Revolutionizing Neurological Disorder Treatment: Integrating Innovations in Pharmaceutical Interventions and Advanced Therapeutic Technologies


Cite item

Full Text

Abstract

:Neurological disorders impose a significant burden on individuals, leading to disabilities and a reduced quality of life. However, recent years have witnessed remarkable advancements in pharmaceutical interventions aimed at treating these disorders. This review article aims to provide an overview of the latest innovations and breakthroughs in neurological disorder treatment, with a specific focus on key therapeutic areas such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, and stroke. This review explores emerging trends in drug development, including the identification of novel therapeutic targets, the development of innovative drug delivery systems, and the application of personalized medicine approaches. Furthermore, it highlights the integration of advanced therapeutic technologies such as gene therapy, optogenetics, and neurostimulation techniques. These technologies hold promise for precise modulation of neural circuits, restoration of neuronal function, and even disease modification. While these advancements offer hopeful prospects for more effective and tailored treatments, challenges such as the need for improved diagnostic tools, identification of new targets for intervention, and optimization of drug delivery methods will remain. By addressing these challenges and continuing to invest in research and collaboration, we can revolutionize the treatment of neurological disorders and significantly enhance the lives of those affected by these conditions.

About the authors

Rimpi Arora

Pharma Innovation Lab., Department of Pharmaceutical Sciences & Technology,, Maharaja Ranjit Singh Punjab Technical University

Email: info@benthamscience.net

Ashish Baldi

Pharma Innovation Lab., Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University,

Author for correspondence.
Email: info@benthamscience.net

References

  1. Teleanu RI, Niculescu AG, Roza E, Vladâcenco O, Grumezescu AM, Teleanu DM. Neurotransmitters-key factors in neurological and neurodegenerative disorders of the central nervous system. Int J Mol Sci 2022; 23(11): 5954. doi: 10.3390/ijms23115954 PMID: 35682631
  2. Lima AA, Mridha MF, Das SC, Kabir MM, Islam MR, Watanobe Y. A comprehensive survey on the detection, classification, and challenges of neurological disorders. Biology (Basel) 2022; 11(3): 469. doi: 10.3390/biology11030469 PMID: 35336842
  3. Yang Y, Yuan Y, Zhang G, et al. Artificial intelligence-enabled detection and assessment of Parkinson’s disease using nocturnal breathing signals. Nat Med 2022; 28(10): 2207-15. doi: 10.1038/s41591-022-01932-x PMID: 35995955
  4. DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: New estimates of R&D costs. J Health Econ 2016; 47: 20-33. doi: 10.1016/j.jhealeco.2016.01.012 PMID: 26928437
  5. Altimus CM, Marlin BJ, Charalambakis NE, et al. The next 50 years of neuroscience. J Neurosci 2020; 40(1): 101-6. doi: 10.1523/JNEUROSCI.0744-19.2019 PMID: 31896564
  6. Subbiah V. The next generation of evidence-based medicine. Nat Med 2023; 29(1): 49-58. doi: 10.1038/s41591-022-02160-z PMID: 36646803
  7. Joshua AM, Misri Z. Physiotherapy for adult neurological conditions. Berlin, Heidelberg: Springer 2022. doi: 10.1007/978-981-19-0209-3
  8. Lunn M. Nerve and muscle disease. Neurology: A Queen Square. Hoboken, New Jersey: Wiley 2016. doi: 10.1002/9781118486160.ch10
  9. Clemente-Suárez V, Redondo-Flórez L, Beltrán-Velasco A, et al. Mitochondria and brain disease: A comprehensive review of pathological mechanisms and therapeutic opportunities. Biomedicines 2023; 11(9): 2488. doi: 10.3390/biomedicines11092488 PMID: 37760929
  10. Tan L, Jiang T, Tan L, Yu JT. Toward precision medicine in neurological diseases. Ann Transl Med 2016; 4(6): 104. doi: 10.21037/atm.2016.03.26 PMID: 27127757
  11. Johnson KB, Wei WQ, Weeraratne D, et al. Precision medicine, AI, and the future of personalized health care. Clin Transl Sci 2021; 14(1): 86-93. doi: 10.1111/cts.12884 PMID: 32961010
  12. Gavriilaki M, Kimiskidis VK, Gavriilaki E. Precision medicine in neurology: The inspirational paradigm of complement therapeutics. Pharmaceuticals (Basel) 2020; 13(11): 341. doi: 10.3390/ph13110341 PMID: 33114553
  13. Yen C, Lin CL, Chiang MC. Exploring the frontiers of neuroimaging: A review of recent advances in understanding brain functioning and disorders. Life (Basel) 2023; 13(7): 1472. doi: 10.3390/life13071472 PMID: 37511847
  14. Hampel H, Gao P, Cummings J, et al. The foundation and architecture of precision medicine in neurology and psychiatry. Trends Neurosci 2023; 46(3): 176-98. doi: 10.1016/j.tins.2022.12.004 PMID: 36642626
  15. Gurevich EV, Gurevich VV. Beyond traditional pharmacology: New tools and approaches. Br J Pharmacol 2015; 172(13): 3229-41. doi: 10.1111/bph.13066 PMID: 25572005
  16. Thao C. Hmong farmer narratives of pesticide use in the Central Valley, California. 2021. Available from: https://escholarship.org/uc/item/1fp6q9w3
  17. Bassett DS, Gazzaniga MS. Understanding complexity in the human brain. Trends Cogn Sci 2011; 15(5): 200-9. doi: 10.1016/j.tics.2011.03.006 PMID: 21497128
  18. Menon B. Towards a new model of understanding – The triple network, psychopathology and the structure of the mind. Med Hypotheses 2019; 133: 109385. doi: 10.1016/j.mehy.2019.109385 PMID: 31494485
  19. Gibbs RM, Lipnick S, Bateman JW, et al. Toward precision medicine for neurological and neuropsychiatric disorders. Cell Stem Cell 2018; 23(1): 21-4. doi: 10.1016/j.stem.2018.05.019 PMID: 29887317
  20. Espay AJ, Aybek S, Carson A, et al. Current concepts in diagnosis and treatment of functional neurological disorders. JAMA Neurol 2018; 75(9): 1132-41. doi: 10.1001/jamaneurol.2018.1264 PMID: 29868890
  21. Wisniewski T, Sigurdsson EM. Therapeutic approaches for prion and Alzheimer’s diseases. FEBS J 2007; 274(15): 3784-98. doi: 10.1111/j.1742-4658.2007.05919.x PMID: 17617224
  22. Vijiaratnam N, Simuni T, Bandmann O, Morris HR, Foltynie T. Progress towards therapies for disease modification in Parkinson’s disease. Lancet Neurol 2021; 20(7): 559-72. doi: 10.1016/S1474-4422(21)00061-2 PMID: 34146514
  23. Sharifi MS. Treatment of neurological and psychiatric disorders with deep brain stimulation; raising hopes and future challenges. Basic Clin Neurosci 2013; 4(3): 266-70. PMID: 25337356
  24. Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. Biomed Res Int 2014; 2014: 869269. doi: 10.1155/2014/869269
  25. Nemeth CL, Fine AS, Fatemi A. Translational challenges in advancing regenerative therapy for treating neurological disorders using nanotechnology. Adv Drug Deliv Rev 2019; 148: 60-7. doi: 10.1016/j.addr.2019.05.003 PMID: 31100303
  26. Brady LS. Assessing biomarkers for brain diseases: Progress and gaps 2013; 5(3): 23.
  27. Peedicayil J. Identification of biomarkers in neuropsychiatric disorders based on systems biology and epigenetics. Front Genet 2019; 10: 985. doi: 10.3389/fgene.2019.00985 PMID: 31681422
  28. Blázquez E, Hurtado-Carneiro V, LeBaut-Ayuso Y, et al. Significance of brain glucose Hypometabolism, altered insulin signal transduction, and insulin resistance in several neurological diseases. Front Endocrinol (Lausanne) 2022; 13: 873301. doi: 10.3389/fendo.2022.873301 PMID: 35615716
  29. Mitchell AJ, Kemp S, Benito-León J, Reuber M. The influence of cognitive impairment on health-related quality of life in neurological disease. Acta Neuropsychiatr 2010; 22(1): 2-13. doi: 10.1111/j.1601-5215.2009.00439.x
  30. Chen G, Xu T, Yan Y, et al. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 2017; 38(9): 1205-35. doi: 10.1038/aps.2017.28 PMID: 28713158
  31. Villegas S, Roda AR, Serra-Mir G, Montoliu-Gaya L, Tiessler L. Amyloid-beta peptide and tau protein crosstalk in Alzheimer’s disease. Neural Regen Res 2022; 17(8): 1666-74. doi: 10.4103/1673-5374.332127 PMID: 35017413
  32. Raza C, Anjum R, Shakeel NA. Parkinson’s disease: Mechanisms, translational models and management strategies. Life Sci 2019; 226: 77-90. doi: 10.1016/j.lfs.2019.03.057 PMID: 30980848
  33. Lopez JA, Denkova M, Ramanathan S, Dale RC, Brilot F. Pathogenesis of autoimmune demyelination: From multiple sclerosis to neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody-associated disease. Clin Transl Immunology 2021; 10(7): e1316. doi: 10.1002/cti2.1316 PMID: 34336206
  34. Sabatino JJ Jr, Pröbstel AK, Zamvil SS. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci 2019; 20(12): 728-45. doi: 10.1038/s41583-019-0233-2 PMID: 31712781
  35. Gharibi T, Babaloo Z, Hosseini A, et al. The role of B cells in the immunopathogenesis of multiple sclerosis. Immunology 2020; 160(4): 325-35. doi: 10.1111/imm.13198 PMID: 32249925
  36. Wanker EE, Ast A, Schindler F, Trepte P, Schnoegl S. The pathobiology of perturbed mutant huntingtin protein–protein interactions in Huntington’s disease. J Neurochem 2019; 151(4): 507-19. doi: 10.1111/jnc.14853 PMID: 31418858
  37. Jurcau A. Molecular pathophysiological mechanisms in Huntington’s disease. Biomedicines 2022; 10(6): 1432. doi: 10.3390/biomedicines10061432 PMID: 35740453
  38. Wulff H, Castle NA, Pardo LA. Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 2009; 8(12): 982-1001. doi: 10.1038/nrd2983 PMID: 19949402
  39. Łukawski K, Czuczwar SJ. Emerging therapeutic targets for epilepsy: Preclinical insights. Expert Opin Ther Targets 2022; 26(3): 193-206. doi: 10.1080/14728222.2022.2039120 PMID: 35130119
  40. Celli R, Santolini I, Van Luijtelaar G, Ngomba RT, Bruno V, Nicoletti F. Targeting metabotropic glutamate receptors in the treatment of epilepsy: Rationale and current status. Expert Opin Ther Targets 2019; 23(4): 341-51. doi: 10.1080/14728222.2019.1586885 PMID: 30801204
  41. Marques BL. The role of neurogenesis in neurorepair after ischemic stroke. Semin Cell Dev Biol 2019; 95: 98-110. doi: 10.1016/j.semcdb.2018.12.003
  42. Hernández IH, Villa-González M, Martín G, Soto M, Pérez-Álvarez MJ. Glial cells as therapeutic approaches in brain ischemia-reperfusion injury. Cells 2021; 10(7): 1639. doi: 10.3390/cells10071639 PMID: 34208834
  43. Wang X, Xuan W, Zhu ZY, et al. The evolving role of neuro-immune interaction in brain repair after cerebral ischemic stroke. CNS Neurosci Ther 2018; 24(12): 1100-14. doi: 10.1111/cns.13077 PMID: 30350341
  44. Ma H, Jiang Z, Xu J, Liu J, Guo ZN. Targeted nano-delivery strategies for facilitating thrombolysis treatment in ischemic stroke. Drug Deliv 2021; 28(1): 357-71. doi: 10.1080/10717544.2021.1879315 PMID: 33517820
  45. Campbell BCV, De Silva DA, Macleod MR, et al. Ischaemic stroke. Nat Rev Dis Primers 2019; 5(1): 70. doi: 10.1038/s41572-019-0118-8 PMID: 31601801
  46. Dauncey M. Genomic and epigenomic insights into nutrition and brain disorders. Nutrients 2013; 5(3): 887-914. doi: 10.3390/nu5030887 PMID: 23503168
  47. Loera-Valencia R, Cedazo-Minguez A, Kenigsberg PA, et al. Current and emerging avenues for Alzheimer’s disease drug targets. J Intern Med 2019; 286(4): 398-437. doi: 10.1111/joim.12959 PMID: 31286586
  48. Bhardwaj S, Kesari KK, Rachamalla M, et al. CRISPR/Cas9 gene editing: New hope for Alzheimer’s disease therapeutics. J Adv Res 2022; 40: 207-21. doi: 10.1016/j.jare.2021.07.001 PMID: 36100328
  49. Takata K, Ginhoux F, Shimohama S. Roles of microglia in Alzheimer’s disease and impact of new findings on microglial heterogeneity as a target for therapeutic intervention. Biochem Pharmacol 2021; 192: 114754. doi: 10.1016/j.bcp.2021.114754 PMID: 34480881
  50. Aisen PS, Cummings J, Doody R, et al. The future of anti-amyloid trials. J Prev Alzheimers Dis 2020; 7(3): 146-51. PMID: 32463066
  51. Panza F, Lozupone M, Solfrizzi V, et al. BACE inhibitors in clinical development for the treatment of Alzheimer’s disease. Expert Rev Neurother 2018; 18(11): 847-57. doi: 10.1080/14737175.2018.1531706 PMID: 30277096
  52. Yadikar H, Torres I, Aiello G, et al. Screening of tau protein kinase inhibitors in a tauopathy-relevant cell-based model of tau hyperphosphorylation and oligomerization. PLoS One 2020; 15(7): e0224952. doi: 10.1371/journal.pone.0224952 PMID: 32692785
  53. Bartels T, De Schepper S, Hong S. Microglia modulate neurodegeneration in Alzheimer’s and Parkinson’s diseases. Science 2020; 370(6512): 66-9. doi: 10.1126/science.abb8587 PMID: 33004513
  54. Adaikkan C. Gamma entrainment binds higher-order brain regions and offers neuroprotection. Neuron 2019; 102(5): 929-43. doi: 10.1016/j.neuron.2019.04.011
  55. Kadriu B, Musazzi L, Johnston JN, et al. Positive AMPA receptor modulation in the treatment of neuropsychiatric disorders: A long and winding road. Drug Discov Today 2021; 26(12): 2816-38. doi: 10.1016/j.drudis.2021.07.027 PMID: 34358693
  56. Nowell J, Blunt E, Edison P. Incretin and insulin signaling as novel therapeutic targets for Alzheimer’s and Parkinson’s disease. Mol Psychiatry 2023; 28(1): 217-29. doi: 10.1038/s41380-022-01792-4 PMID: 36258018
  57. Rodríguez LR, Lapeña-Luzón T, Benetó N, et al. Therapeutic strategies targeting mitochondrial calcium signaling: A new hope for neurological diseases? Antioxidants 2022; 11(1): 165. doi: 10.3390/antiox11010165 PMID: 35052668
  58. Wang T, Zhang J, Xu Y. Epigenetic basis of lead-induced neurological disorders. Int J Environ Res Public Health 2020; 17(13): 4878. doi: 10.3390/ijerph17134878 PMID: 32645824
  59. Karelina T, Lerner S, Stepanov A, Meerson M, Demin O. Monoclonal antibody therapy efficacy can be boosted by combinations with other treatments: Predictions using an integrated Alzheimer’s disease platform. CPT Pharmacometrics Syst Pharmacol 2021; 10(6): 543-50. doi: 10.1002/psp4.12628 PMID: 33818905
  60. Chen C, Li P. Neurovascular unit protection-novel therapeutic targets and strategies. CNS Neurosci Ther 2021; 27(1): 5-6. doi: 10.1111/cns.13588 PMID: 33421349
  61. Menon S, Armstrong S, Hamzeh A, Visanji NP, Sardi SP, Tandon A. Alpha-synuclein targeting therapeutics for Parkinson’s disease and related synucleinopathies. Front Neurol 2022; 13: 852003. doi: 10.3389/fneur.2022.852003 PMID: 35614915
  62. Lewis PA. A step forward for LRRK2 inhibitors in Parkinson’s disease. Sci Transl Med 2022; 14(648): eabq7374. doi: 10.1126/scitranslmed.abq7374 PMID: 35675432
  63. Chmielarz P, Saarma M. Neurotrophic factors for disease-modifying treatments of Parkinson’s disease: Gaps between basic science and clinical studies. Pharmacol Rep 2020; 72(5): 1195-217. doi: 10.1007/s43440-020-00120-3 PMID: 32700249
  64. Greenland JC, Williams-Gray CH, Barker RA. The clinical heterogeneity of Parkinson’s disease and its therapeutic implications. Eur J Neurosci 2019; 49(3): 328-38. doi: 10.1111/ejn.14094 PMID: 30059179
  65. Burbulla LF, Jeon S, Zheng J, Song P, Silverman RB, Krainc D. A modulator of wild-type glucocerebrosidase improves pathogenic phenotypes in dopaminergic neuronal models of Parkinson’s disease. Sci Transl Med 2019; 11(514): eaau6870. doi: 10.1126/scitranslmed.aau6870 PMID: 31619543
  66. Deverman BE, Ravina BM, Bankiewicz KS, Paul SM, Sah DWY. Gene therapy for neurological disorders: Progress and prospects. Nat Rev Drug Discov 2018; 17(9): 641-59. doi: 10.1038/nrd.2018.110 PMID: 30093643
  67. Desu HL, Plastini M, Illiano P, et al. IC100: A novel anti-ASC monoclonal antibody improves functional outcomes in an animal model of multiple sclerosis. J Neuroinflammation 2020; 17(1): 143. doi: 10.1186/s12974-020-01826-0 PMID: 32366256
  68. Pellegrini F, Copetti M, Bovis F, et al. A proof-of-concept application of a novel scoring approach for personalized medicine in multiple sclerosis. Mult Scler 2020; 26(9): 1064-73. doi: 10.1177/1352458519849513 PMID: 31144577
  69. Hadoush H, Alawneh A, Kassab M, Al-Wardat M, Al-Jarrah M. Effectiveness of non-pharmacological rehabilitation interventions in pain management in patients with multiple sclerosis: Systematic review and meta-analysis. NeuroRehabilitation 2022; 50(4): 347-65. doi: 10.3233/NRE-210328 PMID: 35180138
  70. Giovannoni G. Disease-modifying treatments for early and advanced multiple sclerosis: A new treatment paradigm. Curr Opin Neurol 2018; 31(3): 233-43. doi: 10.1097/WCO.0000000000000561 PMID: 29634596
  71. Pluchino S, Smith JA, Peruzzotti-Jametti L. Promises and limitations of neural stem cell therapies for progressive multiple sclerosis. Trends Mol Med 2020; 26(10): 898-912. doi: 10.1016/j.molmed.2020.04.005 PMID: 32448751
  72. Eichinger P, Wiestler H, Zhang H, et al. A novel imaging technique for better detecting new lesions in multiple sclerosis. J Neurol 2017; 264(9): 1909-18. doi: 10.1007/s00415-017-8576-y PMID: 28756606
  73. Ehsani S. The future circle of healthcare: AI, 3D printing, longevity, ethics, and uncertainty mitigation. Cham: Springer 2022. doi: 10.1007/978-3-030-99838-7
  74. Dighriri IM, Aldalbahi AA, Albeladi F, et al. An overview of the history, pathophysiology, and pharmacological interventions of multiple sclerosis. Cureus 2023; 15(1): e33242. doi: 10.7759/cureus.33242 PMID: 36733554
  75. Ali OAMA. Nanotechnological advances in the treatment of epilepsy. CNS Neurol Disord Drug Targets 2022; 21(10): 994-1003.
  76. Simpson HD, Schulze-Bonhage A, Cascino GD, et al. Practical considerations in epilepsy neurostimulation. Epilepsia 2022; 63(10): 2445-60. doi: 10.1111/epi.17329 PMID: 35700144
  77. Thomas J, Kahane P, Abdallah C, et al. A subpopulation of spikes predicts successful epilepsy surgery outcome. Ann Neurol 2023; 93(3): 522-35. doi: 10.1002/ana.26548 PMID: 36373178
  78. Operto FF, Labate A, Aiello S, et al. The Ketogenic diet in children with epilepsy: A focus on parental stress and family compliance. Nutrients 2023; 15(4): 1058. doi: 10.3390/nu15041058 PMID: 36839414
  79. Johannesen KM. From precision diagnosis to precision treatment in epilepsy. Nat Rev Neurol 2023; 19(2): 69-70. doi: 10.1038/s41582-022-00756-0 PMID: 36522546
  80. Zöllner JP, Noda AH, McCoy J, et al. Use of health-related apps and telehealth in adults with epilepsy in Germany: A multicenter cohort study. Telemed J E Health 2023; 29(4): 540-50. doi: 10.1089/tmj.2022.0238 PMID: 35984859
  81. Radez J, Crossland T, Johns L. Cognitive behavioural therapy for psychogenic nonepileptic seizures (PNES) in an adult with a learning disability: A case study. Br J Learn Disabil 2023; 51(4): 586-96. doi: 10.1111/bld.12531
  82. Sarkis RA, Gifford A, Chemali Z. On epilepsy and education: Global perspectives and knowledge of epilepsy. Amsterdam: Elsevier 2023; p. 109265.
  83. Ho TT, Noble M, Tran BA, et al. Clinical Impact of the CYP2C19 gene on Diazepam for the management of alcohol withdrawal syndrome. J Pers Med 2023; 13(2): 285. doi: 10.3390/jpm13020285 PMID: 36836519
  84. Cheng G, Liu Y, Ma R, et al. Anti-Parkinsonian therapy: Strategies for crossing the blood–brain barrier and nano-biological effects of nanomaterials. Nano-Micro Lett 2022; 14(1): 105. doi: 10.1007/s40820-022-00847-z PMID: 35426525
  85. Ding S, Khan AI, Cai X, et al. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Mater Today 2020; 37: 112-25. doi: 10.1016/j.mattod.2020.02.001 PMID: 33093794
  86. Abdelkader H, Fathalla Z, Seyfoddin A, et al. Polymeric long-acting drug delivery systems (LADDS) for treatment of chronic diseases: Inserts, patches, wafers, and implants. Adv Drug Deliv Rev 2021; 177: 113957. doi: 10.1016/j.addr.2021.113957 PMID: 34481032
  87. Luo M, Lee LKC, Peng B, Choi CHJ, Tong WY, Voelcker NH. Delivering the promise of gene therapy with nanomedicines in treating central nervous system diseases. Adv Sci (Weinh) 2022; 9(26): 2201740. doi: 10.1002/advs.202201740 PMID: 35851766
  88. Cammalleri A. Therapeutic potentials of localized blood-brain barrier disruption by non-invasive transcranial focused ultrasound: A technical review. J Clin Neurophysiol 2020; 37(2): 104-17.
  89. Nance E, Pun SH, Saigal R, Sellers DL. Drug delivery to the central nervous system. Nat Rev Mater 2021; 7(4): 314-31. doi: 10.1038/s41578-021-00394-w
  90. Iqbal SMA, Mahgoub I, Du E, Leavitt MA, Asghar W. Advances in healthcare wearable devices. NPJ Flexible Electron 2021; 5(1): 9. doi: 10.1038/s41528-021-00107-x
  91. Mousa S, Ayoub B. Repositioning of dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 agonists as potential neuroprotective agents. Neural Regen Res 2019; 14(5): 745-8. doi: 10.4103/1673-5374.249217 PMID: 30688255
  92. Flomenberg P, Daniel R. Overview of gene therapy, gene editing, and gene silencing. 2019. Available from: https://www.uptodate.com/contents/overview-of-gene-therapy-gene-editing-and-gene-silencing
  93. Marrone L, Marchi PM, Azzouz M. Circumventing the packaging limit of AAV-mediated gene replacement therapy for neurological disorders. Expert Opin Biol Ther 2022; 22(9): 1163-76. doi: 10.1080/14712598.2022.2012148 PMID: 34904932
  94. Mendell JR, Al-Zaidy S, Shell R, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 2017; 377(18): 1713-22. doi: 10.1056/NEJMoa1706198 PMID: 29091557
  95. Qadir MI, Bukhat S, Rasul S, Manzoor H, Manzoor M. RNA therapeutics: Identification of novel targets leading to drug discovery. J Cell Biochem 2020; 121(2): 898-929. doi: 10.1002/jcb.29364 PMID: 31478252
  96. Conroy F, Miller R, Alterman JF, et al. Chemical engineering of therapeutic siRNAs for allele-specific gene silencing in Huntington’s disease models. Nat Commun 2022; 13(1): 5802. doi: 10.1038/s41467-022-33061-x PMID: 36192390
  97. Wang SW, Gao C, Zheng YM, et al. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol Cancer 2022; 21(1): 57. doi: 10.1186/s12943-022-01518-8 PMID: 35189910
  98. Zhu D, Schieferecke AJ, Lopez PA, Schaffer DV. Adeno-associated virus vector for central nervous system gene therapy. Trends Mol Med 2021; 27(6): 524-37. doi: 10.1016/j.molmed.2021.03.010 PMID: 33895085
  99. Ashok B, Peppas NA, Wechsler ME. Lipid- and polymer-based nanoparticle systems for the delivery of CRISPR/Cas9. J Drug Deliv Sci Technol 2021; 65: 102728. doi: 10.1016/j.jddst.2021.102728 PMID: 34335878
  100. Fan Y, Winanto, Ng S-Y, Replacing what’s lost: A new era of stem cell therapy for Parkinson’s disease. Transl Neurodegener 2020; 9(1): 2. doi: 10.1186/s40035-019-0180-x
  101. Meng Y, Hynynen K, Lipsman N. Applications of focused ultrasound in the brain: From thermoablation to drug delivery. Nat Rev Neurol 2021; 17(1): 7-22. doi: 10.1038/s41582-020-00418-z PMID: 33106619
  102. Qu Y, Shen F, Zhang Z, et al. Applications of functional DNA materials in immunomodulatory therapy. ACS Appl Mater Interfaces 2022; 14(40): 45079-95. doi: 10.1021/acsami.2c13768 PMID: 36171537
  103. Helbig I, Ellis CA. Personalized medicine in genetic epilepsies – possibilities, challenges, and new frontiers. Neuropharmacology 2020; 172: 107970. doi: 10.1016/j.neuropharm.2020.107970 PMID: 32413583
  104. Fattahi S, Kosari-Monfared M, Golpour M, et al. LncRNAs as potential diagnostic and prognostic biomarkers in gastric cancer: A novel approach to personalized medicine. J Cell Physiol 2020; 235(4): 3189-206. doi: 10.1002/jcp.29260 PMID: 31595495
  105. Sahu M, Gupta R, Ambasta RK, Kumar P. Artificial intelligence and machine learning in precision medicine: A paradigm shift in big data analysis. Prog Mol Biol Transl Sci 2022; 190(1): 57-100. doi: 10.1016/bs.pmbts.2022.03.002 PMID: 36008002
  106. Bayat A, Bayat M, Rubboli G, Møller RS. Epilepsy syndromes in the first year of life and usefulness of genetic testing for precision therapy. Genes (Basel) 2021; 12(7): 1051. doi: 10.3390/genes12071051 PMID: 34356067
  107. Di Resta C, Pipitone G, Carrera P, Ferrari M. Current scenario of the genetic testing for rare neurological disorders exploiting next generation sequencing. Neural Regen Res 2021; 16(3): 475-81. doi: 10.4103/1673-5374.293135 PMID: 32985468
  108. Tondo G, De Marchi F. From biomarkers to precision medicine in neurodegenerative diseases: Where are we? J Clin Med 2022; 11(15): 4515.
  109. Zhou S, Skaar DJ, Jacobson PA, Huang RS. Pharmacogenomics of medications commonly used in the intensive care unit. Front Pharmacol 2018; 9: 1436. doi: 10.3389/fphar.2018.01436 PMID: 30564130
  110. Jellinger KA. Mild cognitive impairment in Huntington’s disease: Challenges and outlooks. J Neural Transm (Vienna) 2024; 2024: 1-16. doi: 10.1007/s00702-024-02744-8 PMID: 38265518
  111. Javadian P, Washington C, Mukasa S, Benbrook DM. Histopathologic, genetic and molecular characterization of endometrial cancer racial disparity. Cancers (Basel) 2021; 13(8): 1900. doi: 10.3390/cancers13081900 PMID: 33920951
  112. Söderberg L, Johannesson M, Nygren P, et al. Lecanemab, aducanumab, and gantenerumab-binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical trials for Alzheimer’s disease. Neurotherapeutics 2023; 20(1): 195-206. doi: 10.1007/s13311-022-01308-6 PMID: 36253511
  113. Chopade P, Chopade N, Zhao Z, Mitragotri S, Liao R, Chandran Suja V. Alzheimer’s and Parkinson’s disease therapies in the clinic. Bioeng Transl Med 2023; 8(1): e10367. doi: 10.1002/btm2.10367 PMID: 36684083
  114. Kalluri HV, Rosebraugh MR, Misko TP, Ziemann A, Liu W, Cree BAC. Phase 1 evaluation of Elezanumab (anti-repulsive guidance molecule a monoclonal antibody) in healthy and multiple sclerosis participants. Ann Neurol 2023; 93(2): 285-96. doi: 10.1002/ana.26503 PMID: 36093738
  115. Zhang S, Jin M, Ren J, et al. New insight into gut microbiota and their metabolites in ischemic stroke: A promising therapeutic target. Biomed Pharmacother 2023; 162: 114559. doi: 10.1016/j.biopha.2023.114559 PMID: 36989717
  116. Rajendram P, Ikram A, Fisher M. Combined therapeutics: Future opportunities for co-therapy with thrombectomy. Neurotherapeutics 2023; 20(3): 693-704. doi: 10.1007/s13311-023-01369-1 PMID: 36943636
  117. de Jesus Gonçalves RG. Mesenchymal stem cell-and extracellular vesicle-based therapies for Alzheimer’s disease: Progress, advantages, and challenges. Neural Regen Res 2022; 18(8): 1645-51.
  118. Ilic D, Liovic M. Industry updates from the field of stem cell research and regenerative medicine in may 2023. Regener Med 2023; 18(9): 681-94. doi: 10.2217/rme-2023-0111
  119. Ribeiro BF, da Cruz BC, de Sousa BM, et al. Cell therapies for spinal cord injury: A review of the clinical trials and cell-type therapeutic potential. Brain 2023; 146(7): 2672-93. doi: 10.1093/brain/awad047 PMID: 36848323
  120. Bhachawat S, Shriram E, Srinivasan K, Hu YC. Leveraging computational intelligence techniques for diagnosing degenerative nerve diseases: A comprehensive review, open challenges, and future research directions. Diagnostics (Basel) 2023; 13(2): 288. doi: 10.3390/diagnostics13020288 PMID: 36673100
  121. Abdelsayed M, Kort EJ, Jovinge S, Mercola M. Repurposing drugs to treat cardiovascular disease in the era of precision medicine. Nat Rev Cardiol 2022; 19(11): 751-64. doi: 10.1038/s41569-022-00717-6 PMID: 35606425
  122. Abreu NJ, Waldrop MA. Overview of gene therapy in spinal muscular atrophy and Duchenne muscular dystrophy. Pediatr Pulmonol 2021; 56(4): 710-20. doi: 10.1002/ppul.25055 PMID: 32886442
  123. Pourahmad R. Deep brain stimulation (DBS) as a therapeutic approach in gait disorders: What does it bring to the table? 2023; 14: 507-13.
  124. Conde-Antón Á, Hernando-Garijo I, Jiménez-del-Barrio S, Mingo-Gómez MT, Medrano-de-la-Fuente R, Ceballos-Laita L. Effects of transcranial direct current stimulation and transcranial magnetic stimulation in patients with fibromyalgia. A systematic review. Neurología (English Edition) 2023; 38(6): 427-39. doi: 10.1016/j.nrleng.2020.07.025 PMID: 37031798
  125. Coenen F, Scheepers FE, Palmen SJM, de Jonge MV, Oranje B. Serious games as potential therapies: A validation study of a neurofeedback game. Clin EEG Neurosci 2020; 51(2): 87-93. doi: 10.1177/1550059419869471 PMID: 31423818
  126. Lambercy O, Lehner R, Chua K, et al. Neurorehabilitation from a distance: Can intelligent technology support decentralized access to quality therapy? Front Robot AI 2021; 8: 612415. doi: 10.3389/frobt.2021.612415 PMID: 34026855

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers