Design of Nanodrug Delivery Systems for Tumor Bone Metastasis


Cite item

Full Text

Abstract

Tumor metastasis is a complex process that is controlled at the molecular level by numerous cytokines. Primary breast and prostate tumors most commonly metastasize to bone, and the development of increasingly accurate targeted nanocarrier systems has become a research focus for more effective anti-bone metastasis therapy. This review summarizes the molecular mechanisms of bone metastasis and the principles and methods for designing bone-targeted nanocarriers and then provides an in-depth review of bone-targeted nanocarriers for the treatment of bone metastasis in the context of chemotherapy, photothermal therapy, gene therapy, and combination therapy. Furthermore, this review also discusses the treatment of metastatic and primary bone tumors, providing directions for the design of nanodelivery systems and future research.

About the authors

Xiaoqing Zhai

School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University

Email: info@benthamscience.net

Shan Peng

School of Stomatology, Weifang Medical University

Email: info@benthamscience.net

Chunyuan Zhai

School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University

Email: info@benthamscience.net

Shuai Wang

, People’s Hospital of Gaoqing County

Email: info@benthamscience.net

Meina Xie

School of Bioscience and Technology, Weifang Medical University

Author for correspondence.
Email: info@benthamscience.net

Shoudong Guo

School of Pharmacy, Weifang Medical University

Author for correspondence.
Email: info@benthamscience.net

Jingkun Bai

School of Bioscience and Technology, Weifang Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kawamura H, Yamaguchi T, Yano Y, et al. Characteristics and prognostic factors of bone metastasis in patients with colorectal cancer. Dis Colon Rectum 2018; 61(6): 673-8. doi: 10.1097/DCR.0000000000001071 PMID: 29722726
  2. Gao X, Li L, Cai X, Huang Q, Xiao J, Cheng Y. Targeting nanoparticles for diagnosis and therapy of bone tumors: Opportunities and challenges. Biomaterials 2021; 265: 120404. doi: 10.1016/j.biomaterials.2020.120404 PMID: 32987273
  3. Bergers G, Fendt SM. The metabolism of cancer cells during metastasis. Nat Rev Cancer 2021; 21(3): 162-80. doi: 10.1038/s41568-020-00320-2 PMID: 33462499
  4. Psaila B, Lyden D. The metastatic niche: Adapting the foreign soil. Nat Rev Cancer 2009; 9(4): 285-93. doi: 10.1038/nrc2621 PMID: 19308068
  5. Yip RKH, Rimes JS, Capaldo BD, et al. Mammary tumour cells remodel the bone marrow vascular microenvironment to support metastasis. Nat Commun 2021; 12(1): 6920. doi: 10.1038/s41467-021-26556-6 PMID: 34836954
  6. Wu K, Feng J, Lyu F, et al. Exosomal miR-19a and IBSP cooperate to induce osteolytic bone metastasis of estrogen receptor-positive breast cancer. Nat Commun 2021; 12(1): 5196. doi: 10.1038/s41467-021-25473-y PMID: 34465793
  7. Vanderburgh JP, Kwakwa KA, Werfel TA, et al. Systemic delivery of a Gli inhibitor via polymeric nanocarriers inhibits tumor-induced bone disease. J Control Release 2019; 311-312: 257-72. doi: 10.1016/j.jconrel.2019.08.038 PMID: 31494183
  8. Al Zein M, Boukhdoud M, Shammaa H, et al. Immunotherapy and immunoevasion of colorectal cancer. Drug Discov Today 2023; 28(9): 103669. doi: 10.1016/j.drudis.2023.103669 PMID: 37328052
  9. Underwood PW, Ruff SM, Pawlik TM. Update on targeted therapy and immunotherapy for metastatic colorectal cancer. Cells 2024; 13(3): 245. doi: 10.3390/cells13030245 PMID: 38334637
  10. Shen Y, Lv Y. Dual targeted zeolitic imidazolate framework nanoparticles for treating metastatic breast cancer and inhibiting bone destruction. Colloids Surf B Biointerfaces 2022; 219: 112826. doi: 10.1016/j.colsurfb.2022.112826 PMID: 36115265
  11. Hani U, Gowda BHJ, Haider N, et al. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review. AAPS PharmSciTech 2023; 24(8): 233. doi: 10.1208/s12249-023-02670-0 PMID: 37973643
  12. Ashique S, Sandhu NK, Chawla V, Chawla PA. Targeted drug delivery: Trends and perspectives. Curr Drug Deliv 2021; 18(10): 1435-55. doi: 10.2174/1567201818666210609161301 PMID: 34151759
  13. Ashique S, Garg A, Mishra N, et al. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC). Naunyn Schmiedebergs Arch Pharmacol 2023; 396(11): 2769-92. doi: 10.1007/s00210-023-02522-5 PMID: 37219615
  14. Ashique S, Upadhyay A, Kumar N, Chauhan S, Mishra N. Metabolic syndromes responsible for cervical cancer and advancement of nanocarriers for efficient targeted drug delivery- A review. Adv Cancer Bio - Metastasis 2022; 4: 100041. doi: 10.1016/j.adcanc.2022.100041
  15. Younis NK, Roumieh R, Bassil EP, Ghoubaira JA, Kobeissy F, Eid AH. Nanoparticles: Attractive tools to treat colorectal cancer. Semin Cancer Biol 2022; 86(Pt 2): 1-13. doi: 10.1016/j.semcancer.2022.08.006 PMID: 36028154
  16. Yang M, Li H, Liu X, et al. Fe-doped carbon dots: A novel biocompatible nanoplatform for multi-level cancer therapy. J Nanobiotechnol 2023; 21(1): 431. doi: 10.1186/s12951-023-02194-6 PMID: 37978538
  17. Xu M, Li S. Nano-drug delivery system targeting tumor microenvironment: A prospective strategy for melanoma treatment. Cancer Lett 2023; 574: 216397. doi: 10.1016/j.canlet.2023.216397 PMID: 37730105
  18. Zhang X, Li N, Zhang G, et al. Nano Strategies for artemisinin derivatives to enhance reverse efficiency of multidrug resistance in breast cancer. Curr Pharm Des 2023; 29(43): 3458-66. doi: 10.2174/0113816128282248231205105408 PMID: 38270162
  19. Ashique S, Faiyazuddin M, Afzal O, et al. Advanced nanoparticles, the hallmark of targeted drug delivery for osteosarcoma-an updated review. J Drug Deliv Sci Technol 2023; 87: 104753. doi: 10.1016/j.jddst.2023.104753
  20. Hofbauer LC, Rachner TD, Coleman RE, Jakob F. Endocrine aspects of bone metastases. Lancet Diabetes Endocrinol 2014; 2(6): 500-12. doi: 10.1016/S2213-8587(13)70203-1 PMID: 24880565
  21. Vinay R. KusumDevi V. Potential of targeted drug delivery system for the treatment of bone metastasis. Drug Deliv 2016; 23(1): 21-9. doi: 10.3109/10717544.2014.913325 PMID: 24839990
  22. Carbone EJ, Rajpura K, Allen BN, Cheng E, Ulery BD, Lo KWH. Osteotropic nanoscale drug delivery systems based on small molecule bone-targeting moieties. Nanomedicine 2017; 13(1): 37-47. doi: 10.1016/j.nano.2016.08.015 PMID: 27562211
  23. Wang D, Miller S, Kopecková P, Kopecek J. Bone-targeting macromolecular therapeutics. Adv Drug Deliv Rev 2005; 57(7): 1049-76. doi: 10.1016/j.addr.2004.12.011 PMID: 15876403
  24. Schroeder A, Heller DA, Winslow MM, et al. Treating metastatic cancer with nanotechnology. Nat Rev Cancer 2012; 12(1): 39-50. doi: 10.1038/nrc3180 PMID: 22193407
  25. Cheng H, Chawla A, Yang Y, et al. Development of nanomaterials for bone-targeted drug delivery. Drug Discov Today 2017; 22(9): 1336-50. doi: 10.1016/j.drudis.2017.04.021 PMID: 28487069
  26. Adjei I, Temples M, Brown S, Sharma B. Targeted nanomedicine to treat bone metastasis. Pharmaceutics 2018; 10(4): 205. doi: 10.3390/pharmaceutics10040205 PMID: 30366428
  27. van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJM, Lammers T. Smart cancer nano-medicine. Nat Nanotechnol 2019; 14(11): 1007-17. doi: 10.1038/s41565-019-0567-y PMID: 31695150
  28. Zhou X, Yan N, Cornel EJ, et al. Bone-targeting polymer vesicles for simultaneous imaging and effective malignant bone tumor treatment. Biomaterials 2021; 269: 120345. doi: 10.1016/j.biomaterials.2020.120345 PMID: 33172607
  29. Cheng Y, Xu T. The effect of dendrimers on the pharmacodynamic and pharmacokinetic behaviors of non-covalently or covalently attached drugs. Eur J Med Chem 2008; 43(11): 2291-7. doi: 10.1016/j.ejmech.2007.12.021 PMID: 18276038
  30. Nadar RA, Margiotta N, Iafisco M, van den Beucken JJJP, Boerman OC, Leeuwenburgh SCG. Bisphosphonate‐functionalized imaging agents, anti‐tumor agents and nanocarriers for treatment of bone cancer. Adv Healthc Mater 2017; 6(8): 1601119. doi: 10.1002/adhm.201601119 PMID: 28207199
  31. Yang W, Li Y, Cheng Y, Wu Q, Wen L, Xu T. Evaluation of phenylbutazone and poly(amidoamine) dendrimers interactions by a combination of solubility, 2D-NOESY NMR, and isothermal titration calorimetry studies. J Pharm Sci 2009; 98(3): 1075-85. doi: 10.1002/jps.21519 PMID: 18680167
  32. Liu J, Zeng Y, Shi S, et al. Design of polyaspartic acid peptide-poly (ethylene glycol)-poly (ϵ-caprolactone) nanoparticles as a carrier of hydrophobic drugs targeting cancer metastasized to bone. Int J Nanomed 2017; 12: 3561-75. doi: 10.2147/IJN.S133787 PMID: 28507436
  33. Lee D, Heo DN, Kim HJ, et al. Inhibition of osteoclast differentiation and bone resorption by bisphosphonate-conjugated gold nanoparticles. Sci Rep 2016; 6(1): 27336. doi: 10.1038/srep27336 PMID: 27251863
  34. Ubellacker JM, Baryawno N, Severe N, et al. Modulating bone marrow hematopoietic lineage potential to prevent bone metastasis in breast cancer. Cancer Res 2018; 78(18): 5300-14. doi: 10.1158/0008-5472.CAN-18-0548 PMID: 30065048
  35. Zhang B, Zhao J, Yan H, et al. A novel nano delivery system targeting different stages of osteoclasts. Biomater Sci 2022; 10(7): 1821-30. doi: 10.1039/D2BM00076H PMID: 35244664
  36. Chen F, Zeng Y, Qi X, et al. Targeted salinomycin delivery with EGFR and CD133 aptamers based dual-ligand lipid-polymer nanoparticles to both osteosarcoma cells and cancer stem cells. Nanomedicine 2018; 14(7): 2115-27. doi: 10.1016/j.nano.2018.05.015 PMID: 29898423
  37. Yang K, Miron RJ, Bian Z, Zhang YF. A bone-targeting drug-delivery system based on Semaphorin 3A gene therapy ameliorates bone loss in osteoporotic ovariectomized mice. Bone 2018; 114: 40-9. doi: 10.1016/j.bone.2018.06.003 PMID: 29883786
  38. Gu Y, Chen X, Zhang H, et al. Study on the cellular internalization mechanisms and in vivo anti-bone metastasis prostate cancer efficiency of the peptide T7-modified polypeptide nanoparticles. Drug Deliv 2020; 27(1): 161-9. doi: 10.1080/10717544.2019.1709923 PMID: 31913730
  39. Niu Y, Yang H, Yu Z, et al. Intervention with the bone-associated tumor vicious cycle through dual-protein therapeutics for treatment of skeletal-related events and bone metastases. ACS Nano 2022; 16(2): 2209-23. doi: 10.1021/acsnano.1c08269 PMID: 35077154
  40. Zhang G, Guo B, Wu H, et al. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat Med 2012; 18(2): 307-14. doi: 10.1038/nm.2617 PMID: 22286306
  41. Cole LE, Vargo-Gogola T, Roeder RK. Targeted delivery to bone and mineral deposits using bisphosphonate ligands. Adv Drug Deliv Rev 2016; 99(Pt A): 12-27. doi: 10.1016/j.addr.2015.10.005 PMID: 26482186
  42. Liu Y, Yu P, Peng X, et al. Hexapeptide-conjugated calcitonin for targeted therapy of osteoporosis. J Control Release 2019; 304: 39-50. doi: 10.1016/j.jconrel.2019.04.042 PMID: 31054990
  43. Bhandari KH, Newa M, Chapman J, Doschak MR. Synthesis, characterization and evaluation of bone targeting salmon calcitonin analogs in normal and osteoporotic rats. J Control Release 2012; 158(1): 44-52. doi: 10.1016/j.jconrel.2011.09.096 PMID: 22001608
  44. Jadhav S, Käkelä M, Bourgery M, et al. In vivo bone-targeting of Bis(phosphonate)-conjugated double helical RNA monitored by positron emission tomography. Mol Pharm 2016; 13(7): 2588-95. doi: 10.1021/acs.molpharmaceut.6b00261 PMID: 27218688
  45. Sun W, Ge K, Jin Y, et al. Bone-targeted nanoplatform combining zoledronate and photothermal therapy to treat breast cancer bone metastasis. ACS Nano 2019; 13(7): 7556-67. doi: 10.1021/acsnano.9b00097 PMID: 31259530
  46. Qiao H, Cui Z, Yang S, et al. Targeting osteocytes to attenuate early breast cancer bone metastasis by theranostic upconversion nanoparticles with responsive plumbagin release. ACS Nano 2017; 11(7): 7259-73. doi: 10.1021/acsnano.7b03197 PMID: 28692257
  47. Kim Y, Zhang Z, Shim JH, Lee TS, Tung CH. A cell surface clicked navigation system to direct specific bone targeting. Bioorg Med Chem 2018; 26(3): 758-64. doi: 10.1016/j.bmc.2017.12.037 PMID: 29306547
  48. von Moos R, Costa L, Gonzalez-Suarez E, Terpos E, Niepel D, Body JJ. Management of bone health in solid tumours: From bisphosphonates to a monoclonal antibody. Cancer Treat Rev 2019; 76: 57-67. doi: 10.1016/j.ctrv.2019.05.003 PMID: 31136850
  49. Wang Y, Huang Q, He X, et al. Multifunctional melanin-like nanoparticles for bone-targeted chemo-photothermal therapy of malignant bone tumors and osteolysis. Biomaterials 2018; 183: 10-9. doi: 10.1016/j.biomaterials.2018.08.033 PMID: 30144589
  50. Nguyen TDT, Pitchaimani A, Ferrel C, Thakkar R, Aryal S. Nano-confinement-driven enhanced magnetic relaxivity of SPIONs for targeted tumor bioimaging. Nanoscale 2018; 10(1): 284-94. doi: 10.1039/C7NR07035G PMID: 29210434
  51. Wu X, Hu Z, Nizzero S, et al. Bone-targeting nanoparticle to codeliver decitabine and arsenic trioxide for effective therapy of myelodysplastic syndrome with low systemic toxicity. J Control Release 2017; 268: 92-101. doi: 10.1016/j.jconrel.2017.10.012 PMID: 29042320
  52. Desai D, Zhang J, Sandholm J, et al. Lipid bilayer-gated mesoporous silica nanocarriers for tumor-targeted delivery of zoledronic acid in vivo. Mol Pharm 2017; 14(9): 3218-27. doi: 10.1021/acs.molpharmaceut.7b00519 PMID: 28737925
  53. Rotman SG, Grijpma DW, Richards RG, Moriarty TF, Eglin D, Guillaume O. Drug delivery systems functionalized with bone mineral seeking agents for bone targeted therapeutics. J Control Release 2018; 269: 88-99. doi: 10.1016/j.jconrel.2017.11.009 PMID: 29127000
  54. Rohanizadeh R, Deng Y, Verron E. Therapeutic actions of curcumin in bone disorders. Bonekey Rep 2016; 5: 793. doi: 10.1038/bonekey.2016.20 PMID: 26962450
  55. Wang Y, Jiang C, He W, et al. Targeted imaging of damaged bone in vivo with gemstone spectral computed tomography. ACS Nano 2016; 10(4): 4164-72. doi: 10.1021/acsnano.5b07401 PMID: 27043072
  56. Feng X, Liu X, Cai X, et al. The influence of tetracycline inducible targeting rat pparγ gene silencing on the osteogenic and adipogenic differentiation of bone marrow stromal cells. Curr Pharm Des 2016; 22(41): 6330-8. doi: 10.2174/1381612822666160708223353 PMID: 27396594
  57. Wang H, Liu J, Tao S, et al. Tetracycline-grafted PLGA nanoparticles as bone-targeting drug delivery system. Int J Nanomed 2015; 10: 5671-85. PMID: 26388691
  58. Hao Z, Fan W, Hao J, et al. Efficient delivery of micro RNA to bone-metastatic prostate tumors by using aptamer-conjugated atelocollagen in vitro and in vivo. Drug Deliv 2016; 23(3): 864-71. doi: 10.3109/10717544.2014.920059 PMID: 24892627
  59. Pourtau L, Oliveira H, Thevenot J, et al. Antibody-functionalized magnetic polymersomes: In vivo targeting and imaging of bone metastases using high resolution MRI. Adv Healthc Mater 2013; 2(11): 1420-4. doi: 10.1002/adhm.201300061 PMID: 23606565
  60. Wang M, Cai X, Yang J, et al. A targeted and pH-responsive bortezomib nanomedicine in the treatment of metastatic bone tumors. ACS Appl Mater Interfaces 2018; 10(48): 41003-11. doi: 10.1021/acsami.8b07527 PMID: 30403331
  61. Ross MH, Esser AK, Fox GC, et al. Bone-induced expression of integrin β3 enables targeted nanotherapy of breast cancer metastases. Cancer Res 2017; 77(22): 6299-312. doi: 10.1158/0008-5472.CAN-17-1225 PMID: 28855208
  62. Hofbauer LC, Bozec A, Rauner M, Jakob F, Perner S, Pantel K. Novel approaches to target the microenvironment of bone metastasis. Nat Rev Clin Oncol 2021; 18(8): 488-505. doi: 10.1038/s41571-021-00499-9 PMID: 33875860
  63. Li X, Liang Y, Lian C, et al. CST6 protein and peptides inhibit breast cancer bone metastasis by suppressing CTSB activity and osteoclastogenesis. Theranostics 2021; 11(20): 9821-32. doi: 10.7150/thno.62187 PMID: 34815788
  64. Zuo H, Yang D, Wan Y. Fam20C regulates bone resorption and breast cancer bone metastasis through osteopontin and BMP4. Cancer Res 2021; 81(20): 5242-54. doi: 10.1158/0008-5472.CAN-20-3328 PMID: 34433585
  65. O’Carrigan B, Wong MHF, Willson ML, Stockler MR, Pavlakis N, Goodwin A. Bisphosphonates and other bone agents for breast cancer. Cochrane Libr 2017; 2018(11): CD003474. doi: 10.1002/14651858.CD003474.pub4 PMID: 29082518
  66. Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J Control Release 2012; 161(2): 175-87. doi: 10.1016/j.jconrel.2011.09.063 PMID: 21945285
  67. Borsi L, Balza E, Bestagno M, et al. Selective targeting of tumoral vasculature: Comparison of different formats of an antibody (L19) to the ED‐B domain of fibronectin. Int J Cancer 2002; 102(1): 75-85. doi: 10.1002/ijc.10662 PMID: 12353237
  68. Hao T, Fu Y, Yang Y, et al. Tumor vasculature-targeting PEGylated peptide-drug conjugate prodrug nanoparticles improve chemotherapy and prevent tumor metastasis. Eur J Med Chem 2021; 219: 113430. doi: 10.1016/j.ejmech.2021.113430 PMID: 33865152
  69. Vijayaraghavalu S, Gao Y, Rahman MT, et al. Synergistic combination treatment to break cross talk between cancer cells and bone cells to inhibit progression of bone metastasis. Biomaterials 2020; 227: 119558. doi: 10.1016/j.biomaterials.2019.119558 PMID: 31654872
  70. Zheng SJ, Yang M, Luo JQ, et al. Manganese-based immunostimulatory metal–organic framework activates the cGAS-STING pathway for cancer metalloimmunotherapy. ACS Nano 2023; 17(16): 15905-17. doi: 10.1021/acsnano.3c03962 PMID: 37565626
  71. Figueroa-Espada CG, Guimarães PPG, Riley RS, Xue L, Wang K, Mitchell MJ. siRNA Lipid–polymer nanoparticles targeting E-Selectin and cyclophilin a in bone marrow for combination multiple myeloma therapy. Cell Mol Bioeng 2023; 16(4): 383-92. doi: 10.1007/s12195-023-00774-y PMID: 37810998
  72. Park SH, Keller ET, Shiozawa Y. Bone marrow microenvironment as a regulator and therapeutic target for prostate cancer bone metastasis. Calcif Tissue Int 2018; 102(2): 152-62. doi: 10.1007/s00223-017-0350-8 PMID: 29094177
  73. Ren X, Chen X, Geng Z, Su J. Bone-targeted biomaterials: Strategies and applications. Chem Eng J 2022; 446: 137133.
  74. Hu B, Zhang Y, Zhang G, et al. Research progress of bone-targeted drug delivery system on metastatic bone tumors. J Control Release 2022; 350: 377-88. doi: 10.1016/j.jconrel.2022.08.034 PMID: 36007681
  75. Zhang Y, Wei L, Miron RJ, Shi B, Bian Z. Anabolic bone formation via a site-specific bone-targeting delivery system by interfering with semaphorin 4D expression. J Bone Miner Res 2015; 30(2): 286-96. doi: 10.1002/jbmr.2322 PMID: 25088728
  76. Yuan H, Wang H, Liu J, et al. Tetracycline-grafted PLGA nanoparticles as bone-targeting drug delivery system. Int J Nanomed 2015; 10: 5671-85. doi: 10.2147/IJN.S88798
  77. Liang C, Guo B, Wu H, et al. Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference–based bone anabolic strategy. Nat Med 2015; 21(3): 288-94. doi: 10.1038/nm.3791 PMID: 25665179
  78. He Y, Huang Y, Huang Z, et al. Bisphosphonate-functionalized coordination polymer nanoparticles for the treatment of bone metastatic breast cancer. J Control Release 2017; 264: 76-88. doi: 10.1016/j.jconrel.2017.08.024 PMID: 28842315
  79. Dong X, Zou S, Guo C, Wang K, Zhao F, Fan H. Multifunctional redox-responsive and CD44 receptor targeting polymer-drug nanomedicine based curcumin and alendronate: Synthesis, characterization and in vitro evaluation. Artif Cells Nanomed Biotechnol 2017; 46(1): 168-77.
  80. Shao H, Varamini P. Breast cancer bone metastasis: A narrative review of emerging targeted drug delivery systems. Cells 2022; 11(3): 388. doi: 10.3390/cells11030388 PMID: 35159207
  81. Que Y, Yang Y, Zafar H, Wang D. Tetracycline-grafted mPEG-PLGA micelles for bone-targeting and osteoporotic improvement. Front Pharmacol 2022; 13: 993095. doi: 10.3389/fphar.2022.993095 PMID: 36188546
  82. Li C, Sun F, Tian J, et al. Continuously released Zn2+ in 3D-printed PLGA/β-TCP/Zn scaffolds for bone defect repair by improving osteoinductive and anti-inflammatory properties. Bioact Mater 2023; 24: 361-75. doi: 10.1016/j.bioactmat.2022.12.015 PMID: 36632506
  83. González-Fernández Y, Imbuluzqueta E, Patiño-García A, Blanco-Prieto M. Antitumoral-lipid-based nanoparticles: A platform for future application in osteosarcoma therapy. Curr Pharm Des 2015; 21(42): 6104-24. doi: 10.2174/1381612821666151027152534 PMID: 26503148
  84. dos Santos Ferreira D, Jesus de Oliveira Pinto BL, Kumar V, et al. Evaluation of antitumor activity and cardiac toxicity of a bone-targeted ph-sensitive liposomal formulation in a bone metastasis tumor model in mice. Nanomedicine 2017; 13(5): 1693-701. doi: 10.1016/j.nano.2017.03.005 PMID: 28343016
  85. Feng S, Wu ZX, Zhao Z, et al. Engineering of bone- and CD44-dual-targeting redox-sensitive liposomes for the treatment of orthotopic osteosarcoma. ACS Appl Mater Interfaces 2019; 11(7): 7357-68. doi: 10.1021/acsami.8b18820 PMID: 30682240
  86. Yin X, Feng S, Chi Y, et al. Estrogen-functionalized liposomes grafted with glutathione-responsive sheddable chotooligosaccharides for the therapy of osteosarcoma. Drug Deliv 2018; 25(1): 900-8. doi: 10.1080/10717544.2018.1458920 PMID: 29644882
  87. Chen H, Li G, Chi H, et al. Alendronate-conjugated amphiphilic hyperbranched polymer based on Boltorn H40 and poly(ethylene glycol) for bone-targeted drug delivery. Bioconjug Chem 2012; 23(9): 1915-24. doi: 10.1021/bc3003088 PMID: 22946621
  88. Chu W, Huang Y, Yang C, et al. Calcium phosphate nanoparticles functionalized with alendronate-conjugated polyethylene glycol (PEG) for the treatment of bone metastasis. Int J Pharm 2017; 516(1-2): 352-63. doi: 10.1016/j.ijpharm.2016.11.051 PMID: 27887884
  89. Subia B, Dey T, Sharma S, Kundu SC. Target specific delivery of anticancer drug in silk fibroin based 3D distribution model of bone-breast cancer cells. ACS Appl Mater Interfaces 2015; 7(4): 2269-79. doi: 10.1021/am506094c PMID: 25557227
  90. Zhao Y, Ye W, Liu D, et al. Redox and pH dual sensitive bone targeting nanoparticles to treat breast cancer bone metastases and inhibit bone resorption. Nanoscale 2017; 9(19): 6264-77. doi: 10.1039/C7NR00962C PMID: 28470315
  91. Morton SW, Shah NJ, Quadir MA, Deng ZJ, Poon Z, Hammond PT. Osteotropic therapy via targeted layer-by-layer nanoparticles. Adv Healthc Mater 2014; 3(6): 867-75. doi: 10.1002/adhm.201300465 PMID: 24124132
  92. Yamashita S, Katsumi H, Sakane T, Yamamoto A. Bone-targeting dendrimer for the delivery of methotrexate and treatment of bone metastasis. J Drug Target 2018; 26(9): 818-28. doi: 10.1080/1061186X.2018.1434659 PMID: 29376757
  93. Wang X, Yang Y, Jia H, et al. Peptide decoration of nanovehicles to achieve active targeting and pathology-responsive cellular uptake for bone metastasis chemotherapy. Biomater Sci 2014; 2(7): 961-71. doi: 10.1039/c4bm00020j PMID: 26082834
  94. Ekladious I, Colson YL, Grinstaff MW. Polymer–drug conjugate therapeutics: Advances, insights and prospects. Nat Rev Drug Discov 2019; 18(4): 273-94. doi: 10.1038/s41573-018-0005-0 PMID: 30542076
  95. Sun X, Gao W, Liu Y, et al. pH-responsive morphology shifting peptides coloaded with paclitaxel and sorafenib inhibit angiogenesis and tumor growth. Mater Des 2024; 238: 112619. doi: 10.1016/j.matdes.2023.112619
  96. Zhai X, Tang S, Meng F, et al. A dual drug-loaded peptide system with morphological transformation prolongs drug retention and inhibits breast cancer growth. Biomat Adv 2023; 154: 213650. doi: 10.1016/j.bioadv.2023.213650 PMID: 37857084
  97. Meng F, Zhai X, Ma J, Li A, Wang X, Bai J. Enzyme-induced shape-shifting peptide nanocarrier coloaded with paclitaxel and dipyridamole inhibits platelet function and tumor metastasis. ACS Appl Mater Interfaces 2024; 16(1): 166-77. doi: 10.1021/acsami.3c13855 PMID: 38143309
  98. Cao J, Yuan X, Sun X, et al. Matrix metalloproteinase-2-induced morphologic transformation of self-assembled peptide nanocarriers inhibits tumor growth and metastasis. ACS Materials Letters 2023; 5(3): 900-8. doi: 10.1021/acsmaterialslett.2c01093
  99. Cao J, Liu X, Yuan X, et al. Enzyme-induced morphological transformation of self-assembled peptide nanovehicles potentiates intratumoral aggregation and inhibits tumour immunosuppression. Chem Eng J 2023; 454: 140466. doi: 10.1016/j.cej.2022.140466
  100. Yoo D, Lee JH, Shin TH, Cheon J. Theranostic magnetic nanoparticles. Acc Chem Res 2011; 44(10): 863-74. doi: 10.1021/ar200085c PMID: 21823593
  101. Cao J, Gong Z, Liu X, et al. Stepwise targeting and tandem responsive peptide nanoparticles enhance immunotherapy through prolonged drug retention. ACS Mater Lett 2023; 5(10): 2604-13. doi: 10.1021/acsmaterialslett.3c00357
  102. Miller K, Eldar-Boock A, Polyak D, et al. Antiangiogenic antitumor activity of HPMA copolymer-paclitaxel-alendronate conjugate on breast cancer bone metastasis mouse model. Mol Pharm 2011; 8(4): 1052-62. doi: 10.1021/mp200083n PMID: 21545170
  103. Wang C, Sang H, Wang Y, et al. Foe to Friend: Supramolecular nanomedicines consisting of natural polyphenols and bortezomib. Nano Lett 2018; 18(11): 7045-51. doi: 10.1021/acs.nanolett.8b03015 PMID: 30264573
  104. Wang K, Guo C, Dong X, et al. In vivo evaluation of reduction-responsive alendronate-hyaluronan-curcumin polymer-drug conjugates for targeted therapy of bone metastatic breast cancer. Mol Pharm 2018; 15(7): 2764-9. doi: 10.1021/acs.molpharmaceut.8b00266 PMID: 29792799
  105. Yin Q, Tang L, Cai K, et al. Pamidronate functionalized nanoconjugates for targeted therapy of focal skeletal malignant osteolysis. Proc Natl Acad Sci USA 2016; 113(32): E4601-9. doi: 10.1073/pnas.1603316113 PMID: 27457945
  106. Zhu J, Huo Q, Xu M, et al. Bortezomib-catechol conjugated prodrug micelles: Combining bone targeting and aryl boronate-based pH-responsive drug release for cancer bone-metastasis therapy. Nanoscale 2018; 10(38): 18387-97. doi: 10.1039/C8NR03899F PMID: 30256367
  107. Wang C, Xu L, Liang C, Xiang J, Peng R, Liu Z. Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv Mater 2014; 26(48): 8154-62. doi: 10.1002/adma.201402996 PMID: 25331930
  108. Zhang H, Cui W, Qu X, et al. Photothermal-responsive nanosized hybrid polymersome as versatile therapeutics codelivery nanovehicle for effective tumor suppression. Proc Natl Acad Sci USA 2019; 116(16): 7744-9. doi: 10.1073/pnas.1817251116 PMID: 30926671
  109. Zhang S, Wang C, Chang H, Zhang Q, Cheng Y. Off-on switching of enzyme activity by near-infrared light-induced photothermal phase transition of nanohybrids. Sci Adv 2019; 5(8): eaaw4252. doi: 10.1126/sciadv.aaw4252 PMID: 31457084
  110. Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: Theranostic applications. Chem Soc Rev 2013; 42(2): 530-47. doi: 10.1039/C2CS35342C PMID: 23059655
  111. Rastinehad AR, Anastos H, Wajswol E, et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Natl Acad Sci USA 2019; 116(37): 18590-6. doi: 10.1073/pnas.1906929116 PMID: 31451630
  112. Zhou Z, Fan T, Yan Y, et al. One stone with two birds: Phytic acid-capped platinum nanoparticles for targeted combination therapy of bone tumors. Biomaterials 2019; 194: 130-8. doi: 10.1016/j.biomaterials.2018.12.024 PMID: 30593938
  113. Wang Y, Yang J, Liu H, et al. Osteotropic peptide-mediated bone targeting for photothermal treatment of bone tumors. Biomaterials 2017; 114: 97-105. doi: 10.1016/j.biomaterials.2016.11.010 PMID: 27855337
  114. Yamashita S, Katsumi H, Hibino N, et al. Development of PEGylated carboxylic acid-modified polyamidoamine dendrimers as bone-targeting carriers for the treatment of bone diseases. J Control Release 2017; 262: 10-7. doi: 10.1016/j.jconrel.2017.07.018 PMID: 28710004
  115. Yan Y, Gao X, Zhang S, et al. A Carboxyl-terminated dendrimer enables osteolytic lesion targeting and photothermal ablation of malignant bone tumors. ACS Appl Mater Interfaces 2019; 11(1): 160-8. doi: 10.1021/acsami.8b15827 PMID: 30525391
  116. Shen W, Wang Q, Shen Y, et al. Green tea catechin dramatically promotes RNAi mediated by low-molecular-weight polymers. ACS Cent Sci 2018; 4(10): 1326-33. doi: 10.1021/acscentsci.8b00363 PMID: 30410970
  117. Zhang M, Lin J, Jin J, Yu W, Qi Y, Tao H. Delivery of siRNA using functionalized gold nanorods enhances anti-osteosarcoma efficacy. Front Pharmacol 2021; 12: 799588. doi: 10.3389/fphar.2021.799588 PMID: 34987409
  118. Gerardo-Ramírez M, Keggenhoff FL, Giam V, et al. CD44 contributes to the regulation of MDR1 protein and doxorubicin chemoresistance in osteosarcoma. Int J Mol Sci 2022; 23(15): 8616. doi: 10.3390/ijms23158616 PMID: 35955749
  119. Jiang Y, He K. Nanobiotechnological approaches in osteosarcoma therapy: Versatile (nano)platforms for theranostic applications. Environ Res 2023; 229: 115939. doi: 10.1016/j.envres.2023.115939 PMID: 37088317
  120. Mekhail GM, Kamel AO, Awad GAS, et al. Synthesis and evaluation of alendronate-modified gelatin biopolymer as a novel osteotropic nanocarrier for gene therapy. Nanomedicine (Lond) 2016; 11(17): 2251-73. doi: 10.2217/nnm-2016-0151 PMID: 27527003
  121. Wang F, Pang JD, Huang LL, et al. Nanoscale polysaccharide derivative as an AEG-1 siRNA carrier for effective osteosarcoma therapy. Int J Nanomed 2018; 13: 857-75. doi: 10.2147/IJN.S147747 PMID: 29467575
  122. Chen Q, Zheng C, Li Y, et al. Bone targeted delivery of SDF-1 via Alendronate functionalized nanoparticles in guiding stem cell migration. ACS Appl Mater Interfaces 2018; 10(28): 23700-10. doi: 10.1021/acsami.8b08606 PMID: 29939711
  123. Yang YS, Xie J, Wang D, et al. Bone-targeting AAV-mediated silencing of Schnurri-3 prevents bone loss in osteoporosis. Nat Commun 2019; 10(1): 2958. doi: 10.1038/s41467-019-10809-6 PMID: 31273195
  124. Alméciga-Díaz CJ, Montaño AM, Barrera LA, Tomatsu S. Tailoring the AAV2 capsid vector for bone-targeting. Pediatr Res 2018; 84(4): 545-51. doi: 10.1038/s41390-018-0095-8 PMID: 30323349
  125. Dong Z, Gong H, Gao M, et al. Polydopamine nanoparticles as a versatile molecular loading platform to enable imaging-guided cancer combination therapy. Theranostics 2016; 6(7): 1031-42. doi: 10.7150/thno.14431 PMID: 27217836
  126. Thamake SI, Raut SL, Gryczynski Z, Ranjan AP, Vishwanatha JK. Alendronate coated poly-lactic-co-glycolic acid (PLGA) nanoparticles for active targeting of metastatic breast cancer. Biomaterials 2012; 33(29): 7164-73. doi: 10.1016/j.biomaterials.2012.06.026 PMID: 22795543
  127. Li C, Zhang Y, Chen G, Hu F, Zhao K, Wang Q. Engineered multifunctional nanomedicine for simultaneous stereotactic chemotherapy and inhibited osteolysis in an orthotopic model of bone metastasis. Adv Mater 2017; 29(13): 1605754. doi: 10.1002/adma.201605754 PMID: 28134449
  128. Ma Y, Chen L, Li X, et al. Rationally integrating peptide-induced targeting and multimodal therapies in a dual-shell theranostic platform for orthotopic metastatic spinal tumors. Biomaterials 2021; 275: 120917. doi: 10.1016/j.biomaterials.2021.120917 PMID: 34182327
  129. Xiu Y, Xu H, Zhao C, et al. Chloroquine reduces osteoclastogenesis in murine osteoporosis by preventing TRAF3 degradation. J Clin Invest 2014; 124(1): 297-310. doi: 10.1172/JCI66947 PMID: 24316970
  130. Zhang Y, Sha R, Zhang L, et al. Harnessing copper-palladium alloy tetrapod nanoparticle-induced pro-survival autophagy for optimized photothermal therapy of drug-resistant cancer. Nat Commun 2018; 9(1): 4236. doi: 10.1038/s41467-018-06529-y PMID: 30315154
  131. Wang Y, Chen H, Lin K, et al. Breaking the vicious cycle between tumor cell proliferation and bone resorption by chloroquine-loaded and bone-targeted polydopamine nanoparticles. Sci China Mater 2021; 64(2): 474-87. doi: 10.1007/s40843-020-1405-8
  132. Liu C, Hu A, Chen H, et al. The osteogenic niche-targeted arsenic nanoparticles prevent colonization of disseminated breast tumor cells in the bone. Acta Pharm Sin B 2022; 12(1): 364-77. doi: 10.1016/j.apsb.2021.06.012 PMID: 35127392
  133. Fishbein I, Alferiev IS, Nyanguile O, et al. Bisphosphonate-mediated gene vector delivery from the metal surfaces of stents. Proc Natl Acad Sci USA 2006; 103(1): 159-64. doi: 10.1073/pnas.0502945102 PMID: 16371477
  134. Ashique S, Afzal O, Hussain A, et al. It’s all about plant derived natural phytoconstituents and phytonanomedicine to control skin cancer. J Drug Deliv Sci Technol 2023; 84: 104495. doi: 10.1016/j.jddst.2023.104495
  135. Liu Y, Liu Y, Sun X, Wang Y, Du C, Bai J. Morphologically transformable peptide nanocarriers coloaded with doxorubicin and curcumin inhibit the growth and metastasis of hepatocellular carcinoma. Mater Today Bio 2024; 24: 100903. doi: 10.1016/j.mtbio.2023.100903 PMID: 38130427
  136. Kfoury Y, Baryawno N, Severe N, Mei S, Gustafsson K, Hirz T. Human prostate cancer bone metastases have an actionable immunosuppressive microenvironment. Cancer Cell 2021; 39(11): 1464-78. doi: 10.1016/j.ccell.2021.09.005

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers