Mechanism Research of PZD Inhibiting Lung Cancer Cell Proliferation, Invasion, and Migration based on Network Pharmacology
- Autores: Feng F.1, Hu P.1, Peng L.1, Chen J.1, Tao X.1
-
Afiliações:
- School of Biological and Food Engineering, Suzhou University
- Edição: Volume 30, Nº 16 (2024)
- Páginas: 1279-1293
- Seção: Immunology, Inflammation & Allergy
- URL: https://vestnikugrasu.org/1381-6128/article/view/645662
- DOI: https://doi.org/10.2174/0113816128296328240329032332
- ID: 645662
Citar
Texto integral
Resumo
Background:A classic Chinese medicine decoction, Pinellia ternata (Thunb.) Breit.-Zingiber officinale Roscoe (Ban-Xia and Sheng-Jiang in Chinese) decoction (PZD), has shown significant therapeutic effects on lung cancer.
Objective:This study aimed to explore and elucidate the mechanism of action of PZD on lung cancer using network pharmacology methods.
Methods:Active compounds were selected according to the ADME parameters recorded in the TCMSP database. Potential pathways related to genes were identified through GO and KEGG analysis. The compoundtarget network was constructed by using Cytoscape 3.7.1 software, and the core common targets were obtained by protein-protein interaction (PPI) network analysis. Batch molecular docking of small molecule compounds and target proteins was carried out by using the AutoDock Vina program. Different concentrations of PZD water extracts (10, 20, 40, 80, and 160 µg/mL) were used on lung cancer cells. Moreover, MTT and Transwell experiments were conducted to validate the prominent therapeutic effects of PZD on lung cancer cell H1299.
Conclusion:PZD could inhibit the cell proliferation, migration, and invasion of NCI-H1299 cells partially through the PI3K/AKT signaling pathway. These findings suggested that PZD might be a potential treatment strategy for lung cancer patients.
Results:A total of 381 components in PZD were screened, of which 16 were selected as bioactive compounds. The compound-target network consisting of 16 compounds and 79 common core targets was constructed. MTT experiment showed that the PZD extract could inhibit the cell proliferation of NCI-H1299 cells, and the IC50 was calculated as 97.34 ± 6.14 µg/mL. Transwell and wound-healing experiments showed that the PZD could significantly decrease cell migration and invasion at concentrations of 80 and 160 µg/mL, respectively. The in vitro experiments confirmed that PZD had significant therapeutic effects on lung cancer cells, mainly through the PI3K/AKT signaling pathway.
Sobre autores
Fan Feng
School of Biological and Food Engineering, Suzhou University
Autor responsável pela correspondência
Email: info@benthamscience.net
Ping Hu
School of Biological and Food Engineering, Suzhou University
Email: info@benthamscience.net
Lei Peng
School of Biological and Food Engineering, Suzhou University
Email: info@benthamscience.net
Jun Chen
School of Biological and Food Engineering, Suzhou University
Email: info@benthamscience.net
Xingkui Tao
School of Biological and Food Engineering, Suzhou University
Email: info@benthamscience.net
Bibliografia
- Moris D, Stathopoulos NI, Tsilimigras DI, et al. Insights into novel prognostic and possible predictive biomarkers of lung neuroendocrine tumors. Can Geno Prot 2018; 15(2): 153-63. PMID: 29496694
- He J, Li N, Chen WQ, et al. China guideline for the screening and early detection of lung cancer. Zhonghua Zhong Liu Za Zhi 2021; 43(3): 243-68. PMID: 33752304
- Li Z, Feiyue Z, Gaofeng L. Traditional Chinese medicine and lung cancer-From theory to practice. Biomed Pharmacother 2021; 137: 111381. doi: 10.1016/j.biopha.2021.111381 PMID: 33601147
- Jiang Y, Liu LS, Shen LP, et al. Traditional Chinese medicine treatment as maintenance therapy in advanced non-small-cell lung cancer: A randomized controlled trial. Complement Ther Med 2016; 24: 55-62. doi: 10.1016/j.ctim.2015.12.006 PMID: 26860802
- Ye L, Jia Y, Ji K, et al. Traditional Chinese medicine in the prevention and treatment of cancer and cancer metastasis. Oncol Lett 2015; 10(3): 1240-50. doi: 10.3892/ol.2015.3459 PMID: 26622657
- McCubrey JA, Lertpiriyapong K, Steelman LS, et al. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging 2017; 9(6): 1477-536. doi: 10.18632/aging.101250 PMID: 28611316
- Izzo C, Annunziata M, Melara G, et al. The role of resveratrol in liver disease: A comprehensive review from in vitro to clinical trials. Nutrients 2021; 13(3): 933. doi: 10.3390/nu13030933 PMID: 33805795
- Sarawi WS, Alhusaini AM, Fadda LM, et al. Curcumin and nano-curcumin mitigate copper neurotoxicity by modulating oxidative stress, inflammation, and Akt/GSK-3β signaling. Molecules 2021; 26(18): 5591. doi: 10.3390/molecules26185591 PMID: 34577062
- Xiang Y, Guo Z, Zhu P, Chen J, Huang Y. Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science. Cancer Med 2019; 8(5): 1958-75. doi: 10.1002/cam4.2108 PMID: 30945475
- Wang SF, Wu MY, Cai CZ, Li M, Lu JH. Autophagy modulators from traditional Chinese medicine: Mechanisms and therapeutic potentials for cancer and neurodegenerative diseases. J Ethnopharmacol 2016; 194: 861-76. doi: 10.1016/j.jep.2016.10.069 PMID: 27793785
- Zhang Y, Lou Y, Wang J, Yu C, Shen W. Research status and molecular mechanism of the traditional Chinese medicine and antitumor therapy combined strategy based on tumor microenvironment. Front Immunol 2021; 11: 609705. doi: 10.3389/fimmu.2020.609705 PMID: 33552068
- Tang H, Shu P, Liu S, Zhang X, Belmonte MM. Traditional Chinese medicine in oncotherapy: The research status. Nutr Cancer 2020; 72(6): 992-8. doi: 10.1080/01635581.2019.1664599 PMID: 31526143
- Wang S, Long S, Wu W. Application of traditional Chinese medicines as personalized therapy in human cancers. Am J Chin Med 2018; 46(5): 953-70. doi: 10.1142/S0192415X18500507 PMID: 29986595
- Ma Y, Zhang X, Su Z, et al. Insight into the molecular mechanism of a herbal injection by integrating network pharmacology and in vitro. J Ethnopharmacol 2015; 173: 91-9. doi: 10.1016/j.jep.2015.07.016 PMID: 26192807
- Zhao L, Zhang H, Li N, et al. Network pharmacology, A promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J Ethnopharmacol 2023; 309: 116306. doi: 10.1016/j.jep.2023.116306 PMID: 36858276
- Yang HY, Liu ML, Luo P, Yao XS, Zhou H. Network pharmacology provides a systematic approach to understanding the treatment of ischemic heart diseases with traditional Chinese medicine. Phytomedicine 2022; 104: 154268. doi: 10.1016/j.phymed.2022.154268 PMID: 35777118
- Guo W, Huang J, Wang N, et al. Integrating network pharmacology and pharmacological evaluation for deciphering the action mechanism of herbal formula Zuojin pill in suppressing hepatocellular carcinoma. Front Pharmacol 2019; 10: 1185. doi: 10.3389/fphar.2019.01185 PMID: 31649545
- Yang J, Tian S, Zhao J, Zhang W. Exploring the mechanism of TCM formulae in the treatment of different types of coronary heart disease by network pharmacology and machining learning. Pharmacol Res 2020; 159: 105034. doi: 10.1016/j.phrs.2020.105034 PMID: 32565312
- Zhang P, Zhang D, Zhou W, et al. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine. Brief Bioinform 2023; 25(1): bbad518. doi: 10.1093/bib/bbad518 PMID: 38197310
- Huang J, Cheung F, Tan HY, et al. Identification of the active compounds and significant pathways of Yinchenhao decoction based on network pharmacology. Mol Med Rep 2017; 16(4): 4583-92. doi: 10.3892/mmr.2017.7149 PMID: 28791364
- Zhang J, Liu X, Wu J, et al. A bioinformatics investigation into the pharmacological mechanisms of the effect of the Yinchenhao decoction on hepatitis C based on network pharmacology. BMC Complement Med Therapies 2020; 20(1): 50. doi: 10.1186/s12906-020-2823-y PMID: 32050950
- Yan F, Feng M, Wang X, et al. Molecular targets of Yangyin Fuzheng Jiedu prescription in the treatment of hepatocellular carcinoma based on network pharmacology analysis. Cancer Cell Int 2020; 20(1): 540. doi: 10.1186/s12935-020-01596-y PMID: 33292207
- Denisov EV, Schegoleva AA, Gervas PA, et al. Premalignant lesions of squamous cell carcinoma of the lung: The molecular make-up and factors affecting their progression. Lung Cancer 2019; 135: 21-8. doi: 10.1016/j.lungcan.2019.07.001 PMID: 31446997
- Su J, Tan S, Gong H, et al. The evaluation of prognostic value and immune characteristics of ferroptosis-related genes in lung squamous cell carcinoma. Global Med Genet 2023; 10(4): 285-300. doi: 10.1055/s-0043-1776386 PMID: 37915460
- Panakkal N, Lekshmi A, Saraswathy VV, Sujathan K. Effective lung cancer control: An unaccomplished challenge in cancer research. Cytojournal 2023; 20: 16. doi: 10.25259/Cytojournal_36_2022 PMID: 37681073
- Xin T, Zhang Y, Pu X, Gao R, Xu Z, Song J. Trends in herbgenomics. Sci China Life Sci 2019; 62(3): 288-308. doi: 10.1007/s11427-018-9352-7 PMID: 30128965
- Li X, Tang Z, Wen L, Jiang C, Feng Q. Matrine: A review of its pharmacology, pharmacokinetics, toxicity, clinical application and preparation researches. J Ethnopharmacol 2021; 269: 113682. doi: 10.1016/j.jep.2020.113682 PMID: 33307055
- Zou T, Wang J, Wu X, et al. A review of the research progress on Pinellia ternata (Thunb.) Breit.: Botany, traditional uses, phytochemistry, pharmacology, toxicity and quality control. Heliyon 2023; 9(11): e22153. doi: 10.1016/j.heliyon.2023.e22153 PMID: 38058630
- Bi L, Xie C, Jiao L, et al. CPF impedes cell cycle re‐entry of quiescent lung cancer cells through transcriptional suppression of FACT and c‐MYC. J Cell Mol Med 2020; 24(3): 2229-39. doi: 10.1111/jcmm.14897 PMID: 31960591
- de Lima RMT, dos Reis AC, de Menezes AAPM, et al. Protective and therapeutic potential of ginger (Zingiber officinale) extract and 6‐gingerol in cancer: A comprehensive review. Phytother Res 2018; 32(10): 1885-907. doi: 10.1002/ptr.6134 PMID: 30009484
- Liu CM, An L, Wu Z, et al. 6 Gingerol suppresses cell viability, migration and invasion via inhibiting EMT, and inducing autophagy and ferroptosis in LPS stimulated and LPS unstimulated prostate cancer cells. Oncol Lett 2022; 23(6): 187. doi: 10.3892/ol.2022.13307 PMID: 35527779
- Ru J, Li P, Wang J, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014; 6(1): 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
- Wang M, Zhao F, Li Z, Li X, Dong L. Tectoridin and PLK1 inhibitor synergistically promote the apoptosis of lung adenocarcinoma cells: Bioinformatic analysis of TCGA and TCMSP. Naunyn Schmiedebergs Arch Pharmacol 2023; 396(10): 2417-26. doi: 10.1007/s00210-023-02460-2 PMID: 37014402
- Xu X, Zhang W, Huang C, et al. A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci 2012; 13(6): 6964-82. doi: 10.3390/ijms13066964 PMID: 22837674
- Tao W, Xu X, Wang X, et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix curcumae formula for application to cardiovascular disease. J Ethnopharmacol 2013; 145(1): 1-10. doi: 10.1016/j.jep.2012.09.051 PMID: 23142198
- Shang L, Wang Y, Li J. Mechanism of Sijunzi decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation. J Ethnopharmacol 2023; 302(Pt A): 115876.
- Lu S, Sun X, Zhou Z, et al. Mechanism of Bazhen decoction in the treatment of colorectal cancer based on network pharmacology, molecular docking, and experimental validation. Front Immunol 2023; 14: 1235575. doi: 10.3389/fimmu.2023.1235575 PMID: 37799727
- Milano M, Zucco C, Settino M, Cannataro M. An extensive assessment of network embedding in PPI network alignment. Entropy 2022; 24(5): 730. doi: 10.3390/e24050730 PMID: 35626613
- Chen L, Zhang YH, Wang S, Zhang Y, Huang T, Cai YD. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways. PLoS One 2017; 12(9): e0184129. doi: 10.1371/journal.pone.0184129 PMID: 28873455
- Li C, Xu H, Chen X, et al. Aqueous extract of clove inhibits tumor growth by inducing autophagy through AMPK/ULK pathway. Phytother Res 2019; 33(7): 1794-804. doi: 10.1002/ptr.6367 PMID: 30993793
- Idriss H, Siddig B, Maldonado PG, et al. Phytochemical discrimination, biological activity and molecular docking of water-soluble inhibitors from Saussurea costus herb against main protease of SARS-CoV-2. Molecules 2022; 27(15): 4908. doi: 10.3390/molecules27154908 PMID: 35956858
- Zhou H, Feng X, Yan Y, et al. Optimization of an ultrasonic-assisted aqueous two-phase extraction method for four flavonoids from Lysionotus pauciflorus. Prep Biochem Biotechnol 2022; 52(7): 770-82. doi: 10.1080/10826068.2021.1992783 PMID: 34704892
- Feng F, Zhang J, Lian C, et al. Nitidine chloride triggers autophagy and apoptosis of ovarian cancer cells through Akt/mTOR signaling pathway. Curr Pharm Des 2023; 29(19): 1524-34. doi: 10.2174/1381612829666230614154847 PMID: 37317923
- Zhang X, Tao X, Feng F. Downregulation of C12orf75 gene inhibits migration and invasion of liver cancer cell via suppressing the Wnt/β-catenin signaling pathway in vitro. Biochem Biophys Res Commun 2022; 614: 92-9. doi: 10.1016/j.bbrc.2022.05.018 PMID: 35576683
- Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA 1979; 76(9): 4350-4. doi: 10.1073/pnas.76.9.4350 PMID: 388439
- Feng F, Zhu X, Wang C, et al. Downregulation of hypermethylated in cancer-1 by miR-4532 promotes adriamycin resistance in breast cancer cells. Cancer Cell Int 2018; 18(1): 127. doi: 10.1186/s12935-018-0616-x PMID: 30202238
- Song S, Huang W, Lu X, et al. A network pharmacology study based on the mechanism of Citri Reticulatae Pericarpium-Pinelliae Rhizoma in the treatment of gastric cancer. Evid Based Complement Alternat Med 2021; 2021: 1-17. doi: 10.1155/2021/6667560 PMID: 33953786
- Hereñú CB, Crespo R. Phytochemicals as estrogen receptor modulators?-a commentary of a network pharmacology study of two commonly employed Chinese herbal medicines in non-small cell lung cancer treatment. Transl Cancer Res 2023; 12(12): 3249-54. doi: 10.21037/tcr-23-1440 PMID: 38197069
- Li C, Lu H, Jiang X, Guo X, Zhong H, Li H. Network pharmacology study of Citrus reticulata and Pinellia ternata in the treatment of non-small cell lung cancer. Cell Mol Biol 2022; 67(4): 10-7. doi: 10.14715/cmb/2021.67.4.2 PMID: 35809307
- Zhai Z, Tao X, Alami MM, Shu S, Wang X. Network pharmacology and molecular docking combined to analyze the molecular and pharmacological mechanism of Pinellia ternata in the treatment of hypertension. Curr Issues Mol Biol 2021; 43(1): 65-78. doi: 10.3390/cimb43010006 PMID: 34062719
- Rajavel T, Packiyaraj P, Suryanarayanan V, Singh SK, Ruckmani K, Pandima Devi K. β-Sitosterol targets Trx/Trx1 reductase to induce apoptosis in A549 cells via ROS mediated mitochondrial dysregulation and p53 activation. Sci Rep 2018; 8(1): 2071. doi: 10.1038/s41598-018-20311-6 PMID: 29391428
- Khan Z, Nath N, Rauf A, et al. Multifunctional roles and pharmacological potential of β-sitosterol: Emerging evidence toward clinical applications. Chem Biol Interact 2022; 365: 110117. doi: 10.1016/j.cbi.2022.110117 PMID: 35995256
- Vo VG, Guest PC, Nguyen TT, Vo TK. Evaluation of anti-hepatocellular-cancer properties of β-sitosterol and β-sitosterol-glucoside from Indigofera zollingeriana Miq. Methods Mol Biol 2022; 2343: 229-40. doi: 10.1007/978-1-0716-1558-4_15 PMID: 34473326
- Raj RK, Rajeshkumar S. β‐sitosterol‐assisted silver nanoparticles activates Nrf2 and triggers mitochondrial apoptosis via oxidative stress in human hepatocellular cancer cell line. J Biomed Mater Res A 2020; 108(9): 1899-908. doi: 10.1002/jbm.a.36953 PMID: 32319188
- Wang Z, Zhan Y, Xu J, et al. Beta-sitosterol reverses multidrug resistance via BCRP suppression by inhibiting the p53-MDM2 interaction in colorectal cancer. J Agric Food Chem 2020; 68(12): 3850-8. doi: 10.1021/acs.jafc.0c00107 PMID: 32167760
- Zhao H, Zhang X, Wang M, Lin Y, Zhou S. Stigmasterol simultaneously induces apoptosis and protective autophagy by inhibiting Akt/mTOR pathway in gastric cancer cells. Front Oncol 2021; 11: 629008. doi: 10.3389/fonc.2021.629008 PMID: 33708631
- Zhang X, Wang J, Zhu L, et al. Advances in stigmasterol on its anti-tumor effect and mechanism of action. Front Oncol 2022; 12: 1101289. doi: 10.3389/fonc.2022.1101289 PMID: 36578938
- Liao H, Zhu D, Bai M, et al. Stigmasterol sensitizes endometrial cancer cells to chemotherapy by repressing Nrf2 signal pathway. Cancer Cell Int 2020; 20(1): 480. doi: 10.1186/s12935-020-01470-x PMID: 33041661
- Cioccoloni G, Soteriou C, Websdale A, Wallis L, Zulyniak MA, Thorne JL. Phytosterols and phytostanols and the hallmarks of cancer in model organisms: A systematic review and meta-analysis. Crit Rev Food Sci Nutr 2020; 25: 1-21. PMID: 33238719
- Yu M, Qi B, Xiaoxiang W, Xu J, Liu X. Baicalein increases cisplatin sensitivity of A549 lung adenocarcinoma cells via PI3K/ Akt/NF-κB pathway. Biomed Pharmacother 2017; 90: 677-85. doi: 10.1016/j.biopha.2017.04.001 PMID: 28415048
- Yan W, Ma X, Zhao X, Zhang S. Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and vitro. Drug Des Devel Ther 2018; 12: 3961-72. doi: 10.2147/DDDT.S181939 PMID: 30510404
- Bie B, Sun J, Guo Y, et al. Baicalein: A review of its anti-cancer effects and mechanisms in Hepatocellular Carcinoma. Biomed Pharmacother 2017; 93: 1285-91. doi: 10.1016/j.biopha.2017.07.068 PMID: 28747003
- Liu ZH, Yang CX, Zhang L, Yang CY, Xu XQ. Baicalein, as a prooxidant, triggers mitochondrial apoptosis in MCF-7 human breast cancer cells through mobilization of intracellular copper and reactive oxygen species generation. OncoTargets Ther 2019; 12(3): 10749-61. doi: 10.2147/OTT.S222819 PMID: 31849483
- Yan JJ, Gao L, Qin XM. Baicalein attenuates neuroinflammation in LPS-activated BV-2 microglial cells through suppression of pro-inflammatory cytokines, COX2/NF-κB expressions and regulation of metabolic disorder. Zhongguo Yaolixue Yu Dulixue Zazhi 2019; 33(10): 854.
- Zagórska A. Phosphodiesterase 10 (PDE10) inhibitors: An updated patent review (2014-present). Expert Opin Ther Pat 2020; 30(2): 147-57. doi: 10.1080/13543776.2020.1709444 PMID: 31874060
- Yoshioka T, Itagaki Y, Abe Y, et al. NaCl dependent production of coniferin in Alluaudiopsis marnieriana suspension cultured cells. Plant Biotechnol 2021; 38(1): 183-6. doi: 10.5511/plantbiotechnology.21.0102a PMID: 34177341
- Gai F, Janiak MA, Sulewska K, Peiretti PG, Karamać M. Phenolic compound profile and antioxidant capacity of flax (Linum usitatissimum L.) harvested at different growth stages. Molecules 2023; 28(4): 1807. doi: 10.3390/molecules28041807 PMID: 36838795
- Fan L, He Z, Head SA, et al. Clofoctol and sorafenib inhibit prostate cancer growth via synergistic induction of endoplasmic reticulum stress and UPR pathways. Cancer Manag Res 2018; 10: 4817-29. doi: 10.2147/CMAR.S175256 PMID: 30425575
- Hu Y, Zhang M, Tian N, et al. The antibiotic clofoctol suppresses glioma stem cell proliferation by activating KLF13. J Clin Invest 2019; 129(8): 3072-85. doi: 10.1172/JCI124979 PMID: 31112526
- Liu K, Pu J, Nie Z, et al. Ivacaftor inhibits glioblastoma stem cell maintenance and tumor progression. Front Cell Dev Biol 2021; 9: 678209. doi: 10.3389/fcell.2021.678209 PMID: 34046412
- Kinoshita T, Goto T. Molecular mechanisms of pulmonary fibrogenesis and its progression to lung cancer: A review. Int J Mol Sci 2019; 20(6): 1461. doi: 10.3390/ijms20061461 PMID: 30909462
- Tzouvelekis A, Gomatou G, Bouros E, Trigidou R, Tzilas V, Bouros D. Common pathogenic mechanisms between idiopathic pulmonary fibrosis and lung cancer. Chest 2019; 156(2): 383-91. doi: 10.1016/j.chest.2019.04.114 PMID: 31125557
- Bordoloi D, Banik K, Padmavathi G, et al. TIPE2 induced the proliferation, survival, and migration of lung cancer cells through modulation of Akt/mTOR/NF-κB signaling cascade. Biomolecules 2019; 9(12): 836. doi: 10.3390/biom9120836 PMID: 31817720
- Lee KY, Shueng PW, Chou CM, et al. Elevation of CD109 promotes metastasis and drug resistance in lung cancer via activation of EGFR‐AKT‐mTOR signaling. Cancer Sci 2020; 111(5): 1652-62. doi: 10.1111/cas.14373 PMID: 32133706
- Tan AC. Targeting the PI3K/Akt/mTOR pathway in non‐small cell lung cancer (NSCLC). Thorac Cancer 2020; 11(3): 511-8. doi: 10.1111/1759-7714.13328 PMID: 31989769
Arquivos suplementares
