Enhancing the Antiproliferative Activity of Perillyl Alcohol against Glioblastoma Cell Lines through Synergistic Formulation with Natural Oils


Cite item

Full Text

Abstract

Background::Due to its volatility, photostability, and gastrointestinal toxicity, Perillyl Alcohol (POH), a monoterpenoid component of various plant species, is a chemotherapeutic drug with insufficient efficacy. Many naturally occurring bioactive compounds have well-known antiproliferative properties, including sefsol, jojoba, tea tree, and moringa oils.

Objective::This study sought to develop an oil-based Self Nanoemulsifying Drug Delivery System (SNEDDS) using tween 80 as the surfactant and Dimethyl Sulfoxide (DMSO) or Polyethylene Glycol (PEG) 400 as the cosurfactant; the oils were used in a range of 10-20% to boost POH's anticancer efficacy.

Methods::The formulations' size, charge, and impact on the viability of glioma cell lines, ANGM-CSS and A172, were evaluated.

Results::The developed SNEDDS formulations ranged from 3 nm to 362 nm in size, with electronegative surface charges between 5.05 and 17.0 mV and polydispersity indices between 0.3 and 1.0.

Conclusion::The findings indicated that the antiproliferative effect of POH-loaded Nanoemulsion (NE) could be used as a possible anticancer therapy for glioblastoma in vitro, particularly when paired with the tested natural oils. Before asserting that this delivery technique is appropriate for glioblastoma therapy, additional in vitro and in vivo investigations are required.

About the authors

Waleed Alharbi

Department of Pharmaceutics, Faculty of Pharmacy,, King Abdulaziz University

Author for correspondence.
Email: info@benthamscience.net

Abdullah Alshehri

Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST)

Email: info@benthamscience.net

Tarek Ahmed

Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University

Email: info@benthamscience.net

Shadab Md.

Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University

Email: info@benthamscience.net

Alshaimaa Almehmady

Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University

Email: info@benthamscience.net

Manal Alshabibi

Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST),

Email: info@benthamscience.net

Reem Altamimi

Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST)

Email: info@benthamscience.net

Khalid El-Say

Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University

Email: info@benthamscience.net

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  2. Ullah A, Aziz T, Ullah N, Nawaz T. Molecular mechanisms of sanguinarine in cancer prevention and treatment. Anticancer Agents Med Chem 2023; 23(7): 765-78. doi: 10.2174/1871520622666220831124321 PMID: 36045531
  3. Elimam H, El-Say KM, Cybulsky AV, Khalil H. Regulation of autophagy progress via lysosomal depletion by fluvastatin nanoparticle treatment in breast cancer cells. ACS Omega 2020; 5(25): 15476-86. doi: 10.1021/acsomega.0c01618 PMID: 32637822
  4. Fu B, Wang N, Tan HY, Li S, Cheung F, Feng Y. Multi-component herbal products in the prevention and treatment of chemotherapy-associated toxicity and side effects: A review on experimental and clinical evidences. Front Pharmacol 2018; 9: 1394. doi: 10.3389/fphar.2018.01394 PMID: 30555327
  5. Ali MA, Mohamed MI, Megahed MA, Abdelghany TM, El-Say KM. Cholesterol-based nanovesicles enhance the in vitro cytotoxicity, ex vivo intestinal absorption, and in vivo bioavailability of flutamide. Pharmaceutics 2021; 13(11): 1741. doi: 10.3390/pharmaceutics13111741 PMID: 34834155
  6. Ahmed T, Ali E, Omar A, Almehmady A, El-Say K. Enhancing ezetimibe anticancer activity through development of drug nano-micelles formulations: A promising strategy supported by molecular docking. Int J Nanomed 2023; 18(November): 6689-703. doi: 10.2147/IJN.S438704 PMID: 38026536
  7. Kassem MA, El-Sawy HS, Abd-Allah FI, Abdelghany TM, El-Say KM. Maximizing the therapeutic efficacy of imatinib mesylate–loaded niosomes on human colon adenocarcinoma using box-behnken design. J Pharm Sci 2017; 106(1): 111-22. doi: 10.1016/j.xphs.2016.07.007 PMID: 27544432
  8. Cragg GM, Pezzuto JM. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med Princ Pract 2016; 25(Suppl 2) (Suppl. 2): 41-59. doi: 10.1159/000443404 PMID: 26679767
  9. El-Sawy HS, Al-Abd AM, Ahmed TA, El-Say KM, Torchilin VP. Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: Past, present, and future perspectives. ACS Nano 2018; 12(11): 10636-64. doi: 10.1021/acsnano.8b06104 PMID: 30335963
  10. Nwodo JN, Ibezim A, Simoben CV, Ntie-Kang F. Exploring cancer therapeutics with natural products from african medicinal plants, part II: Alkaloids, terpenoids and flavonoids. Anticancer Agents Med Chem 2016; 16(1): 108-27. doi: 10.2174/1871520615666150520143827 PMID: 25991425
  11. Khan NU, Razzaq A, Rui Z, et al. Bio-evaluations of sericin coated hesperidin nanoparticles for gastric ulcer management. Colloids Surf B Biointerfaces 2024; 234: 113762. doi: 10.1016/j.colsurfb.2024.113762 PMID: 38244483
  12. Sak K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn Rev 2014; 8(16): 122-46. doi: 10.4103/0973-7847.134247 PMID: 25125885
  13. Dehelean CA, Marcovici I, Soica C, et al. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules 2021; 26(4): 1109. doi: 10.3390/molecules26041109 PMID: 33669817
  14. Øverby A, Zhao CM, Chen D. Plant phytochemicals: Potential anticancer agents against gastric cancer. Curr Opin Pharmacol 2014; 19: 6-10. doi: 10.1016/j.coph.2014.05.010 PMID: 24929966
  15. Iqbal J, Abbasi BA, Mahmood T, et al. Plant-derived anticancer agents: A green anticancer approach. Asian Pac J Trop Biomed 2017; 7(12): 1129-50. doi: 10.1016/j.apjtb.2017.10.016
  16. Huang M, Lu JJ, Huang MQ, Bao JL, Chen XP, Wang YT. Terpenoids: Natural products for cancer therapy. Expert Opin Investig Drugs 2012; 21(12): 1801-18. doi: 10.1517/13543784.2012.727395 PMID: 23092199
  17. Amawi H, Ashby CR Jr, Tiwari AK. Cancer chemoprevention through dietary flavonoids: What’s limiting? Chin J Cancer 2017; 36(1): 50. doi: 10.1186/s40880-017-0217-4 PMID: 28629389
  18. Kumar V, Bhatt P, Rahman M, et al. Fabrication, optimization, and characterization of umbelliferone β-D-galactopyranoside-loaded PLGA nanoparticles in treatment of hepatocellular carcinoma: in vitro and in vivo studies. Int J Nanomed 2017; 12: 6747-58. doi: 10.2147/IJN.S136629 PMID: 28932118
  19. El-Say KM, El-Sawy HS. Polymeric nanoparticles: Promising platform for drug delivery. Int J Pharm 2017; 528(1-2): 675-91. doi: 10.1016/j.ijpharm.2017.06.052 PMID: 28629982
  20. Chen TC, da Fonseca CO, Levin D, Schönthal AH. The monoterpenoid perillyl alcohol: Anticancer agent and medium to overcome biological barriers. Pharmaceutics 2021; 13(12): 2167. doi: 10.3390/pharmaceutics13122167 PMID: 34959448
  21. Dionísio AP, Molina G, de Carvalho DS, Dos Santos R, Bicas JL, Pastore GM. Natural flavourings from biotechnology for foods and beverages. Natural food additives, ingredients and flavourings. Elsevier 2012; pp. 231-59. doi: 10.1533/9780857095725.1.231
  22. Ahmed TA, Almehmady AM, Alharbi WS, et al. Incorporation of perillyl alcohol into lipid-based nanocarriers enhances the antiproliferative activity in malignant glioma cells. Biomedicines 2023; 11(10): 2771. doi: 10.3390/biomedicines11102771 PMID: 37893144
  23. Yuri T, Danbara N, Tsujita-Kyutoku M, et al. Perillyl alcohol inhibits human breast cancer cell growth in vitro and in vivo. Breast Cancer Res Treat 2004; 84(3): 251-60. doi: 10.1023/B:BREA.0000019966.97011.4d PMID: 15026623
  24. Sundin T, Peffley DM, Gauthier D, Hentosh P. The isoprenoid perillyl alcohol inhibits telomerase activity in prostate cancer cells. Biochimie 2012; 94(12): 2639-48. doi: 10.1016/j.biochi.2012.07.028 PMID: 22902867
  25. Crowell PL, Lin S, Vedejs E, Gould MN. Identification of metabolites of the antitumor agentd-limonene capable of inhibiting protein isoprenylation and cell growth. Cancer Chemother Pharmacol 1992; 31(3): 205-12. doi: 10.1007/BF00685549 PMID: 1464157
  26. Crowell PL, Chang RR, Ren ZB, Elson CE, Gould MN. Selective inhibition of isoprenylation of 21-26-kDa proteins by the anticarcinogen d-limonene and its metabolites. J Biol Chem 1991; 266(26): 17679-85. doi: 10.1016/S0021-9258(19)47425-5 PMID: 1894647
  27. Wiseman DA, Werner SR, Crowell PL. Cell cycle arrest by the isoprenoids perillyl alcohol, geraniol, and farnesol is mediated by p21(Cip1) and p27(Kip1) in human pancreatic adenocarcinoma cells. J Pharmacol Exp Ther 2007; 320(3): 1163-70. doi: 10.1124/jpet.106.111666 PMID: 17138864
  28. Koyama M, Sowa Y, Hitomi T, et al. Perillyl alcohol causes G1 arrest through p15INK4b and p21WAF1/Cip1 induction. Oncol Rep 2013; 29(2): 779-84. doi: 10.3892/or.2012.2167 PMID: 23233050
  29. Ripple GH, Gould MN, Arzoomanian RZ, et al. Phase I clinical and pharmacokinetic study of perillyl alcohol administered four times a day. Clin Cancer Res 2000; 6(2): 390-6. PMID: 10690515
  30. Kennedy D, Okello E, Chazot P, et al. Volatile terpenes and brain function: Investigation of the cognitive and mood effects of Mentha× Piperita L. essential oil with in vitro properties relevant to central nervous system function. Nutrients 2018; 10(8): 1029. doi: 10.3390/nu10081029 PMID: 30087294
  31. Seca A, Pinto D. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int J Mol Sci 2018; 19(1): 263. doi: 10.3390/ijms19010263 PMID: 29337925
  32. Rahman M, Ahmad MZ, Kazmi I, et al. Advancement in multifunctional nanoparticles for the effective treatment of cancer. Expert Opin Drug Deliv 2012; 9(4): 367-81. doi: 10.1517/17425247.2012.668522 PMID: 22400808
  33. Rahman M, Zaki Ahmad M, Kazmi I, et al. Emergence of nanomedicine as cancer targeted magic bullets: Recent development and need to address the toxicity apprehension. Curr Drug Discov Technol 2012; 9(4): 319-29. doi: 10.2174/157016312803305898 PMID: 22725687
  34. Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: State of the art and future directions. CA Cancer J Clin 2020; 70(4): 299-312. doi: 10.3322/caac.21613 PMID: 32478924
  35. Ohgaki H, Kleihues P. The definition of primary and secondary glioblastoma. Clin Cancer Res 2013; 19(4): 764-72. doi: 10.1158/1078-0432.CCR-12-3002 PMID: 23209033
  36. Johnson DR, Fogh SE, Giannini C, Kaufmann TJ, Raghunathan A, Theodosopoulos PV. Case-based review: Newly diagnosed glioblastoma. Neuro-Oncology Pract 2015; 2(3): 106-21. doi: 10.1093/nop/npv020
  37. Ellor SV, Pagano-Young TA, Avgeropoulos NG. Glioblastoma: Background, standard treatment paradigms, and supportive care considerations. J Law Med Ethics 2014; 42(2): 171-82. PMID: 25040381
  38. Moliterno Günel J, Piepmeier JM, Baehring JM. Malignant Brain Tumors. Malignant Brain Tumors: State-of-the-Art Treatment. Cham: Springer International Publishing 2017; pp. 1-97. doi: 10.1007/978-3-319-49864-5
  39. Date AA, Desai N, Dixit R, Nagarsenker M. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine 2010; 5(10): 1595-616. doi: 10.2217/nnm.10.126 PMID: 21143036
  40. Aldawsari HM, Elfaky MA, Fahmy UA, Aljaeid BM, Alshareef OA, El-Say KM. Development of a fluvastatin-loaded self-nanoemulsifying system to maximize therapeutic efficacy in human colorectal carcinoma cells. J Drug Deliv Sci Technol 2018; 46(April): 7-13. doi: 10.1016/j.jddst.2018.04.015
  41. El-Say KM, Ahmed TA, Ahmed OAA, Hosny KM, Abd-Allah FI. Self-nanoemulsifying lyophilized tablets for flash oral transmucosal delivery of vitamin K: Development and clinical evaluation. J Pharm Sci 2017; 106(9): 2447-56. doi: 10.1016/j.xphs.2017.01.001 PMID: 28087316
  42. Bhagwat DA, Swami PA, Nadaf SJ, et al. Capsaicin loaded solid SNEDDS for enhanced bioavailability and anticancer activity: In- vitro, in-silico, and in-vivo characterization. J Pharm Sci 2021; 110(1): 280-91. doi: 10.1016/j.xphs.2020.10.020 PMID: 33069713
  43. Ahmed T, Ali E, Kalantan A, Almehmady A, El-Say K. Exploring the enhanced antiproliferative activity of turmeric oil and 6-mercaptopurine in a combined nano-particulate system formulation. Pharmaceutics 2023; 15(7): 1901. doi: 10.3390/pharmaceutics15071901 PMID: 37514087
  44. Elimam H, Hussein J, Abdel-Latif Y, Abdel-Aziz AK, El-Say KM. Preclinical activity of fluvastatin-loaded self-nanoemulsifying delivery system against breast cancer models: Emphasis on apoptosis. J Cell Biochem 2022; 123(5): 947-63. doi: 10.1002/jcb.30238 PMID: 35342983
  45. Larsen A, Ogbonna A, Abu-Rmaileh R, Abrahamsson B, Østergaard J, Müllertz A. SNEDDS containing poorly water soluble cinnarizine; Development and in vitro characterization of dispersion, digestion and solubilization. Pharmaceutics 2012; 4(4): 641-65. doi: 10.3390/pharmaceutics4040641 PMID: 24300374
  46. Karavasili C, Andreadis II, Tsantarliotou MP, et al. Self-nanoemulsifying drug delivery systems (SNEDDS) containing rice bran oil for enhanced fenofibrate oral delivery: In vitro digestion, ex vivo permeability, and in vivo bioavailability studies. AAPS PharmSciTech 2020; 21(6): 208. doi: 10.1208/s12249-020-01765-2 PMID: 32725343
  47. Qu Y, Li A, Ma L, et al. Nose-to-brain delivery of disulfiram nanoemulsion in situ gel formulation for glioblastoma targeting therapy. Int J Pharm 2021; 597: 120250. doi: 10.1016/j.ijpharm.2021.120250 PMID: 33486040
  48. Al-Subaie MM, Hosny KM, El-Say KM, Ahmed TA, Aljaeid BM. Utilization of nanotechnology to enhance percutaneous absorption of acyclovir in the treatment of herpes simplex viral infections. Int J Nanomed 2015; 10: 3973-85. PMID: 26109856
  49. Bandyopadhyay S, Katare OP, Singh B. Optimized self nano-emulsifying systems of ezetimibe with enhanced bioavailability potential using long chain and medium chain triglycerides. Colloids Surf B Biointerfaces 2012; 100: 50-61. doi: 10.1016/j.colsurfb.2012.05.019 PMID: 22766282
  50. Parmar N, Singla N, Amin S, Kohli K. Study of cosurfactant effect on nanoemulsifying area and development of lercanidipine loaded (SNEDDS) self nanoemulsifying drug delivery system. Colloids Surf B Biointerfaces 2011; 86(2): 327-38. doi: 10.1016/j.colsurfb.2011.04.016 PMID: 21550214
  51. Alshaya HA, Alfahad AJ, Alsulaihem FM, et al. Fast-dissolving nifedipine and atorvastatin calcium electrospun nanofibers as a potential buccal delivery system. Pharmaceutics 2022; 14(2): 358. doi: 10.3390/pharmaceutics14020358 PMID: 35214093
  52. Alzahrani NM, Booq RY, Aldossary AM, et al. Liposome-encapsulated tobramycin and IDR-1018 peptide mediated biofilm disruption and enhanced antimicrobial activity against Pseudomonas aeruginosa. Pharmaceutics 2022; 14(5): 960. doi: 10.3390/pharmaceutics14050960 PMID: 35631547
  53. Ahmed OAA, Badr-Eldin SM, Tawfik MK, Ahmed TA, El-Say KM, Badr JM. Design and optimization of self-nanoemulsifying delivery system to enhance quercetin hepatoprotective activity in paracetamol-induced hepatotoxicity. J Pharm Sci 2014; 103(2): 602-12. doi: 10.1002/jps.23834 PMID: 24395640
  54. Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev 2004; 56(5): 603-18. doi: 10.1016/j.addr.2003.10.025 PMID: 15019749
  55. Azeem A, Rizwan M, Ahmad FJ, et al. Nanoemulsion components screening and selection: A technical note. AAPS PharmSciTech 2009; 10(1): 69-76. doi: 10.1208/s12249-008-9178-x PMID: 19148761
  56. Yadav SK, Mishra S, Mishra B. Eudragit-based nanosuspension of poorly water-soluble drug: Formulation and in vitro-in vivo evaluation. AAPS PharmSciTech 2012; 13(4): 1031-44. doi: 10.1208/s12249-012-9833-0 PMID: 22893314
  57. Balakumar K, Raghavan CV, selvan NT, prasad RH, Abdu S. Self nanoemulsifying drug delivery system (SNEDDS) of Rosuvastatin calcium: Design, formulation, bioavailability and pharmacokinetic evaluation. Colloids Surf B Biointerfaces 2013; 112: 337-43. doi: 10.1016/j.colsurfb.2013.08.025 PMID: 24012665
  58. Parker DJ, Chong ST, Hasell T. Sustainable inverse-vulcanised sulfur polymers. RSC Advances 2018; 8(49): 27892-9. doi: 10.1039/C8RA04446E PMID: 35542731
  59. Alamer AA, Alsaleh NB, Aodah AH, et al. Development of imeglimin electrospun nanofibers as a potential buccal antidiabetic therapeutic approach. Pharmaceutics 2023; 15(4): 1208. doi: 10.3390/pharmaceutics15041208 PMID: 37111693
  60. Andrade S, Ramalho MJ, Pereira MC, Loureiro JA. Resveratrol brain delivery for neurological disorders prevention and treatment. Front Pharmacol 2018; 9(NOV): 1261. doi: 10.3389/fphar.2018.01261 PMID: 30524273
  61. Gad HA, Roberts A, Hamzi SH, et al. Jojoba oil: An updated comprehensive review on chemistry, pharmaceutical uses, and toxicity. Polymers 2021; 13(11): 1711. https://www.mdpi.com/2073-4360/13/11/1711 doi: 10.3390/polym13111711 PMID: 34073772
  62. Abou-Zeid SM, Tahoun EA, AbuBakr HO. Ameliorative effects of jojoba oil on fipronil-induced hepatorenal- and neuro-toxicity: The antioxidant status and apoptotic markers expression in rats. Environ Sci Pollut Res Int 2021; 28(20): 25959-71. doi: 10.1007/s11356-020-12083-2 PMID: 33481197
  63. Masyita A, Mustika Sari R, Dwi Astuti A, Yasir B, Rahma Rumata N, Emran T. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem X 2022; 13: 100217.
  64. Antonietta A, Maria AO, Sabrina S, et al. Tea tree oil a new natural adjuvant for inhibiting glioblastoma growth. J Pharmacogn Phytother 2019; 11(3): 61-73. doi: 10.5897/JPP2019.0549
  65. Assmann CE, Cadoná FC, Bonadiman BSR, Dornelles EB, Trevisan G, Cruz IBM. Tea tree oil presents in vitro antitumor activity on breast cancer cells without cytotoxic effects on fibroblasts and on peripheral blood mononuclear cells. Biomed Pharmacother 2018; 103: 1253-61. doi: 10.1016/j.biopha.2018.04.096 PMID: 29864906
  66. Singh J, Gautam DNS, Sourav S, Sharma R. Role of Moringa oleifera Lam. in cancer: Phytochemistry and pharmacological insights. Food Front 2023; 4(1): 164-206. doi: 10.1002/fft2.181

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers