Exploration of the Mechanisms Underlying Yu's Enema Formula in Treating Ulcerative Colitis by Blocking the RhoA/ROCK Pathway based on Network Pharmacology, High-performance Liquid Chromatography Analysis, and Experimental Verification


Cite item

Full Text

Abstract

Background:The traditional Chinese medicine formula, Yu's Enema Formula (YEF), has demonstrated potential in the treatment of Ulcerative Colitis (UC).

Objective:This study aimed to unveil the anti-UC mechanisms of YEF.

Methods:Utilizing public databases, we obtained YEF and UC-related targets. GO and KEGG analyses were conducted via clusterProfiler and Reactome. The STRING database facilitated the construction of the PPI network, and hub targets were selected using cytoHubba. We used R software for differential expression and correlation analyses, and molecular docking was performed with PyMOL and AutoDock. HPLC analysis identified the compounds in YEF. For in vivo validation, a UC rat model was employed.

Results and Discussion:495 YEF-UC overlapping targets were identified. GO and KEGG analyses indicated enrichment in exogenous stimuli response, peptide response, positive MAPK cascade regulation, interleukin- related signaling, and the TLR4 cascade. Hub targets included CTNNB1, JUN, MAPK1, MAPK3, SRC, STAT3, TLR4, TP53, and RELA, which were often interconnected. Molecular docking revealed quercetin's strong binding affinity with CTNNB1, MAPK1, MAPK3, SRC, STAT3, TLR4, and TP53, consistent with HPLC analysis. In vivo experiments suggested that YEF has the potential to alleviate UC symptoms and protect the intestinal mucosal barrier by inhibiting the RhoA/ROCK pathway.

Conclusion:YEF may safeguard the intestinal mucosal barrier in UC by targeting CTNNB1, MAPK1, MAPK3, SRC, STAT3, TLR4, and TP53, while blocking the RhoA/ROCK pathway.

About the authors

Binbin Liu

Department of Digestion, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University

Email: info@benthamscience.net

Jie Zhang

Department of Digestion, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University

Email: info@benthamscience.net

Xiaoqi Wang

Department of Digestion, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University

Email: info@benthamscience.net

Wei Ye

Department of Digestion, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University

Author for correspondence.
Email: info@benthamscience.net

Jiaming Yao

Department of Digestion, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Sun J, Zhao P, Ding X, et al. Cayratia japonica prevents ulcerative colitis by promoting M2 macrophage polarization through blocking the TLR4/MAPK/NF-κB pathway. Mediators Inflamm 2022; 2022: 1-20. doi: 10.1155/2022/1108569 PMID: 36619207
  2. You W, Xu Z, Di A, et al. Mechanism by which Tong Xie Yao Fang heals the intestinal mucosa of rats with ulcerative colitis through the Hippo pathway. Evid Based Complement Alternat Med 2021; 2021: 1-11. doi: 10.1155/2021/5533914 PMID: 34504536
  3. Yang Y, Song J, Liu N, et al. Salvianolic acid A relieves cognitive disorder after chronic cerebral ischemia: Involvement of Drd2/Cryab/NF-κB pathway. Pharmacol Res 2022; 175: 105989. doi: 10.1016/j.phrs.2021.105989 PMID: 34800628
  4. Chen J, Shen B, Jiang Z. Traditional Chinese medicine prescription Shenling BaiZhu powder to treat ulcerative colitis: Clinical evidence and potential mechanisms. Front Pharmacol 2022; 13: 978558. doi: 10.3389/fphar.2022.978558 PMID: 36160392
  5. Gao H, Liang J, Duan J, et al. A prognosis marker SLC2A3 correlates with EMT and immune signature in colorectal cancer. Front Oncol 2021; 11: 638099. doi: 10.3389/fonc.2021.638099 PMID: 34211835
  6. Lai LQ, Ye B. Research of the effect of Yu’s enema on IL-8, IL-10, TNF-α levels to ulcerative colitis rats. Chin J Health Lab Tec 2016; 26: 3221-7.
  7. Yang YT. Effect of the enema treatment of Yu’s clearing heat and activating blood on β-arrestin 2 signaling pathway in ulcerative colitis. China: Zhejiang Chinese Medical University 2018.
  8. Jia L, Zhou H, Li W, Lv Z. Network pharmacology integrated molecular docking revealed the mechanism of Jianpi Yiqi Taohua decoction against ulcerative colitis. Med Sci Monit 2022; 28: e933537. doi: 10.12659/MSM.933537 PMID: 35173140
  9. Liu BB, Yao JM, Ye W, Wang JL, Yang YT, Wang XQ. Experimental study on the enema treatment of Yu’s clearing heat and activating blood method for ulcerative colitis. Zhejiang J Trad Chin Med 2017; 52: 574-5.
  10. Song K, Sun Y, Liu H, et al. Network pharmacology and bioinformatics methods reveal the mechanism of berberine in the treatment of ischaemic stroke. Evid Based Complement Alternat Med 2022; 2022: 1-17. doi: 10.1155/2022/5160329 PMID: 35815278
  11. Dong Y, Fan H, Zhang Z, et al. Berberine ameliorates DSS-induced intestinal mucosal barrier dysfunction through microbiota-dependence and Wnt/β-catenin pathway. Int J Biol Sci 2022; 18(4): 1381-97. doi: 10.7150/ijbs.65476 PMID: 35280677
  12. Dong Y, Tao B, Xue X, et al. Molecular mechanism of Epicedium treatment for depression based on network pharmacology and molecular docking technology. BMC Complem Med Ther 2021; 21(1): 222. doi: 10.1186/s12906-021-03389-w PMID: 34479552
  13. Yan D, Zheng G, Wang C, et al. HIT 2.0: An enhanced platform for Herbal Ingredients’ Targets. Nucleic Acids Res 2022; 50(D1): D1238-43. doi: 10.1093/nar/gkab1011 PMID: 34986599
  14. Ru J, Li P, Wang J, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014; 6(1): 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
  15. Huang L, Xie D, Yu Y, et al. TCMID 2.0: A comprehensive resource for TCM. Nucleic Acids Res 2018; 46(D1): D1117-20. doi: 10.1093/nar/gkx1028 PMID: 29106634
  16. Safran M, Dalah I, Alexander J, et al. GeneCards Version 3: The human gene integrator. Database (Oxford) 2010; 2010(0): baq020. doi: 10.1093/database/baq020 PMID: 20689021
  17. Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 2020; 48(D1): D845-55. PMID: 31680165
  18. Kim J, So S, Lee HJ, Park JC, Kim J, Lee H. DigSee: Disease gene search engine with evidence sentences (version cancer). Nucleic Acids Res 2013; 41(W1): W510-7. doi: 10.1093/nar/gkt531 PMID: 23761452
  19. Chen H, Boutros PC. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 2011; 12(1): 35. doi: 10.1186/1471-2105-12-35 PMID: 21269502
  20. Legeay M, Doncheva NT, Morris JH, Jensen LJ. Visualize omics data on networks with Omics Visualizer, a Cytoscape App. F1000 Res 2020; 9: 157. doi: 10.12688/f1000research.22280.1 PMID: 32399202
  21. Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284-7. doi: 10.1089/omi.2011.0118 PMID: 22455463
  22. Jassal B, Matthews L, Viteri G, et al. The reactome pathway knowledgebase. Nucleic Acids Res 2020; 48(D1): D498-503. PMID: 31691815
  23. Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021; 49(D1): D605-12. doi: 10.1093/nar/gkaa1074 PMID: 33237311
  24. Clough E, Barrett T. The gene expression Omnibus database. Methods Mol Biol 2016; 1418: 93-110. doi: 10.1007/978-1-4939-3578-9_5 PMID: 27008011
  25. Kim S, Chen J, Cheng T, et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res 2021; 49(D1): D1388-95. doi: 10.1093/nar/gkaa971 PMID: 33151290
  26. Burley SK, Bhikadiya C, Bi C, et al. RCSB protein data bank: Tools for visualizing and understanding biological macromolecules in 3D. Protein Sci 2022; 31(12): e4482. doi: 10.1002/pro.4482 PMID: 36281733
  27. Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des 2010; 24(5): 417-22. doi: 10.1007/s10822-010-9352-6 PMID: 20401516
  28. Feng C, Zhao M, Jiang L, Hu Z, Fan X. Mechanism of modified danggui sini decoction for knee osteoarthritis based on network pharmacology and molecular docking. Evid Based Complement Alternat Med 2021; 2021: 1-11. doi: 10.1155/2021/6680637 PMID: 33628311
  29. Elmastaş M, Demir A, Genç N, Dölek Ü, Güneş M. Changes in flavonoid and phenolic acid contents in some Rosa species during ripening. Food Chem 2017; 235: 154-9. doi: 10.1016/j.foodchem.2017.05.004 PMID: 28554620
  30. Liu J, Liu J, Tong X, et al. Network Pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of Huai Hua San against ulcerative colitis. Drug Des Devel Ther 2021; 15: 3255-76. doi: 10.2147/DDDT.S319786 PMID: 34349502
  31. Antoniou E, Margonis GA, Angelou A, et al. The TNBS-induced colitis animal model: An overview. Ann Med Surg (Lond) 2016; 11: 9-15. doi: 10.1016/j.amsu.2016.07.019 PMID: 27656280
  32. Yao JM, Liu BB, Ye W, Yang YT, Wang JL, Wang XQ. The influence of Yu’s enema treatment on the expression of β-arrestin1/2, δ-opioid receptor, Bcl-2, and NF-κB in the colonic mucosa of rats with ulcerative colitis models. Zhejiang J Trad Chin Med 2021; 56: 678-9.
  33. Nan Q, Ye Y, Tao Y, et al. Alterations in metabolome and microbiome signatures provide clues to the role of antimicrobial peptide KT2 in ulcerative colitis. Front Microbiol 2023; 14: 1027658. doi: 10.3389/fmicb.2023.1027658 PMID: 36846795
  34. Gao Y, Zhou B, Zhang H, et al. L-Ergothioneine exhibits protective effects against dextran sulfate sodium-induced colitis in mice. ACS Omega 2022; 7(25): 21554-65. doi: 10.1021/acsomega.2c01350 PMID: 35785312
  35. Sun Y, Zhang Z, Zheng CQ, Sang LX. Mucosal lesions of the upper gastrointestinal tract in patients with ulcerative colitis: A review. World J Gastroenterol 2021; 27(22): 2963-78. doi: 10.3748/wjg.v27.i22.2963 PMID: 34168401
  36. Pravda J. Can ulcerative colitis be cured? Discov Med 2019; 27(149): 197-200. PMID: 31361982
  37. Gao W, Wang C, Yu L, et al. Chlorogenic acid attenuates dextran sodium sulfate-induced ulcerative colitis in mice through MAPK/ERK/JNK pathway. BioMed Res Int 2019; 2019: 1-13. doi: 10.1155/2019/6769789 PMID: 31139644
  38. Ma H, Zhou M, Duan W, Chen L, Wang L, Liu P. Anemoside B4 prevents acute ulcerative colitis through inhibiting of TLR4/NF-κB/MAPK signaling pathway. Int Immunopharmacol 2020; 87: 106794. doi: 10.1016/j.intimp.2020.106794 PMID: 32688280
  39. Bai XS, Bai G, Tang LD, Li Y, Huan Y, Wang H. MiR-195 alleviates ulcerative colitis in rats via MAPK signaling pathway. Eur Rev Med Pharmacol Sci 2020; 24(5): 2640-6. PMID: 32196614
  40. Ma Y, Du Y, Yang J, He Q, Wang H, Lin X. Anti-inflammatory effect of Irisin on LPS-stimulated macrophages through inhibition of MAPK pathway. Physiol Res 2023; 72(2): 235-49. doi: 10.33549/physiolres.934937 PMID: 37159857
  41. Nakase H, Sato N, Mizuno N, Ikawa Y. The influence of cytokines on the complex pathology of ulcerative colitis. Autoimmun Rev 2022; 21(3): 103017. doi: 10.1016/j.autrev.2021.103017 PMID: 34902606
  42. Shamoun L, Skarstedt M, Andersson RE, Wågsäter D, Dimberg J. Association study on IL-4, IL-4Rα and IL-13 genetic polymorphisms in Swedish patients with colorectal cancer. Clin Chim Acta 2018; 487: 101-6. doi: 10.1016/j.cca.2018.09.024 PMID: 30227113
  43. Zhu L, Dai LM, Shen H, et al. Qing Chang Hua Shi granule ameliorate inflammation in experimental rats and cell model of ulcerative colitis through MEK/ERK signaling pathway. Biomed Pharmacother 2019; 116: 108967. doi: 10.1016/j.biopha.2019.108967 PMID: 31102937
  44. Yang Q, Ma L, Zhang C, et al. Exploring the mechanism of indigo naturalis in the treatment of ulcerative colitis based on TLR4/MyD88/NF-κB signaling pathway and gut microbiota. Front Pharmacol 2021; 12: 674416. doi: 10.3389/fphar.2021.674416 PMID: 34366843
  45. Dai Y, Lu Q, Li P, et al. Xianglian pill attenuates ulcerative colitis through TLR4/MyD88/NF-κB signaling pathway. J Ethnopharmacol 2023; 300: 115690. doi: 10.1016/j.jep.2022.115690 PMID: 36075274
  46. Wu X, Wei S, Chen M, et al. P2RY13 exacerbates intestinal inflammation by damaging the intestinal mucosal barrier via activating IL-6/STAT3 pathway. Int J Biol Sci 2022; 18(13): 5056-69. doi: 10.7150/ijbs.74304 PMID: 35982893
  47. Wen J, Min X, Shen M, et al. ACLY facilitates colon cancer cell metastasis by CTNNB1. J Exp Clin Cancer Res 2019; 38(1): 401. doi: 10.1186/s13046-019-1391-9 PMID: 31511060
  48. Li F, Yan H, Jiang L, Zhao J, Lei X, Ming J. Cherry polyphenol extract ameliorated dextran sodium sulfate-induced ulcerative colitis in mice by suppressing Wnt/β-Catenin signaling pathway. Foods 2021; 11(1): 49. doi: 10.3390/foods11010049 PMID: 35010176
  49. Sharma A, Tirpude NV, Kulurkar PM, Sharma R, Padwad Y. Berberis lycium fruit extract attenuates oxi-inflammatory stress and promotes mucosal healing by mitigating NF-κB/c-Jun/MAPKs signalling and augmenting splenic Treg proliferation in a murine model of dextran sulphate sodium-induced ulcerative colitis. Eur J Nutr 2020; 59(6): 2663-81. doi: 10.1007/s00394-019-02114-1 PMID: 31620885
  50. Dou B, Hu W, Song M, Lee RJ, Zhang X, Wang D. Anti-inflammation of Erianin in dextran sulphate sodium-induced ulcerative colitis mice model via collaborative regulation of TLR4 and STAT3. Chem Biol Interact 2020; 324: 109089. doi: 10.1016/j.cbi.2020.109089 PMID: 32272095
  51. Xue HH, Li JJ, Li SF, et al. Phillygenin attenuated colon inflammation and improved intestinal mucosal barrier in DSS-induced colitis mice via TLR4/Src mediated MAPK and NF-κB signaling pathways. Int J Mol Sci 2023; 24(3): 2238. doi: 10.3390/ijms24032238
  52. Zheng L, Wen XL, Dai YC. Mechanism of Jianpi Qingchang Huashi Recipe in treating ulcerative colitis: A study based on network pharmacology and molecular docking. World J Clin Cases 2021; 9(26): 7653-70. doi: 10.12998/wjcc.v9.i26.7653 PMID: 34621817
  53. Ioannou I, Chatziantoniou A, Drenios C, Christodoulou P, Kourti M, Zaravinos A. Signatures of co-deregulated genes and their transcriptional regulators in kidney cancers. Int J Mol Sci 2023; 24(7): 6577. doi: 10.3390/ijms24076577 PMID: 37047552
  54. Luo Y, Yu MH, Yan YR, et al. Rab27A promotes cellular apoptosis and ROS production by regulating the miRNA-124-3p/STAT3/RelA signalling pathway in ulcerative colitis. J Cell Mol Med 2020; 24(19): 11330-42. doi: 10.1111/jcmm.15726 PMID: 32815642
  55. Di Petrillo A, Orrù G, Fais A, Fantini MC. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother Res 2022; 36(1): 266-78. doi: 10.1002/ptr.7309 PMID: 34709675
  56. Zhou H, Yang C, Li J, et al. Quercetin serves as the major component of Xiang-lian pill to ameliorate ulcerative colitis via tipping the balance of STAT1/PPARγ and dictating the alternative activation of macrophage. J Ethnopharmacol 2023; 313: 116557. doi: 10.1016/j.jep.2023.116557 PMID: 37142141
  57. Dicarlo M, Teti G, Verna G, et al. Quercetin exposure suppresses the inflammatory pathway in intestinal organoids from winnie mice. Int J Mol Sci 2019; 20(22): 5771. doi: 10.3390/ijms20225771 PMID: 31744123
  58. Zhao Y, Luan H, Jiang H, et al. Gegen Qinlian decoction relieved DSS-induced ulcerative colitis in mice by modulating Th17/Treg cell homeostasis via suppressing IL-6/JAK2/STAT3 signaling. Phytomedicine 2021; 84: 153519. doi: 10.1016/j.phymed.2021.153519 PMID: 33640781
  59. Yao D, Dai W, Dong M, Dai C, Wu S. MUC2 and related bacterial factors: Therapeutic targets for ulcerative colitis. EBioMedicine 2021; 74: 103751. doi: 10.1016/j.ebiom.2021.103751 PMID: 34902790
  60. Vancamelbeke M, Laeremans T, Vanhove W, et al. Butyrate does not protect against inflammation-induced loss of epithelial barrier function and cytokine production in primary cell monolayers from patients with ulcerative colitis. J Crohn’s Colitis 2019; 13(10): 1351-61. doi: 10.1093/ecco-jcc/jjz064 PMID: 30919886
  61. Wang Y, Shou Z, Fan H, et al. Protective effects of oxymatrine against DSS-induced acute intestinal inflammation in mice via blocking the RhoA/ROCK signaling pathway. Biosci Rep 2019; 39(7): BSR20182297. doi: 10.1042/BSR20182297 PMID: 31262973
  62. Wang J, Zhang C, Guo C, Li X. Chitosan ameliorates DSS-induced ulcerative colitis mice by enhancing intestinal barrier function and improving microflora. Int J Mol Sci 2019; 20(22): 5751. doi: 10.3390/ijms20225751 PMID: 31731793
  63. Yang W, Zhou G, Yu T, et al. Critical role of ROCK2 activity in facilitating mucosal CD4 + T cell activation in inflammatory bowel disease. J Autoimmun 2018; 89: 125-38. doi: 10.1016/j.jaut.2017.12.009 PMID: 29269245
  64. Li Z, Gao M, Yang B, et al. Naringin attenuates MLC phosphorylation and NF-κB activation to protect sepsis-induced intestinal injury via RhoA/ROCK pathway. Biomed Pharmacother 2018; 103: 50-8. doi: 10.1016/j.biopha.2018.03.163 PMID: 29635128
  65. Guan G, Cannon RD, Coates DE, Mei L. Effect of the Rho-Kinase/ROCK signaling pathway on cytoskeleton components. Genes (Basel) 2023; 14(2): 272. doi: 10.3390/genes14020272 PMID: 36833199

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers