Recent Advancements in Refashioning of NSAIDs and their Derivatives as Anticancer Candidates


如何引用文章

全文:

详细

:Inflammation is critical to the formation and development of tumors and is closely associated with cancer. Therefore, addressing inflammation and the mediators that contribute to the inflammatory process may be a useful strategy for both cancer prevention and treatment. Tumor predisposition can be attributed to inflammation. It has been demonstrated that NSAIDs can modify the tumor microenvironment by enhancing apoptosis and chemosensitivity and reducing cell migration. There has been a recent rise in interest in drug repositioning or repurposing because the development of innovative medications is expensive, timeconsuming, and presents a considerable obstacle to drug discovery. Repurposing drugs is crucial for the quicker and less expensive development of anticancer medicines, according to an increasing amount of research. This review summarizes the antiproliferative activity of derivatives of NSAIDs such as Diclofenac, Etodolac, Celecoxib, Ibuprofen, Tolmetin, and Sulindac, published between 2017 and 2023. Their mechanism of action and structural activity relationships (SARs) were also discussed to set the path for potential future repositioning of NSAIDs for clinical deployment in the treatment of cancer.

作者简介

Asmaa Kassab

Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University

编辑信件的主要联系方式.
Email: info@benthamscience.net

Ehab Gedawy

Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University

Email: info@benthamscience.net

参考

  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49. doi: 10.3322/caac.21660 PMID: 33538338
  2. Maeda H, Khatami M. Analyses of repeated failures in cancer therapy for solid tumors: Poor tumor‐selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin Transl Med 2018; 7(1): e11. doi: 10.1186/s40169-018-0185-6 PMID: 29541939
  3. Jazieh A, Da’ar OB, Alkaiyat M, et al. Cancer incidence trends from 1999 to 2015 and contributions of various cancer types to the overall burden: Projections to 2030 and extrapolation of economic burden in Saudi Arabia. Cancer Manag Res 2019; 11: 9665-74. doi: 10.2147/CMAR.S222667 PMID: 32009819
  4. Whiteman DC, Wilson LF. The fractions of cancer attributable to modifiable factors: A global review. Cancer Epidemiol 2016; 44: 203-21. doi: 10.1016/j.canep.2016.06.013 PMID: 27460784
  5. Stanković T, Dinić J, Podolski-Renić A, et al. Dual inhibitors as a new challenge for cancer multidrug resistance treatment. Curr Med Chem 2019; 26(33): 6074-106. doi: 10.2174/0929867325666180607094856 PMID: 29874992
  6. Sano S, Chan KS, Carbajal S, et al. Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model. Nat Med 2005; 11(1): 43-9. doi: 10.1038/nm1162 PMID: 15592573
  7. Philip M, Rowley DA, Schreiber H. Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol 2004; 14(6): 433-9. doi: 10.1016/j.semcancer.2004.06.006 PMID: 15489136
  8. Mantovani A. Inflaming metastasis. Nature 2009; 457(7225): 36-7. doi: 10.1038/457036b PMID: 19122629
  9. Achiwa H, Yatabe Y, Hida T, et al. Prognostic significance of elevated cyclooxygenase 2 expression in primary, resected lung adenocarcinomas. Clin Cancer Res 1999; 5(5): 1001-5. PMID: 10353732
  10. Pang LY, Hurst EA, Argyle DJ. Cyclooxygenase-2: A role in cancer stem cell survival and repopulation of cancer cells during therapy. Stem Cells Int 2016; 2016: 1-11. doi: 10.1155/2016/2048731 PMID: 27882058
  11. Botting R. COX-1 and COX-3 inhibitors. Thromb Res 2003; 110(5-6): 269-72. doi: 10.1016/S0049-3848(03)00411-0 PMID: 14592546
  12. Chandrasekharan NV, Dai H, Roos KLT, et al. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression. Proc Natl Acad Sci 2002; 99(21): 13926-31. doi: 10.1073/pnas.162468699 PMID: 12242329
  13. Steinmeyer J. Pharmacological basis for the therapy of pain and inflammation with nonsteroidal anti-inflammatory drugs. Arthritis Res 2000; 2(5): 379-85. doi: 10.1186/ar116 PMID: 11094452
  14. Brune K, Patrignani P. New insights into the use of currently available non-steroidal anti-inflammatory drugs. J Pain Res 2015; 8: 105-18. doi: 10.2147/JPR.S75160 PMID: 25759598
  15. Wang D, DuBois RN. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 2010; 29(6): 781-8. doi: 10.1038/onc.2009.421 PMID: 19946329
  16. Khan AA, Iadarola M, Yang HYT, Dionne RA. Expression of COX-1 and COX-2 in a clinical model of acute inflammation. J Pain 2007; 8(4): 349-54. doi: 10.1016/j.jpain.2006.10.004 PMID: 17270500
  17. Ye YN, Wu WKK, Shin VY, Bruce IC, Wong BCY, Cho CH. Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke. Carcinogenesis 2005; 26(4): 827-34. doi: 10.1093/carcin/bgi012 PMID: 15637091
  18. Minghetti L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol 2004; 63(9): 901-10. doi: 10.1093/jnen/63.9.901 PMID: 15453089
  19. Greene ER, Huang S, Serhan CN, Panigrahy D. Regulation of inflammation in cancer by eicosanoids. Prostaglandins Other Lipid Mediat 2011; 96(1-4): 27-36. doi: 10.1016/j.prostaglandins.2011.08.004 PMID: 21864702
  20. Zhong B, Cai X, Chennamaneni S, et al. From COX-2 inhibitor nimesulide to potent anti-cancer agent: Synthesis, in vitro, in vivo and pharmacokinetic evaluation. Eur J Med Chem 2012; 47(1): 432-44. doi: 10.1016/j.ejmech.2011.11.012 PMID: 22119125
  21. Sarkar FH, Adsule S, Li Y, Padhye S. Back to the future: COX-2 inhibitors for chemoprevention and cancer therapy. Mini Rev Med Chem 2007; 7(6): 599-608. doi: 10.2174/138955707780859431 PMID: 17584158
  22. Rayburn E, Ezell SJ, Zhang R. Anti-inflammatory agents for cancer therapy. Mol Cell Pharmacol 2009; 1(1): 29-43. doi: 10.4255/mcpharmacol.09.05 PMID: 20333321
  23. Abdel-Aziz AAM, Angeli A, El-Azab AS, Hammouda MEA, El-Sherbeny MA, Supuran CT. Synthesis and anti-inflammatory activity of sulfonamides and carboxylates incorporating trimellitimides: Dual cyclooxygenase/carbonic anhydrase inhibitory actions. Bioorg Chem 2019; 84: 260-8. doi: 10.1016/j.bioorg.2018.11.033 PMID: 30508771
  24. Vosooghi M, Amini M. The discovery and development of cyclooxygenase-2 inhibitors as potential anticancer therapies. Expert Opin Drug Discov 2014; 9(3): 255-67. doi: 10.1517/17460441.2014.883377 PMID: 24483845
  25. Kang SN, Hong SS, Lee MK, Lim SJ. Dual function of tributyrin emulsion: Solubilization and enhancement of anticancer effect of celecoxib. Int J Pharm 2012; 428(1-2): 76-81. doi: 10.1016/j.ijpharm.2012.02.037 PMID: 22405988
  26. Xu HB, Shen FM, Lv QZ. Celecoxib enhanced the cytotoxic effect of cisplatin in drug-resistant human gastric cancer cells by inhibition of cyclooxygenase-2. Eur J Pharmacol 2015; 769: 1-7. doi: 10.1016/j.ejphar.2015.09.025 PMID: 26407653
  27. Nzeako UC, Guicciardi ME, Yoon JH, Bronk SF, Gores GJ. COX-2 inhibits Fas-mediated apoptosis in cholangiocarcinoma cells. Hepatology 2002; 35(3): 552-9. doi: 10.1053/jhep.2002.31774 PMID: 11870367
  28. Fujita T, Matsui M, Takaku K, et al. Size- and invasion-dependent increase in cyclooxygenase 2 levels in human colorectal carcinomas. Cancer Res 1998; 58(21): 4823-6. PMID: 9809985
  29. Zimmermann KC, Sarbia M, Weber AA, Borchard F, Gabbert HE, Schrör K. Cyclooxygenase-2 expression in human esophageal carcinoma. Cancer Res 1999; 59(1): 198-204. PMID: 9892207
  30. Koki AT, Masferrer JL. Celecoxib: A specific COX-2 inhibitor with anticancer properties. Cancer Contr 2002; 9(S2): 28-35. doi: 10.1177/107327480200902S04 PMID: 11965228
  31. Liu CH, Chang SH, Narko K, et al. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem 2001; 276(21): 18563-9. doi: 10.1074/jbc.M010787200 PMID: 11278747
  32. Tsujii M, DuBois RN. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 1995; 83(3): 493-501. doi: 10.1016/0092-8674(95)90127-2 PMID: 8521479
  33. Francés DEA, Ingaramo PI, Mayoral R, et al. Cyclooxygenase‐2 over‐expression inhibits liver apoptosis induced by hyperglycemia. J Cell Biochem 2013; 114(3): 669-80. doi: 10.1002/jcb.24409 PMID: 23059845
  34. Plastaras JP, Guengerich FP, Nebert DW, Marnett LJ. Xenobiotic-metabolizing cytochromes P450 convert prostaglandin endoperoxide to hydroxyheptadecatrienoic acid and the mutagen, malondialdehyde. J Biol Chem 2000; 275(16): 11784-90. doi: 10.1074/jbc.275.16.11784 PMID: 10766802
  35. Qu L, Liu B. Cyclooxygeanse-2 promotes metastasis in osteosarcoma. Cancer Cell Int 2015; 15(1): 69. doi: 10.1186/s12935-015-0220-2 PMID: 26180515
  36. Hu H, Han T, Zhuo M, et al. Elevated COX-2 expression promotes angiogenesis through EGFR/p38-MAPK/Sp1-dependent signalling in pancreatic cancer. Sci Rep 2017; 7(1): 470. doi: 10.1038/s41598-017-00288-4 PMID: 28352075
  37. Kundu N, Fulton AM. Selective cyclooxygenase (COX)-1 or COX-2 inhibitors control metastatic disease in a murine model of breast cancer. Cancer Res 2002; 62(8): 2343-6. PMID: 11956094
  38. Rosas C, Sinning M, Ferreira A, Fuenzalida M, Lemus D. Celecoxib decreases growth and angiogenesis and promotes apoptosis in a tumor cell line resistant to chemotherapy. Biol Res 2014; 47(1): 27. doi: 10.1186/0717-6287-47-27 PMID: 25027008
  39. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J Clin Invest 2001; 107(2): 135-42. doi: 10.1172/JCI11914 PMID: 11160126
  40. Pannunzio A, Coluccia M. Cyclooxygenase-1 (COX-1) and COX-1 inhibitors in cancer: A review of oncology and medicinal chemistry literature. Pharmaceuticals 2018; 11(4): 101. doi: 10.3390/ph11040101 PMID: 30314310
  41. Kitamura T, Kawamori T, Uchiya N, et al. Inhibitory effects of mofezolac, a cyclooxygenase-1 selective inhibitor, on intestinal carcinogenesis. Carcinogenesis 2002; 23(9): 1463-6. doi: 10.1093/carcin/23.9.1463 PMID: 12189188
  42. Niho N, Kitamura T, Takahashi M, et al. Suppression of azoxymethane‐induced colon cancer development in rats by a cyclooxygenase‐1 selective inhibitor, mofezolac. Cancer Sci 2006; 97(10): 1011-4. doi: 10.1111/j.1349-7006.2006.00275.x PMID: 16984374
  43. Elder DJ, Halton DE, Hague A, Paraskeva C. Induction of apoptotic cell death in human colorectal carcinoma cell lines by a cyclooxygenase-2 (COX-2)-selective nonsteroidal anti-inflammatory drug: Independence from COX-2 protein expression. Clin Cancer Res 1997; 3(10): 1679-83. PMID: 9815550
  44. Aggarwal S, Taneja N, Lin L, Orringer MB, Rehemtulla A, Beer DG. Indomethacin-induced apoptosis in esophageal adenocarcinoma cells involves upregulation of Bax and translocation of mitochondrial cytochrome C independent of COX-2 expression. Neoplasia 2000; 2(4): 346-56. doi: 10.1038/sj.neo.7900097 PMID: 11005569
  45. Vogt T, McClelland M, Jung B, et al. Progression and NSAID-induced apoptosis in malignant melanomas are independent of cyclooxygenase II. Melanoma Res 2001; 11(6): 587-99. doi: 10.1097/00008390-200112000-00005 PMID: 11725205
  46. Smith ML, Hawcroft G, Hull MA. The effect of non-steroidal anti-inflammatory drugs on human colorectal cancer cells. Eur J Cancer 2000; 36(5): 664-74. doi: 10.1016/S0959-8049(99)00333-0 PMID: 10738133
  47. Zhang S, Suvannasankha A, Crean CD, et al. OSU-03012, a novel celecoxib derivative, is cytotoxic to myeloma cells and acts through multiple mechanisms. Clin Cancer Res 2007; 13(16): 4750-8. doi: 10.1158/1078-0432.CCR-07-0136 PMID: 17699852
  48. Wu T, Leng J, Han C, Demetris AJ. The cyclooxygenase-2 inhibitor celecoxib blocks phosphorylation of Akt and induces apoptosis in human cholangiocarcinoma cells. Mol Cancer Ther 2004; 3(3): 299-307. doi: 10.1158/1535-7163.299.3.3 PMID: 15026550
  49. He TC, Chan TA, Vogelstein B, Kinzler KW. PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 1999; 99(3): 335-45. doi: 10.1016/S0092-8674(00)81664-5 PMID: 10555149
  50. Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: Progress, challenges and recommendations. Nat Rev Drug Discov 2019; 18(1): 41-58. doi: 10.1038/nrd.2018.168 PMID: 30310233
  51. Ashburn TT, Thor KB. Drug repositioning: Identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004; 3(8): 673-83. doi: 10.1038/nrd1468 PMID: 15286734
  52. Antoszczak M, Markowska A, Markowska J, Huczyński A. Old wine in new bottles: Drug repurposing in oncology. Eur J Pharmacol 2020; 866: 172784. doi: 10.1016/j.ejphar.2019.172784 PMID: 31730760
  53. Armando RG, Mengual Gómez DL, Gomez DE. New drugs are not enough drug repositioning in oncology: An update. Int J Oncol 2020; 56(3): 651-84. doi: 10.3892/ijo.2020.4966 PMID: 32124955
  54. Masuda T, Tsuruda Y, Matsumoto Y, Uchida H, Nakayama KI, Mimori K. Drug repositioning in cancer: The current situation in Japan. Cancer Sci 2020; 111(4): 1039-46. doi: 10.1111/cas.14318 PMID: 31957175
  55. Mudduluru G, Walther W, Kobelt D, et al. Repositioning of drugs for intervention in tumor progression and metastasis: Old drugs for new targets. Drug Resist Updat 2016; 26: 10-27. doi: 10.1016/j.drup.2016.03.002 PMID: 27180307
  56. Nowak-Sliwinska P, Scapozza L, Altaba RA. Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer. Biochim Biophys Acta Rev Cancer 2019; 1871(2): 434-54. doi: 10.1016/j.bbcan.2019.04.005 PMID: 31034926
  57. Serafin MB, Bottega A, da Rosa TF, et al. Drug repositioning in oncology. Am J Ther 2021; 28(1): e111-7. doi: 10.1097/MJT.0000000000000906 PMID: 31033488
  58. Corbett A, Williams G, Ballard C. Drug repositioning in Alzheimer’s disease. Front Biosci 2015; 7(1): 184-8. doi: 10.2741/s432 PMID: 25961694
  59. de Castro AA, da Cunha EFF, Pereira AF, et al. Insights into the drug repositioning applied to the Alzheimer’s disease treatment and future perspectives. Curr Alzheimer Res 2018; 15(12): 1161-78. doi: 10.2174/1567205015666180813150703 PMID: 30101709
  60. Grammer AC, Lipsky PE. Drug repositioning strategies for the identification of novel therapies for rheumatic autoimmune inflammatory diseases. Rheum Dis Clin North Am 2017; 43(3): 467-80. doi: 10.1016/j.rdc.2017.04.010 PMID: 28711146
  61. Huo Y, Zhang HY. Genetic mechanisms of asthma and the implications for drug repositioning. Genes 2018; 9(5): 237. doi: 10.3390/genes9050237 PMID: 29751569
  62. Grammer AC, Ryals MM, Heuer SE, et al. Drug repositioning in SLE: Crowd-sourcing, literature-mining and Big Data analysis. Lupus 2016; 25(10): 1150-70. doi: 10.1177/0961203316657437 PMID: 27497259
  63. Mathew B, Hobrath JV, Lu W, Li Y, Reynolds RC. Synthesis and preliminary assessment of the anticancer and Wnt/β-catenin inhibitory activity of small amide libraries of fenamates and profens. Med Chem Res 2017; 26(11): 3038-45. doi: 10.1007/s00044-017-2001-z PMID: 29104411
  64. Shepeta Y, Lozynskyi A, Sulyma M, Nektegayev I, Grellier P, Lesyk R. Synthesis and biological activity evaluation of new thiazolidinone-diclofenac hybrid molecules. Phosphorus Sulfur Silicon Relat Elem 2020; 195(10): 836-41. doi: 10.1080/10426507.2020.1759060
  65. Galisteo A, Jannus F, García GA, et al. Diclofenac n-derivatives as therapeutic agents with anti-inflammatory and anti-cancer effect. Int J Mol Sci 2021; 22(10): 5067. doi: 10.3390/ijms22105067 PMID: 34064702
  66. Narożna M, Kuźniak KV, Cwynar BB, Kleszcz R, Dubowska BW, Dubowska BW. The effect of novel oleanolic acid oximes conjugated with indomethacin on the Nrf2-ARE And NF-κB signaling pathways in normal hepatocytes and human hepatocellular cancer cells. Pharmaceuticals (Basel) 2020; 14(1): 32. doi: 10.3390/ph14010032 PMID: 33396453
  67. Kummari B, Polkam N, Ramesh P, et al. Design and synthesis of 1,2,3-triazole–etodolac hybrids as potent anticancer molecules. RSC Advances 2017; 7(38): 23680-6. doi: 10.1039/C6RA28525B
  68. Çoruh I, Çevik Ö, Yelekçi K, Djikic T, Küçükgüzel ŞG. Synthesis, anticancer activity, and molecular modeling of etodolac‐thioether derivatives as potent methionine aminopeptidase (type II) inhibitors. Arch Pharm 2018; 351(3-4): 1700195. doi: 10.1002/ardp.201700195 PMID: 29575045
  69. Kummari B, Ramesh P, Parsharamulu R, et al. Design and synthesis of new etodolac‐pyridazinones as potent anticancer agents using Pb(OAc)4 to assist N‐N bond formation. ChemistrySelect 2018; 3(18): 5050-4. doi: 10.1002/slct.201800459
  70. Kummari B, Ramesh P, Polkam N, Malthum S, Vishnuvardhan M, Anireddy J. Design, synthesis, and cytotoxic evaluation of etodolac-1,3,4-oxadiazole-1,2,3-triazole molecules. SynOpen 2018; 02(01): 0017-24. doi: 10.1055/s-0036-1591754
  71. Neeraja P, Srinivas S, Banothu V, Mukkanti K, Dubey PK, Pal S. Synthesis, biological evaluation and docking study of etodolac-triazole conjugate. Chem Sci Int 2020; 29: 35-51. doi: 10.9734/CSJI/2020/v29i930204
  72. Koç HC, Atlihan İ, Tiber MP, Orun O, Küçükgüzel G. Synthesis of some novel hydrazide-hydrazones derived from etodolac as potential anti-prostate cancer agents. J Res Pharm 2022; 26: 1-12. doi: 10.29228/jrp.97
  73. Onder CF, Siyah P, Durdagi S, Ay M, Ozpolat B. Novel etodolac derivatives as eukaryotic elongation factor 2 kinase (eEF2K) inhibitors for targeted cancer therapy. RSC Med Chem 2022; 13(7): 840-9. doi: 10.1039/D2MD00105E PMID: 35923718
  74. Nikanfar S, hajipirloo AS, Kheradmand F, Rashedi J, Heydari A. Cytotoxic effect of 2, 5-dimethyl-celecoxib as a structural analog of celecoxib on human colorectal cancer (HT-29) cell line. Cell Mol Biol 2018; 64(7): 8-13. doi: 10.14715/cmb/2018.64.7.2 PMID: 29974839
  75. Buzharevski A, Paskas S, Sárosi MB, et al. Carboranyl analogues of celecoxib with potent cytostatic activity against human melanoma and colon cancer cell lines. ChemMedChem 2019; 14(3): 315-21. doi: 10.1002/cmdc.201800685 PMID: 30602073
  76. Ngo QA, Thi THN, Pham MQ, Delfino D, Do TT. Antiproliferative and antiinflammatory coxib-combretastatin hybrids suppress cell cycle progression and induce apoptosis of MCF7 breast cancer cells. Mol Divers 2021; 25(4): 2307-19. doi: 10.1007/s11030-020-10121-2 PMID: 32602075
  77. Yamahana H, Takino T, Endo Y, Yamada H, Suzuki T, Uto Y. A novel celecoxib analog UTX-121 inhibits HT1080 cell invasion by modulating membrane-type 1 matrix metalloproteinase. Biochem Biophys Res Commun 2020; 521(1): 137-44. doi: 10.1016/j.bbrc.2019.10.092 PMID: 31629465
  78. Abdelhaleem EF, Kassab AE, El-Nassan HB, Khalil OM. Design and synthesis of novel celecoxib analogues with potential cytotoxic and pro-apoptotic activity against breast cancer cell line MCF-7. Med Chem 2022; 18(8): 903-14. doi: 10.2174/1573406418666220309123648 PMID: 35264093
  79. Abdelhaleem EF, Kassab AE, El-Nassan HB, Khalil OM. Design, synthesis, and biological evaluation of new celecoxib analogs as apoptosis inducers and cyclooxygenase‐2 inhibitors. Arch Pharm 2022; 355(11): 2200190. doi: 10.1002/ardp.202200190 PMID: 35976138
  80. Liu J, Zhang L, Guo L, et al. Novel bioactive hybrid celecoxib-HDAC inhibitor, induces apoptosis in human acute lymphoblastic leukemia cells. Bioorg Med Chem 2022; 75: 117085. doi: 10.1016/j.bmc.2022.117085 PMID: 36395680
  81. Petruzzella E, Sirota R, Solazzo I, Gandin V, Gibson D. Triple action Pt(iv) derivatives of cisplatin: A new class of potent anticancer agents that overcome resistance. Chem Sci 2018; 9(18): 4299-307. doi: 10.1039/C8SC00428E PMID: 29780561
  82. Kłobucki M, Urbaniak A, Grudniewska A, et al. Syntheses and cytotoxicity of phosphatidylcholines containing ibuprofen or naproxen moieties. Sci Rep 2019; 9(1): 220. doi: 10.1038/s41598-018-36571-1 PMID: 30659229
  83. Rayam P, Polkam N, Kummari B, et al. Synthesis and biological evaluation of new ibuprofen‐1,3,4‐oxadiazole‐1,2,3‐triazole hybrids. J Heterocycl Chem 2019; 56(1): 296-305. doi: 10.1002/jhet.3409
  84. Alderawy MQA, Alrubaie LAR, Sheri FH. Synthesis, characterization of ibuprofen N-Acyl-1,3,4-oxadiazole derivatives and anticancer activity against MCF-7 cell line. Syst Rev Pharm 2020; 11: 681-9. doi: 10.31838/srp.2020.4.100
  85. Iqbal Farooqi S, Arshad N, Perveen F, et al. Structure and surface analysis of ibuprofen-organotin conjugate: Potential anti-cancer drug candidacy of the compound is proven by in-vitro DNA binding and cytotoxicity studies. Polyhedron 2020; 192: 114845. doi: 10.1016/j.poly.2020.114845
  86. Farooqi SI, Arshad N, Channar PA, et al. New aryl Schiff bases of thiadiazole derivative of ibuprofen as DNA binders and potential anticancer drug candidates. J Biomol Struct Dyn 2021; 39(10): 3548-64. doi: 10.1080/07391102.2020.1766569 PMID: 32397836
  87. Kaur M, Muzzammel Rehman H, Kaur G, Kaur A, Bansal M. Switching of newly synthesized linker-based derivatives of non-steroidal anti-inflammatory drugs toward anti-inflammatory and anticancer activity. Bioorg Chem 2023; 133: 106406. doi: 10.1016/j.bioorg.2023.106406 PMID: 36773455
  88. Kassab AE, Gedawy EM, Hamed MIA, Doghish AS, Hassan RA. Design, synthesis, anticancer evaluation, and molecular modelling studies of novel tolmetin derivatives as potential VEGFR-2 inhibitors and apoptosis inducers. J Enzyme Inhib Med Chem 2021; 36(1): 922-39. doi: 10.1080/14756366.2021.1901089 PMID: 33896327
  89. Şenkardeş S, İhsan Han M, Gürboğa M, Özakpinar ÖB, Küçükgüzel GŞ. Synthesis and anticancer activity of novel hydrazone linkage-based aryl sulfonate derivatives as apoptosis inducers. Med Chem Res 2022; 31(2): 368-79. doi: 10.1007/s00044-021-02837-z
  90. Mathew B, Snowden TS, Connelly MC, Guy RK, Reynolds RC. A small diversity library of α-methyl amide analogs of sulindac for probing anticancer structure-activity relationships. Bioorg Med Chem Lett 2018; 28(12): 2136-42. doi: 10.1016/j.bmcl.2018.05.023 PMID: 29776741
  91. Mathew B, Hobrath JV, Connelly MC, Guy RK, Reynolds RC. Oxazole and thiazole analogs of sulindac for cancer prevention. Future Med Chem 2018; 10(7): 743-53. doi: 10.4155/fmc-2017-0182 PMID: 29671617
  92. Mathew B, Hobrath JV, Connelly MC, Guy RK, Reynolds RC. amine containing analogs of sulindac for cancer prevention. Open Med Chem J 2018; 12(1): 1-12. doi: 10.2174/1874104501812010001 PMID: 29492166
  93. Yan Z, Chong S, Lin H, et al. Design, synthesis and biological evaluation of tetrazole-containing RXRα ligands as anticancer agents. Eur J Med Chem 2019; 164: 562-75. doi: 10.1016/j.ejmech.2018.12.036 PMID: 30634084

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024