Nanotechnology in Orthodontics: Unveiling Pain Mechanisms, Innovations, and Future Prospects of Nanomaterials in Drug Delivery


Cite item

Full Text

Abstract

Orthodontic pain is characterized by sensations of tingling, tooth discomfort, and intolerance. According to the oral health report, over forty percent of children and adolescents have undergone orthodontic treatment. The efficacy of orthodontic treatment involving braces can be compromised by the diverse levels of discomfort and suffering experienced by patients, leading to suboptimal treatment outcomes and reduced patient adherence. Nanotechnology has entered all areas of science and technology. This review provides an overview of nanoscience, its application in orthodontics, the underlying processes of orthodontic pain, effective treatment options, and a summary of recent research in Nano-dentistry. The uses of this technology in healthcare span a wide range, including enhanced diagnostics, biosensors, and targeted drug delivery. The reason for this is that nanomaterials possess distinct qualities that depend on their size, which can greatly enhance human well-being and contribute to better health when effectively utilized. The field of dentistry has also experienced significant advancements, particularly in the past decade, especially in the utilization of nanomaterials and technology. Over time, there has been an increase in the availability of dental nanomaterials, and a diverse array of these materials have been extensively studied for both commercial and therapeutic purposes.

About the authors

Divya Sharma

Department of Pharmaceutical Sciences And Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU)

Email: info@benthamscience.net

Shiv Kumar

Department of Pharmaceutical Sciences And Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU)

Email: info@benthamscience.net

Yogesh Garg

Department of Pharmaceutical Sciences And Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU)

Email: info@benthamscience.net

Shruti Chopra

Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU)

Email: info@benthamscience.net

Amit Bhatia

Department of Pharmaceutical Sciences And Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Renton T. Tooth-related pain or not? Headache 2020; 60(1): 235-46. doi: 10.1111/head.13689
  2. Azevedo H, Pupe C, Pereira R, Nascimento OJM. Pain in charcot- marie-tooth disease: An update. Arq Neuropsiquiatr 2018; 76(4): 273-6. doi: 10.1590/0004-282x20180021
  3. Long H, Wang Y, Jian F, Liao LN, Yang X, Lai WL. Current advances in orthodontic pain. Int J Oral Sci 2016; 8(2): 67-75. doi: 10.1038/ijos.2016.24
  4. Topolski F, Moro A, Correr GM, Schimim SC. Optimal management of orthodontic pain. J Pain Res 2018; 11: 589-98. doi: 10.2147/JPR.S127945
  5. AlQutub AW. Pain experience after dental implant placement compared to tooth extraction. Int J Dent 2021; 2021: 1-5. doi: 10.1155/2021/4134932
  6. Pigg M, Nixdorf DR, Law AS, et al. New international classification of orofacial pain: What is in it for endodontists? J Endod 2021; 47(3): 345-57. doi: 10.1016/j.joen.2020.12.002
  7. Krishnan V. Orthodontic pain: From causes to management-a review. Eur J Orthod 2007; 29(2): 170-9. doi: 10.1093/ejo/cjl081
  8. Asiry M, Albarakati S, Marwan AM, Shammari AR, Kavaliauskiene A, Smailiene D. Perception of pain and discomfort from elastomeric separators in Saudi adolescents. Saudi Med J 2014; 35(4): 504-7.
  9. Kavaliauskiene A, Smailiene D, Buskiene I, Keriene D. Pain and discomfort perception among patients undergoing orthodontic treatment: Results from one month follow-up study. Stomatologija 2012; 14(4): 118-25.
  10. Stoustrup P, Resnick CM, Abramowicz S, et al. Management of orofacial manifestations of juvenile idiopathic arthritis: Interdisciplinary consensus-based recommendations. Arthritis Rheumatol 2023; 75(1): 4-14. doi: 10.1002/art.42338
  11. Cardoso PC, Espinosa DG, Mecenas P, Flores-Mir C, Normando D. Pain level between clear aligners and fixed appliances: a systematic review. Prog Orthod 2020; 21(1): 3. doi: 10.1186/s40510-019-0303-z
  12. Monk AB, Harrison JE, Worthington HV, Teague A. Pharmacological interventions for pain relief during orthodontic treatment. Cochrane Libr 2017; 2017(12): CD003976. doi: 10.1002/14651858.CD003976.pub2
  13. Inchingolo AM, Malcangi G, Costa S, et al. Tooth complications after orthodontic miniscrews insertion. Int J Environ Res Public Health 2023; 20(2): 1562. doi: 10.3390/ijerph20021562
  14. Patel N, Rao MH, Aluru SC, Bandlapalli A, Patel N. Molar incisor hypomineralization. J Contemp Dent Pract 2016; 17(7): 609-13. doi: 10.5005/jp-journals-10024-1898
  15. Lease LR. Anatomy of individual teeth and tooth classes. A companion to Dental Anthropology. Wiley 2015; pp. 94-107.
  16. Laudenbach JM, Kumar SS. Common dental and periodontal diseases. Dermatol Clin 2020; 38(4): 413-20. doi: 10.1016/j.det.2020.05.002
  17. Badel T, Zadravec D, Kes VB, Smoljan M, Lovko SK, Zavoreo I. Orofacial pain-diagnostic and therapeutic challenges. Acta Clin Croat 2019; 58(S1): 82.
  18. Tang Z, Zhou J, Long H, et al. Molecular mechanism in trigeminal nerve and treatment methods related to orthodontic pain. J Oral Rehabil 2022; 49(2): 125-37. doi: 10.1111/joor.13263
  19. Krause L, Seeling S, Prütz F, Wager J. Toothache, tooth brushing frequency and dental check-ups in children and adolescents with and without disabilities. J Health Monit 2022; 7(1): 48.
  20. Iaculli F, Lozano RFJ, Marroquín BB, Wolf TG, Spagnuolo G, Rengo S. Vital pulp therapy of permanent teeth with reversible or irreversible pulpitis: An overview of the literature. J Clin Med 2022; 11(14): 4016. doi: 10.3390/jcm11144016
  21. Oghli I, List T, Su N, Henrikson HB. The impact of oro-facial pain conditions on oral health-related quality of life: A systematic review. J Oral Rehabil 2020; 47(8): 1052-64. doi: 10.1111/joor.12994
  22. Chatterjee D, Swarup D. Biology of Tooth Movement. Book Rivers 2022.
  23. Whyte A, Matias MATJ. Imaging of orofacial pain. J Oral Pathol Med 2020; 49(6): 490-8. doi: 10.1111/jop.13063
  24. Cheong JM, Tolos SM. Orthodontic pain-The state of the evidence. IIUM J Orofac Heal Sci 2022; 3(2): 203-11.
  25. Gupta SP, Rauniyar S, Prasad P, Pradhan PMS. A randomized controlled trial to evaluate the effectiveness of different methods on pain management during orthodontic debonding. Prog Orthod 2022; 23(1): 1-10.
  26. Marković E, Fercec J, Šćepan I, et al. The correlation between pain perception among patients with six different orthodontic archwires and the degree of dental crowding. Srp Arh Celok Lek 2015; 143(3-4): 134-40. doi: 10.2298/SARH1504134M
  27. Reddy CM, Ahuja NK, Reddy V. Pain control during orthodontic treatment: A clinician prospective. Ind J Dent Sci 2010; 2(3): 7.
  28. Longridge NN, Youngson CC. Dental pain: Dentine sensitivity, hypersensitivity and cracked tooth syndrome. Prim Dent J 2019; 8(1): 44-51. doi: 10.1177/205016841900800101
  29. Yamaguchi M, Garlet GP. Inflammatory response in the periodontal ligament and dental pulp during orthodontic tooth movement. Biol Mech Tooth Mov 2021; 2021: 49-67. doi: 10.1002/9781119608912.ch4
  30. Spencer CJ. Neuropathic pain and tooth pain. Gen Dent 2017; 65(2): 20-2.
  31. Thammanichanon P, Kaewpitak A, Binlateh T, Pavasant P, Leethanakul C. Varied temporal expression patterns of trigeminal TRPA1 and TRPV1 and the neuropeptide CGRP during orthodontic force-induced pain. Arch Oral Biol 2021; 128: 105170. doi: 10.1016/j.archoralbio.2021.105170
  32. Abdaljawwad AA, Groosh ADH. Effects of various analgesics on pain perception and rate of tooth movement: A randomized controlled clinical study. J Baghd Colleg Dentistr 2022; 34(2): 37-51. doi: 10.26477/jbcd.v34i2.3144
  33. Li FJ, Zhang JY, Zeng XT, Guo Y. Low-level laser therapy for orthodontic pain: A systematic review. Lasers Med Sci 2015; 30(6): 1789-803. doi: 10.1007/s10103-014-1661-x
  34. Kobayashi M, Horinuki E. Neural mechanisms of nociception during orthodontic treatment. J Oral Sci 2017; 59(2): 167-71. doi: 10.2334/josnusd.16-0847
  35. Michelotti A, Farella M, Martina R. Sensory and motor changes of the human jaw muscles during induced orthodontic pain. Eur J Orthod 1999; 21(4): 397-404. doi: 10.1093/ejo/21.4.397
  36. Turner C. Interdental brushes and ISO standards. Br Dent J 2022; 232(11): 761-2. doi: 10.1038/s41415-022-4360-1
  37. Alanazi MH, Barnawi NI, Almohaimel SA, et al. Evaluation of dental pulp testing: Simple literature review. Arch Pharm Pract 2019; 10(3): 37-40.
  38. Marchesan JT, Byrd KM, Moss K, et al. Flossing is associated with improved oral health in older adults. J Dent Res 2020; 99(9): 1047-53. doi: 10.1177/0022034520916151
  39. Lou T, Tran J, Tassi A, Cioffi I. 18: Pain during orthodontic treatment: Biologic mechanisms and clinical management. Princ Biomech Aligner Treat 2021; 2021: 252.
  40. Roth PM, Thrash WJ. Effect of transcutaneous electrical nerve stimulation for controlling pain associated with orthodontic tooth movement. Am J Orthod Dentofacial Orthop 1986; 90(2): 132-8. doi: 10.1016/0889-5406(86)90045-4
  41. Kaklamanos EG, Athanasiou AE. Medication and orthodontic tooth movement. Sage J 2019; 46(1): 39-44.
  42. Çelebi F. Mechanical vibration and chewing gum methods in orthodontic pain relief. Turk J Orthod 2022; 35(2): 133-8. doi: 10.5152/TurkJOrthod.2022.21091
  43. Bista P, Imlach WL. Pathological mechanisms and therapeutic targets for trigeminal neuropathic pain. Medicines 2019; 6(3): 91. doi: 10.3390/medicines6030091
  44. Shen H, Shao S, Zhang J, et al. Fixed orthodontic appliances cause pain and disturbance in somatosensory function. Eur J Oral Sci 2016; 124(1): 26-32. doi: 10.1111/eos.12234
  45. Erwansyah E, Fajriani , Ferry AN. Pain perception toward orthodontic treatment. Makassar Dent J 2020; 9(3): 177-80. doi: 10.35856/mdj.v9i3.349
  46. Jonas R, Namer B, Stockinger L, et al. Tuning in C-nociceptors to reveal mechanisms in chronic neuropathic pain. Ann Neurol 2018; 83(5): 945-57. doi: 10.1002/ana.25231
  47. Tamošiūnaitė I, Vasiliauskas A, Dindaroğlu F. Does YouTube provide adequate information about orthodontic pain? Angle Orthod 2023; 93(4): 403-8. doi: 10.2319/072822-527.1
  48. Bapat RA, Chaubal TV, Joshi CP, et al. An overview of application of silver nanoparticles for biomaterials in dentistry. Mater Sci Eng C 2018; 91: 881-98. doi: 10.1016/j.msec.2018.05.069
  49. Wang Y, Liu C, Jian F, et al. Initial arch wires used in orthodontic treatment with fixed appliances. Cochrane Libr 2018; 2018(7): CD007859. doi: 10.1002/14651858.CD007859.pub4
  50. Vallakati A, Jyothikiran H, Ravi S, Patel P. Orthodontic separators-a systemic review. J Orof Health Sci 2014; 5(3): 118-22. doi: 10.5958/2229-3264.2014.00012.4
  51. Auluck A. Lingual orthodontic treatment: What is the current evidence base? J Orthod 2013; 40(S1): s27-33. doi: 10.1179/1465313313Y.0000000073
  52. Parkin N, Benson PE, Thind B, Shah A, Khalil I, Ghafoor S. Open versus closed surgical exposure of canine teeth that are displaced in the roof of the mouth. Cochrane Libr 2017; 2017(8): CD006966. doi: 10.1002/14651858.CD006966.pub3
  53. Millett DT, Cunningham SJ, O’Brien KD, Benson PE, de Oliveira CM. Orthodontic treatment for deep bite and retroclined upper front teeth in children. Cochrane Libr 2017; 10(10): CD005972. doi: 10.1002/14651858.CD005972.pub3
  54. de Kanter RJAM, Battistuzzi PGFCM, Truin GJ. Temporomandibular disorders: "Occlusion" matters! Pain Res Manag 2018; 2018: 1-13. doi: 10.1155/2018/8746858
  55. Shenoy N, Shetty S, Ahmed J, Shenoy A. The pain management in orthodontics. J Clin diagnostic Res JCDR 2013; 7(6): 1258.
  56. Heboyan A, Avetisyan A, Karobari MI, et al. Tooth root resorption: A review. Sci Prog 2022; 105(3) doi: 10.1177/00368504221109217
  57. Kachuie M, Khoroushi M. Prevention and treatment of white spot lesions in orthodontic patients. Contemp Clin Dent 2017; 8(1): 11-9. doi: 10.4103/ccd.ccd_216_17
  58. Batista KBSL, Thiruvenkatachari B, Harrison JE, O’Brien KD. Orthodontic treatment for prominent upper front teeth (Class II malocclusion) in children and adolescents. Cochrane Libr 2018; 2018(3): CD003452. doi: 10.1002/14651858.CD003452.pub4
  59. Turner S, Harrison JE, Sharif FN, Owens D, Millett DT. Orthodontic treatment for crowded teeth in children. Cochrane Database Syst Rev 2021; 12(12): CD003453.
  60. Littlewood SJ, Millett DT, Doubleday B, Bearn DR, Worthington HV. Retention procedures for stabilising tooth position after treatment with orthodontic braces. Cochrane Libr 2016; 2016(1): CD002283. doi: 10.1002/14651858.CD002283.pub4
  61. Martin C, Littlewood SJ, Millett DT, et al. Retention procedures for stabilising tooth position after treatment with orthodontic braces. Cochrane Database Syst Rev 2023; 5(5): CD002283.
  62. Santana MDS. NSAIDS in dentistry: It’s principles in practice. IJISRT 2021; 6(9): 995-1000.
  63. Xiaoting L, Yin T, Yangxi C. Interventions for pain during fixed orthodontic appliance therapy. Angle Orthod 2010; 80(5): 925-32. doi: 10.2319/010410-10.1
  64. Bekker A, Kloepping C, Collingwood S. Meloxicam in the management of post-operative pain: Narrative review. J Anaesthesiol Clin Pharmacol 2018; 34(4): 450. doi: 10.4103/joacp.JOACP_133_18
  65. Hussain A, Qureshi F, Abbas N, Arshad M, Ali E. An evaluation of the binding strength of okra gum and the drug release characteristics of tablets prepared from it. Pharmaceutics 2017; 9(4): 20. doi: 10.3390/pharmaceutics9020020
  66. Vyshnavi K, Bhashetty M, Swain N, Venkataswamy M, Ramesh A. Evaluation of prepared aspirin modified release tablets with polymer isolated from fresh mosambi leaves. Res J Pharm Dos Forms Technol 2017; 9(2): 45. doi: 10.5958/0975-4377.2017.00009.X
  67. Ege B, Ege M, Koparal M, Alan H. Comparison of the anesthetic efficiency of lidocaine and tramadol hydrochloride in orthodontic extractions: A split-mouth, prospective, randomized, double-blind study. J Oral Maxillofac Surg 2020; 78(1): 52-62. doi: 10.1016/j.joms.2019.07.010
  68. Antoniazzi RP, Zanatta FB, Rösing CK, Feldens CA. Association among periodontitis and the use of crack cocaine and other illicit drugs. J Periodontol 2016; 87(12): 1396-405. doi: 10.1902/jop.2016.150732
  69. Wambier LM, Gonzaga CC, Chibinski ACR, et al. Efficacy of a light-cured tetracaine-based anesthetic gel for rubber dam clamp placement: A triple-blind randomized clinical trial. Oper Dent 2020; 45(2): E57-65. doi: 10.2341/18-130-C
  70. Olayemi OJ, Ekunboyejo A, Bamiro OA, Kunle OO. Evaluation of disintegrant properties of Neorautanenia mitis starch. J Phytomed Ther 2016; 15(2): 52-63.
  71. Sivaranjani S, Suganya M. Effects of COXIB in orthodontic tooth movement-A literature review. Int J Res Rev 2023; 6(1): 73-82.
  72. Gameiro HG, Nouer DF, Neto PJS, et al. Effects of short-and long-term celecoxib on orthodontic tooth movement. Angle Orthod 2008; 78(5): 860-5. doi: 10.2319/100207-474.1
  73. Kumar M, Keshwania P, Chopra S, Mahmood S, Bhatia A. Correction: Therapeutic potential of nanocarrier-mediated delivery of phytoconstituents for wound healing: Their current status and future perspective. AAPS PharmSciTech 2023; 24(7): 206. doi: 10.1208/s12249-023-02668-8
  74. Gupta S, Ahluwalia R, Bindra PK, Chugh T. Nanotechnology in orthodontics: A detailed review. J. Surv. Fish. Sci 2023; 2023: 970-5.
  75. Subramani K, Subbiah U, Huja S. Nanotechnology in orthodontics-1: The past, present, and a perspective of the future. Nanobiomaterials in clinical dentistry. Elsevier 2019; pp. 279-98.
  76. De Stefani A, Bruno G, Preo G, Gracco A. Application of nanotechnology in orthodontic materials: A state-of-the-art review. Dent J 2020; 8(4): 126. doi: 10.3390/dj8040126
  77. Umalkar DG, Jawale BA, Patil S. The application of nanotechnology in orthodontics: Current trends and future perspectives. Orthodontics - Current Principles and Techniques. IntechOpen 2023.
  78. Sadeghian S, Ersi M, Kalbasi N, Najjarian M. Comparison of subcutaneous inflammatory response induced by elastomeric orthodontic ligatures coated with silver and zinc oxide nanoparticles with control group on rats. Dent Res J 2022; 19: 97.
  79. Parambil SA, Duraisamy S, Krishnaraj R, Ravi K. An in-vivo study to evaluate the force decay of three different orthodontic elastomeric ligatures. Int J Orthod Rehab 2022; 13(2): 25-36. doi: 10.56501/intjorthodrehabil.v13i2.520
  80. Garg Y, Kapoor DN, Sharma AK, Bhatia A. Drug delivery systems and strategies to overcome the barriers of brain. Curr Pharm Des 2022; 28(8): 619-41. doi: 10.2174/1381612828666211222163025
  81. Pieroni M, Ferraz Facury AGB, Santamaria-Jr M, et al. Comparison of the friction forces delivered by different elastomeric patterns and metal ligature on conventional metal brackets with a NiTi arch wire versus a self-ligating system: An in vitro study. Int Orthod 2022; 20(2): 100633. doi: 10.1016/j.ortho.2022.100633
  82. Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomed 2020; 15: 2555-62. doi: 10.2147/IJN.S246764
  83. Alkattan R, Rojo L, Deb S. Antimicrobials in dentistry. Appl Sci 2021; 11(7): 3279. doi: 10.3390/app11073279
  84. Badran SA, Al-Zaben JM, Al-Taie LM, Tbeishi H, AL-Omiri MK. Comparing patient-centered outcomes and efficiency of space closure between nickel-titanium closed-coil springs and elastomeric power chains during orthodontic treatment. Angle Orthod 2022; 92(4): 471-7. doi: 10.2319/120721-906
  85. van Ewijk LJ, van Riet TCT, van der Tol IGH, Ho JPTF, Becking AG. Power chains as an alternative to steel-wire ligatures in temporary maxillomandibular fixation: A pilot study. Int J Oral Maxillofac Surg 2022; 51(7): 975-80. doi: 10.1016/j.ijom.2021.08.025
  86. Cheng HC, Chen MS, Peng BY, Lin WT, Shen YK, Wang Y-H. Surface treatment on physical properties and biocompatibility of orthodontic power chains. Biomed Res Int 2017; 2017 doi: 10.1155/2017/6343724
  87. Warden C, Tan J, Piell KM, et al. A novel, nitric oxide-releasing elastomeric chain for antimicrobial action: Proof of concept. Mater Res Express 2021; 8(9): 095309. doi: 10.1088/2053-1591/ac2284
  88. Sfondrini MF, Vitale M, Pinheiro ALB, Gandini P, Sorrentino L, Iarussi UM. Photobiomodulation and pain reduction in patients requiring orthodontic band application: Randomized clinical trial. Biomed Res Int 2020; 2020: 7460938. doi: 10.1155/2020/7460938
  89. Nicotra C, Polizzi A, Zappalà G, Leonida A, Indelicato F, Caccianiga G. A comparative assessment of pain caused by the placement of banded orthodontic appliances with and without low-level laser therapy: A randomized controlled prospective study. Dent J 2020; 8(1): 24. doi: 10.3390/dj8010024
  90. Al-Banaa LR. Evaluation of microleakage for three types of light cure orthodontic band cement. J Oral Biol Craniofac Res 2022; 12(3): 352-7. doi: 10.1016/j.jobcr.2022.04.004
  91. Al-Anezi SA. The effect of orthodontic bands or tubes upon periodontal status during the initial phase of orthodontic treatment. Saudi Dent J 2015; 27(3): 120-4. doi: 10.1016/j.sdentj.2014.11.010
  92. Bahrami R, Pourhajibagher M, Badiei A, Masaeli R, Tanbakuchi B. Evaluation of the cell viability and antimicrobial effects of orthodontic bands coated with silver or zinc oxide nanoparticles: An in vitro study. Korean J Orthod 2023; 53(1): 16-25. doi: 10.4041/kjod22.091
  93. Mousa MR, Hajeer MY, Burhan AS, Heshmeh O. The effectiveness of conventional and accelerated methods of orthodontic traction and alignment of palatally impacted canines in terms of treatment time, velocity of tooth movement, periodontal, and patient-reported outcomes: A systematic review. Cureus 2022; 14(5): e24888. doi: 10.7759/cureus.24888
  94. Yu WP, Tsai MT, Yu JH, Huang HL, Hsu JT. Bone quality affects stability of orthodontic miniscrews. Sci Rep 2022; 12(1): 2849. doi: 10.1038/s41598-022-06851-y
  95. Truong VM, Kim S, Kim J, Lee JW, Park Y-S. Revisiting the complications of orthodontic miniscrew. Biomed Res Int 2022; 2022: 8720412. doi: 10.1155/2022/8720412
  96. Iwanami-Kadowaki K, Uchikoshi T, Uezono M, Kikuchi M, Moriyama K. Development of novel bone-like nanocomposite coating of hydroxyapatite/collagen on titanium by modified electrophoretic deposition. J Biomed Mater Res A 2021; 109(10): 1905-11. doi: 10.1002/jbm.a.37182
  97. Fathy Abo-Elmahasen MM, Abo Dena AS, Zhran M, Albohy SAH. Do silver/hydroxyapatite and zinc oxide nano-coatings improve inflammation around titanium orthodontic mini-screws? In vitro study. Int Orthod 2023; 21(1): 100711. doi: 10.1016/j.ortho.2022.100711
  98. Ardani IGAW, Nugraha AP, Suryani MN, et al. Molecular docking of polyether ether ketone and nano-hydroxyapatite as biomaterial candidates for orthodontic mini-implant fabrication. J Pharm Pharmacogn Res 2022; 10(4): 676-86. doi: 10.56499/jppres22.1371_10.4.676
  99. Perkowski K, Baltaza W, Conn DB, Stolarek MM, Chomicz L. Examination of oral biofilm microbiota in patients using fixed orthodontic appliances in order to prevent risk factors for health complications. Ann Agric Environ Med 2019; 26(2): 231-5. doi: 10.26444/aaem/105797
  100. Wambier LM, Gonzaga CC, Chibinski ACR, Wambier DS, Farago PV, Loguercio AD. Retention procedures for stabilising tooth position after treatment with orthodontic braces. Cochrane Database Syst Rev 2017; 16(1): 1-9.
  101. Baybekov O, Stanishevskiy Y, Sachivkina N, Bobunova A, Zhabo N, Avdonina M. Isolation of clinical microbial isolates during orthodontic aligner therapy and their ability to form biofilm. Dent J 2023; 11(1): 13. doi: 10.3390/dj11010013
  102. An JS, Lim BS, Ahn SJ. Managing oral biofilms to avoid enamel demineralization during fixed orthodontic treatment. Korean J Orthod 2023; 53(6): 345-57. doi: 10.4041/kjod23.184
  103. Modi DN, Gupta DR, Borah DM. Newer orthodontic archwires- A review. Int J Appl Dent Sci 2020; 6(4): 90-4. doi: 10.22271/oral.2020.v6.i4b.1052
  104. Gracco A, Dandrea M, Deflorian F, et al. Application of a molybdenum and tungsten disulfide coating to improve tribological properties of orthodontic archwires. Nanomaterials 2019; 9(5): 753. doi: 10.3390/nano9050753
  105. Bącela J, Łabowska MB, Detyna J, Zięty A, Michalak I. Functional coatings for orthodontic archwires-A review. Materials 2020; 13(15): 3257. doi: 10.3390/ma13153257
  106. Gracco A, Siviero L, Dandrea M, Crivellin G. Use of nanotechnology for the superlubrication of orthodontic wires. Nanobiomaterials in Dentistry. Elsevier 2016; pp. 241-67. doi: 10.1016/B978-0-323-42867-5.00010-2
  107. Wang YL, Liu ZJ. Unique features of nanomaterials and their combination support applications in orthodontics. Chin J Dent Res 2023; 26(3): 143-52.
  108. Zakrzewski W, Dobrzynski M, Dobrzynski W, Knefel ZA, Janecki M, Kurek K. Nanomaterials application in orthodontics. Nanomaterial 2021; 11(2): 337.
  109. Chin BLF, Juwono FH, Yong KSC. Nanotechnology and nanomaterials for medical applications. Nanotechnology for Electronic Applications. Springer 2022; pp. 63-87. doi: 10.1007/978-981-16-6022-1_4
  110. Kumar M, Dogra R, Mandal UK. Nanomaterial-based delivery of vaccine through nasal route: Opportunities, challenges, advantages, and limitations. J Drug Deliv Sci Technol 2022; 74: 103533. doi: 10.1016/j.jddst.2022.103533
  111. Prabha J, Kumar M, Kumar D, Chopra S, Bhatia A. Nano-platform strategies of herbal components for the management of rheumatoid arthritis: A review on the battle for next-generation formulations. Curr Drug Deliv 2024; 2024
  112. Chauhan N, Kumar M, Chaurasia S, Garg Y, Chopra S, Bhatia A. A comprehensive review on drug therapies and nanomaterials used in orthodontic treatment. Curr Pharm Des 2023; 29(39): 3154-65. doi: 10.2174/0113816128276153231117054242
  113. Yun Z, Qin D, Wei F, Xiaobing L. Application of antibacterial nanoparticles in orthodontic materials. Nanotechnol Rev 2022; 11(1): 2433-50. doi: 10.1515/ntrev-2022-0137
  114. Zeidan NK, Enany NM, Mohamed GG, Marzouk ES. The antibacterial effect of silver, zinc-oxide and combination of silver/zinc oxide nanoparticles coating of orthodontic brackets (an in vitro study). BMC Oral Health 2022; 22(1): 230. doi: 10.1186/s12903-022-02263-6
  115. Fernandez CC, Sokolonski AR, Fonseca MS, et al. Applications of silver nanoparticles in dentistry: Advances and technological innovation. Int J Mol Sci 2021; 22(5): 2485. doi: 10.3390/ijms22052485
  116. Mallineni SK, Sakhamuri S, Kotha SL, et al. Silver nanoparticles in dental applications: A descriptive review. Bioengineering 2023; 10(3): 327. doi: 10.3390/bioengineering10030327
  117. Garg Y, Kumar M, Sharma G, Katare OP, Chopra S, Bhatia A. Systematic designing and optimization of polymeric nanoparticles using central composite design: A novel approach for nose-to-brain delivery of donepezil hydrochloride. J Clust Sci 2023; 2023: 1-13.
  118. Erpaçal B, Adıgüzel Ö, Cangül S, Acartürk M. A general overview of chitosan and its use in dentistry. Int Biol Biomed J 2019; 5(1): 1-11.
  119. Fakhri E, Eslami H, Maroufi P, et al. Chitosan biomaterials application in dentistry. Int J Biol Macromol 2020; 162: 956-74. doi: 10.1016/j.ijbiomac.2020.06.211
  120. Sharifianjazi F, Khaksar S, Esmaeilkhanian A, et al. Advancements in fabrication and application of chitosan composites in implants and dentistry: A review. Biomolecules 2022; 12(2): 155. doi: 10.3390/biom12020155
  121. Mohammed RR, Rafeeq RA. Evaluation of the shear bond strength of chitosan nanoparticles-containing orthodontic primer: An in vitro study. Int J Dent 2023; 2023: 9246297.
  122. Chalayon P, Tanwongsan C. Antibacterial effects of copper microparticles/copper nanoparticles/copper (II) oxide nanoparticles and copper microparticles/copper nanoparticles/copper (I) oxide nanoparticles from ultrasono-electrochemical with hydrothermal assisted synthesis method. Eng J 2021; 25(6): 55-66. doi: 10.4186/ej.2021.25.6.55
  123. Giti R, Zomorodian K, Firouzmandi M, Zareshahrabadi Z, Rahmannasab S. Antimicrobial activity of thermocycled polymethyl methacrylate resin reinforced with titanium dioxide and copper oxide nanoparticles. Int J Dent 2021; 2021: 6690806. doi: 10.1155/2021/6690806
  124. Shamaa M, Elwassefy N, Hafez A. Comparative evaluation of the antibacterial effect of Ag & CuO nanoparticles incorporation in orthodontic adhesive and their influence on SBS. Egypt Dent J 2023; 69(3): 1739-47. doi: 10.21608/edj.2023.199330.2482
  125. Fauzi ANA, Ireland AJ, Sherriff M, Bandara HMHN, Su B. Nitrogen doped titanium dioxide as an aesthetic antimicrobial filler in dental polymers. Dent Mater 2022; 38(1): 147-57. doi: 10.1016/j.dental.2021.10.019
  126. Sinha A, Gupta S, Taruna T, et al. Quantifying the release of titanium from the titanium dioxide-impregnated composites used in orthodontic bonding. Cureus 2023; 15(7) doi: 10.7759/cureus.42309
  127. Monica A, Padmanabhan S. The effect of nitrogen-doped titanium dioxide-modified stainless steel brackets on Streptococcus mutans. Angle Orthod 2022; 92(3): 396-401. doi: 10.2319/062521-510.1
  128. Yadav R, Meena A, Patnaik A. Tribological behavior of zinc oxide-hydroxyapatite particulates filled dental restorative composite materials. Polym Compos 2022; 43(5): 3029-40. doi: 10.1002/pc.26597
  129. Alansy AS, Saeed TA, Al-Attab R, et al. Boron nitride nanosheets modified with zinc oxide nanoparticles as novel fillers of dental resin composite. Dent Mater 2022; 38(10): e266-74. doi: 10.1016/j.dental.2022.08.010
  130. Shirazi M, Qazvini F, Mohamadrezaie S. Antimicrobial properties of glass-ionomer cement incorporated with zinc oxide nanoparticles against Mutans streptococci and Lactobacilli under orthodontic bands: An in vivo split-mouth study. Dent Res J 2023; 20(1): 45. doi: 10.4103/1735-3327.372662
  131. Cascione M, De Matteis V, Pellegrino P, et al. Improvement of PMMA dental matrix performance by addition of titanium dioxide nanoparticles and clay nanotubes. Nanomaterials 2021; 11(8): 2027. doi: 10.3390/nano11082027
  132. Mahmoodi M, Haghighi V, Mirhaj M, Tavafoghi M, Shams F, Darabi A. Highly osteogenic and mechanically strong nanofibrous scaffolds based on functionalized multi-walled carbon nanotubes-reinforced electrospun keratin/poly(ε-caprolactone). Mater Today Commun 2021; 27: 102401. doi: 10.1016/j.mtcomm.2021.102401
  133. Rimondini L, Palazzo B, Iafisco M, Canegallo L, Demarosi F, Merlo M. The remineralizing effect of carbonate-hydroxyapatite nanocrystals on dentine. Mater Sci For 2007; 539-543: 602-5. doi: 10.4028/0-87849-428-6.602
  134. Zhao J, Liu Y, Sun W, Zhang H. Amorphous calcium phosphate and its application in dentistry. Chem Cent J 2011; 5(1): 40. doi: 10.1186/1752-153X-5-40
  135. Bapat RA, Chaubal TV, Dharmadhikari S, et al. Recent advances of gold nanoparticles as biomaterial in dentistry. Int J Pharm 2020; 586: 119596. doi: 10.1016/j.ijpharm.2020.119596
  136. Chen W-H, Cai S-X, Sun Y-H. Use of visual analogue scale and pain-related factors to evaluate the impact of different orthodontic forces on human dental pulp in patients who underwent fixed dental treatment. Shanghai J Stomatol 2017; 26(5): 561-4.
  137. Mendonça DL, Almeida-Pedrin RR, Pereira NC, Oltramari PVP, Fernandes TMF, Conti ACCF. The influence of text messages and anxiety on pain perception and its impact on orthodontic patients routine. Dental Press J Orthod 2020; 25(5): 30-7. doi: 10.1590/2177-6709.25.5.030-037.oar
  138. Jena AK, Mohapatra M, Sharan J, Patro BK. Temporary deterioration of oral health-related quality of life (OHRQoL) in nonextraction and extraction modalities of comprehensive orthodontic treatment in adolescents. Angle Orthod 2020; 90(4): 578-86. doi: 10.2319/092319-607.1
  139. Alqefari J, Albelaihi R, Elmoazen R, Bilal R. Three-dimensional assessment of the oral health-related quality of life undergoing fixed orthodontic therapy. J Int Soc Prev Community Dent 2019; 9(1): 72. doi: 10.4103/jispcd.JISPCD_350_18
  140. Larsson P, Bondemark L, Henrikson HB. The impact of oro-facial appearance on oral health-related quality of life: A systematic review. J Oral Rehabil 2021; 48(3): 271-81. doi: 10.1111/joor.12965
  141. Johal A, Alyaqoobi I, Patel R, Cox S. The impact of orthodontic treatment on quality of life and self-esteem in adult patients. Eur J Orthod 2015; 37(3): 233-7. doi: 10.1093/ejo/cju047
  142. Gao M, Yan X, Zhao R, et al. Comparison of pain perception, anxiety, and impacts on oral health-related quality of life between patients receiving clear aligners and fixed appliances during the initial stage of orthodontic treatment. Eur J Orthod 2021; 43(3): 353-9. doi: 10.1093/ejo/cjaa037
  143. Marya A, Venugopal A. The use of technology in the management of orthodontic treatment-related pain. Pain Res Manag 2021; 2021: 5512031. doi: 10.1155/2021/5512031
  144. Godbole RR, Khairwa A, Bhat M, Shekhawat D, Garg A. The futuristic era of paediatric dentistry: A review. J Clin Diagn Res 2022; 16(11): 1-5.
  145. Umapathy VR, Natarajan PM. Current trends and future perspectives on dental nanomaterials-An overview of nanotechnology strategies in dentistry. J King Saud Univ 2022; 34(7): 102231.
  146. Lekhadia DR. Nanotechnology in orthodontics-Futuristic approach.Dental Applications of Nanotechnology. Springer 2018; pp. 155-75. doi: 10.1007/978-3-319-97634-1_9

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers