M. Glutathione peroxidase 4 is a predictor of diabetic kidney disease progression in type 2 diabetes mellitus. Oxid Med Cell Longev 2022; 2022: 1-10. doi: 10.1155/2022/2948248 PMID: 36275902
  73. Gong Y, Liu Z, Zhang Y, Zhang J, Zheng Y, Wu Z. AGER1 deficiency-triggered ferroptosis drives fibrosis progression in nonalcoholic steatohepatitis with type 2 diabetes mellitus. Cell Death Discov 2023; 9(1): 178. doi: 10.1038/s41420-023-01477-z PMID: 37280194
  74. Sha W, Hu F, Xi Y, Chu Y, Bu S. Mechanism of ferroptosis and its role in type 2 diabetes mellitus. J Diabetes Res 2021; 2021: 1-10. doi: 10.1155/2021/9999612 PMID: 34258295
  75. Nguyen-Ngo C, Perkins AV, Lappas M. Selenium prevents inflammation in human placenta and adipose tissue in vitro: Implications for metabolic diseases of pregnancy associated with inflammation. Nutrients 2022; 14(16): 3286. doi: 10.3390/nu14163286 PMID: 36014792
  76. Deng H, Yao X, Cui N, et al. The protective effect of zinc, selenium, and chromium on myocardial fibrosis in the offspring of rats with gestational diabetes mellitus. Food Funct 2023; 14(3): 1584-94. doi: 10.1039/D2FO01105K PMID: 36661107
  77. Yan S, Su H, Xia Y, et al. Association between blood selenium levels and gestational diabetes mellitus: A systematic review and meta-analysis. Front Nutr 2022; 9: 1008584. doi: 10.3389/fnut.2022.1008584 PMID: 36505252
  78. Akbaba G, Akbaba E, Sahin C, Kara M. The relationship between gestational diabetes mellitus and selenoprotein-P plasma 1 (SEPP1) gene polymorphisms. Gynecol Endocrinol 2018; 34(10): 849-52. doi: 10.1080/09513590.2018.1460659 PMID: 29648467
  79. Lee SM, Kwak SH, Koo JN, et al. Non-alcoholic fatty liver disease in the first trimester and subsequent development of gestational diabetes mellitus. Diabetologia 2019; 62(2): 238-48. doi: 10.1007/s00125-018-4779-8 PMID: 30470912
  80. Karamali M, Dastyar F, Badakhsh MH, Aghadavood E, Amirani E, Asemi Z. The effects of selenium supplementation on gene expression related to insulin and lipid metabolism, and pregnancy outcomes in patients with gestational diabetes mellitus: A randomized, double-blind, placebo-controlled trial. Biol Trace Elem Res 2020; 195(1): 1-8. doi: 10.1007/s12011-019-01818-z PMID: 31317471
  81. Steinbrenner H, Duntas LH, Rayman MP. The role of selenium in type-2 diabetes mellitus and its metabolic comorbidities. Redox Biol 2022; 50: 102236. doi: 10.1016/j.redox.2022.102236 PMID: 35144052
  82. Rayman MP, Stranges S. Epidemiology of selenium and type 2 diabetes: Can we make sense of it? Free Radic Biol Med 2013; 65: 1557-64. doi: 10.1016/j.freeradbiomed.2013.04.003 PMID: 23597503

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers