Neuropilin-1 Binding Peptide as Fusion to Diphtheria Toxin Induces Apoptosis in Non-small Cell Lung Cancer Cell Line


Cite item

Full Text

Abstract

Background::Targeted cancer therapy can be considered as a new strategy to overcome the side effects of current cancer treatments. Neuropilin-1 (NRP-1) is a transmembrane glycoprotein that is expressed in endothelial cells and tumor vessels to stimulate angiogenesis progression. Targeted diphtheria toxin (DT)- based therapeutics are promising tools for cancer treatment. This study aimed to construct a novel NRP-1 binding peptide (as three repeats) (CRGDK) as a fusion to truncated DT (DTA) (DTA-triCRGDK) for targeted delivery of DT into NRP-1 expressing cells.

Methods::The concept of DTA-triCRGDK was designed, synthesized and cloned into the bacterial host. Expression of DTA-triCRGDK was induced by Isopropyl ß-D-1-thiogalactopyranoside (IPTG) and purification was performed using Ni-NTA chromatography. Biological activity of DTA-triCRGDK was evaluated using MTT, apoptosis, and wound healing assays. In addition, expression levels of apoptotic Bax, Bcl2, and Casp3 genes were determined by Real-time PCR.

Results::Cytotoxicity analysis showed the IC50 values of DTA-triCRGDK for A549 and MRC5 were 0.43 nM and 4.12 nM after 24 h, respectively. Bcl2 expression levels decreased 0.4 and 0.72 fold in A549 and MRC5, respectively. However, Bax and Casp3 expression level increased by 6.75 and 8.19 in A549 and 2.51 and 3.6 in MRC5 cells.

Conclusion::Taken together, DTA-triCRGDK is a promising tool for targeted therapy of NRP-1 overexpressing cancer cells.

About the authors

Sara Eghtedari

Department of Biology, Faculty of Basic Sciences,, Islamic Azad University, Science and Research Branch

Email: info@benthamscience.net

Mahdi Behdani

Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran

Email: info@benthamscience.net

Fatemeh Kazemi-Lomedasht

Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran

Author for correspondence.
Email: info@benthamscience.net

References

  1. Guo Q, Liu L, Chen Z, et al. Current treatments for non-small cell lung cancer. Front Oncol 2022; 12: 945102. doi: 10.3389/fonc.2022.945102 PMID: 36033435
  2. Ruiz-Ceja KA, Chirino YI. Current FDA-approved treatments for non-small cell lung cancer and potential biomarkers for its detection. Biomed Pharmacother 2017; 90: 24-37. doi: 10.1016/j.biopha.2017.03.018 PMID: 28340378
  3. Dashtiahangar M, Rahbarnia L, Farajnia S, Salmaninejad A, Shabgah AG, Ghasemali S. Anti-cancer immunotoxins, challenges, and approaches. Curr Pharm Des 2021; 27(7): 932-41. doi: 10.2174/1381612826666201006155346 PMID: 33023437
  4. Sanz L, Ibáñez-Pérez R, Guerrero-Ochoa P, Lacadena J, Anel A. Antibody-based immunotoxins for colorectal cancer therapy. Biomedicines 2021; 9(11): 1729. doi: 10.3390/biomedicines9111729 PMID: 34829955
  5. Kreitman RJ, Pastan I. Immunotoxins: From design to clinical application. Biomolecules 2021; 11(11): 1696. doi: 10.3390/biom11111696 PMID: 34827694
  6. Khirehgesh MR, Sharifi J, Safari F, Akbari B. Immunotoxins and nanobody-based immunotoxins: Review and update. J Drug Target 2021; 29(8): 848-62. doi: 10.1080/1061186X.2021.1894435 PMID: 33615933
  7. Grant MJ, Herbst RS, Goldberg SB. Selecting the optimal immunotherapy regimen in driver-negative metastatic NSCLC. Nat Rev Clin Oncol 2021; 18(10): 625-44. doi: 10.1038/s41571-021-00520-1 PMID: 34168333
  8. Roshan R, Naderi S, Behdani M, Ahangari Cohan R, Kazemi-Lomedasht F. A novel immunotoxin targeting epithelial cell adhesion molecule using single domain antibody fused to diphtheria toxin. Mol Biotechnol 2023; 65(4): 637-44. PMID: 36129635
  9. Allred CA, Gormley C, Venugopal I, Li S, McGuire MJ, Brown KC. Tumor-specific intracellular delivery: Peptide-guided transport of a catalytic toxin. Commun Biol 2023; 6(1): 60. doi: 10.1038/s42003-022-04385-7 PMID: 36650239
  10. Wenzel EV, Bosnak M, Tierney R, et al. Human antibodies neutralizing diphtheria toxin in vitro and in vivo. Sci Rep 2020; 10(1): 571. doi: 10.1038/s41598-019-57103-5 PMID: 31953428
  11. Murphy JR. Mechanism of diphtheria toxin catalytic domain delivery to the eukaryotic cell cytosol and the cellular factors that directly participate in the process. Toxins 2011; 3(3): 294-308. doi: 10.3390/toxins3030294 PMID: 22069710
  12. Sugiman-Marangos SN, Gill SK, Mansfield MJ, Orrell KE, Doxey AC, Melnyk RA. Structures of distant diphtheria toxin homologs reveal functional determinants of an evolutionarily conserved toxin scaffold. Commun Biol 2022; 5(1): 375. doi: 10.1038/s42003-022-03333-9 PMID: 35440624
  13. Naderi S, Roshan R, Behdani M, Kazemi-Lomedasht F. Inhibition of neovascularisation in human endothelial cells using anti NRP-1 nanobody fused to truncated form of diphtheria toxin as a novel immunotoxin. Immunopharmacol Immunotoxicol 2021; 43(2): 230-8. doi: 10.1080/08923973.2021.1888114 PMID: 33657977
  14. Shajari S, Farajollahi MM, Behdani M, Tarighi P. Production and conjugation of truncated recombinant diphtheria toxin to VEGFR-2 specific nanobody and evaluation of its cytotoxic effect on PC-3 cell line. Mol Biotechnol 2022; 64(11): 1218-26. doi: 10.1007/s12033-022-00485-1 PMID: 35478310
  15. Hu C, Jiang X. Role of NRP-1 in VEGF-VEGFR2-independent tumorigenesis. Target Oncol 2016; 11(4): 501-5. doi: 10.1007/s11523-016-0422-0 PMID: 26916409
  16. Tillo M, Erskine L, Cariboni A, et al. VEGF189 binds NRP1 and is sufficient for VEGF/NRP1-dependent neuronal patterning in the developing brain. Development 2015; 142(2): dev.115998. doi: 10.1242/dev.115998 PMID: 25519242
  17. Napolitano V, Tamagnone L. Neuropilins controlling cancer therapy responsiveness. Int J Mol Sci 2019; 20(8): 2049. doi: 10.3390/ijms20082049 PMID: 31027288
  18. Hong TM, Chen YL, Wu YY, et al. Targeting neuropilin 1 as an antitumor strategy in lung cancer. Clin Cancer Res 2007; 13(16): 4759-68. doi: 10.1158/1078-0432.CCR-07-0001 PMID: 17699853
  19. Douyère M, Chastagner P, Boura C. Neuropilin-1: A key protein to consider in the progression of pediatric brain tumors. Front Oncol 2021; 11: 665634. doi: 10.3389/fonc.2021.665634 PMID: 34277411
  20. Yamada KM, Sixt M. Mechanisms of 3D cell migration. Nat Rev Mol Cell Biol 2019; 20(12): 738-52. doi: 10.1038/s41580-019-0172-9 PMID: 31582855
  21. Feron O. Tumor-penetrating peptides: A shift from magic bullets to magic guns. Sci Transl Med 2010; 2(34): 34ps26. doi: 10.1126/scitranslmed.3001174 PMID: 20519716
  22. Ruoslahti E. Tumor penetrating peptides for improved drug delivery. Adv Drug Deliv Rev 2017; 110-111: 3-12. doi: 10.1016/j.addr.2016.03.008 PMID: 27040947
  23. Savier E, Tuffery P, Bruzzoni-Giovanelli H, Rebollo A. Isolation of primary hepatocytes for testing tumor penetrating peptides. Methods Mol Biol 2022; 2383: 413-27. doi: 10.1007/978-1-0716-1752-6_26 PMID: 34766304
  24. Liu D, Wang C, Yang J, An Y, Yang R, Teng G. CRGDK-functionalized PAMAM-based drug-delivery system with high permeability. ACS Omega 2020; 5(16): 9316-23. doi: 10.1021/acsomega.0c00202 PMID: 32363282
  25. Sugahara KN, Braun GB, de Mendoza TH, et al. Tumor-penetrating iRGD peptide inhibits metastasis. Mol Cancer Ther 2015; 14(1): 120-8. doi: 10.1158/1535-7163.MCT-14-0366 PMID: 25392370
  26. Kumar A, Huo S, Zhang X, et al. Neuropilin-1-targeted gold nanoparticles enhance therapeutic efficacy of platinum(IV) drug for prostate cancer treatment. ACS Nano 2014; 8(5): 4205-20. doi: 10.1021/nn500152u PMID: 24730557
  27. Wang E, Sorolla A, Cunningham PT, et al. Tumor penetrating peptides inhibiting MYC as a potent targeted therapeutic strategy for triple-negative breast cancers. Oncogene 2019; 38(1): 140-50. doi: 10.1038/s41388-018-0421-y PMID: 30076412
  28. Takata T, Tanaka F, Yamada T, et al. Clinical significance of caspase-3 expression in pathologic-stage I, nonsmall-cell lung cancer. Int J Cancer 2001; 96(S1) (Suppl.): 54-60. doi: 10.1002/ijc.10347 PMID: 11992386
  29. Alam M, Hasan GM, Eldin SM, et al. Investigating regulated signaling pathways in therapeutic targeting of non-small cell lung carcinoma. Biomed Pharmacother 2023; 161: 114452. doi: 10.1016/j.biopha.2023.114452 PMID: 36878052
  30. Ozcan G, Singh M, Vredenburgh JJ. Leptomeningeal metastasis from non–small cell lung cancer and current landscape of treatments. Clin Cancer Res 2023; 29(1): 11-29. doi: 10.1158/1078-0432.CCR-22-1585 PMID: 35972437
  31. Jimenez-Hernandez LE, Vazquez-Santillan K, Castro-Oropeza R, et al. NRP1-positive lung cancer cells possess tumor-initiating properties. Oncol Rep 2018; 39(1): 349-57. PMID: 29138851
  32. Liu SD, Zhong LP, He J, Zhao YX. Targeting neuropilin-1 interactions is a promising anti-tumor strategy. Chin Med J 2021; 134(5): 508-17. doi: 10.1097/CM9.0000000000001200 PMID: 33177389
  33. Ding Z, Du W, Lei Z, et al. Neuropilin 1 modulates TGF-β1-induced epithelial-mesenchymal transition in non-small cell lung cancer. Int J Oncol 2020; 56(2): 531-43. PMID: 31894269
  34. Misao J, Hayakawa Y, Ohno M, Kato S, Fujiwara T, Fujiwara H. Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation 1996; 94(7): 1506-12. doi: 10.1161/01.CIR.94.7.1506 PMID: 8840837
  35. Ali D, Tripathi A, Alali H, et al. ROS-dependent Bax/Bcl2 and caspase 3 pathway-mediated apoptosis induced by zineb in human keratinocyte cells. OncoTargets Ther 2018; 11: 489-97. doi: 10.2147/OTT.S140358 PMID: 29416349
  36. Yoo J, Kim CH, Song SH, et al. Expression of caspase-3 and c-myc in non-small cell lung cancer. Cancer Res Treat 2004; 36(5): 303-7. doi: 10.4143/crt.2004.36.5.303 PMID: 20368820
  37. Zhou M, Liu X, Li Z, Huang Q, Li F, Li CY. Caspase-3 regulates the migration, invasion and metastasis of colon cancer cells. Int J Cancer 2018; 143(4): 921-30. doi: 10.1002/ijc.31374 PMID: 29524226
  38. Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat Rev Mol Cell Biol 2014; 15(1): 49-63. doi: 10.1038/nrm3722 PMID: 24355989
  39. Naseri MH, Mahdavi M, Davoodi J, Tackallou SH, Goudarzvand M, Neishabouri SH. Up regulation of Bax and down regulation of Bcl2 during 3-NC mediated apoptosis in human cancer cells. Cancer Cell Int 2015; 15(1): 55. doi: 10.1186/s12935-015-0204-2 PMID: 26074734
  40. Liu Z, Ding Y, Ye N, Wild C, Chen H, Zhou J. Direct activation of bax protein for cancer therapy. Med Res Rev 2016; 36(2): 313-41. doi: 10.1002/med.21379 PMID: 26395559
  41. Roshan R, Naderi S, Behdani M, et al. Isolation and characterization of nanobodies against epithelial cell adhesion molecule as novel theranostic agents for cancer therapy. Mol Immunol 2021; 129: 70-7. doi: 10.1016/j.molimm.2020.10.021 PMID: 33183767
  42. Wang J, Kang G, Yuan H, Cao X, Huang H, de Marco A. Research progress and applications of multivalent, multispecific and modified nanobodies for disease treatment. Front Immunol 2022; 12: 838082. doi: 10.3389/fimmu.2021.838082 PMID: 35116045
  43. Voltà-Durán E, Sánchez JM, Parladé E, et al. The diphtheria toxin translocation domain impairs receptor selectivity in cancer cell-targeted protein nanoparticles. Pharmaceutics 2022; 14(12): 2644. doi: 10.3390/pharmaceutics14122644 PMID: 36559138
  44. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct Target Ther 2020; 5(1): 28. doi: 10.1038/s41392-020-0134-x PMID: 32296047
  45. Fornetti J, Welm AL, Stewart SA. Understanding the bone in cancer metastasis. J Bone Miner Res 2018; 33(12): 2099-113. doi: 10.1002/jbmr.3618 PMID: 30476357
  46. Azam F, Mehta S, Harris AL. Mechanisms of resistance to antiangiogenesis therapy. Eur J Cancer 2010; 46(8): 1323-32. doi: 10.1016/j.ejca.2010.02.020 PMID: 20236818
  47. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature 2019; 575(7782): 299-309. doi: 10.1038/s41586-019-1730-1 PMID: 31723286
  48. Ahadi M, Ghasemian H, Behdani M, Kazemi-Lomedasht F. Oligoclonal selection of nanobodies targeting vascular endothelial growth factor. J Immunotoxicol 2019; 16(1): 34-42. doi: 10.1080/1547691X.2018.1526234 PMID: 30409071
  49. Yamaizumi M, Mekada E, Uchida T, Okada Y. One molecule of diphtheria toxin fragment a introduced into a cell can kill the cell. Cell 1978; 15(1): 245-50. doi: 10.1016/0092-8674(78)90099-5 PMID: 699044
  50. Zhi X, Wang Y, Zhou X, et al. RNAi-mediated CD73 suppression induces apoptosis and cell-cycle arrest in human breast cancer cells. Cancer Sci 2010; 101(12): 2561-9. doi: 10.1111/j.1349-7006.2010.01733.x PMID: 20874842
  51. Yu L, Liang Q, Zhang W, Liao M, Wen M, Zhan B. HSP22 suppresses diabetes-induced endothelial injury by inhibiting mitochondrial reactive oxygen species formation. Redox Biol 2019; 21: 101095.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers