Cellular and Mitochondrial Pathways Contribute to SGLT2 Inhibitors-mediated Tissue Protection: Experimental and Clinical Data


Cite item

Full Text

Abstract

In metabolic syndrome and diabetes, compromised mitochondrial function emerges as a critical driver of cardiovascular disease, fueling its development and persistence, culminating in cardiac remodeling and adverse events. In this context, angiotensin II - the main interlocutor of the renin-angiotensin-aldosterone system - promotes local and systemic oxidative inflammatory processes. To highlight, the low activity/expression of proteins called sirtuins negatively participates in these processes, allowing more significant oxidative imbalance, which impacts cellular and tissue responses, causing tissue damage, inflammation, and cardiac and vascular remodeling. The reduction in energy production of mitochondria has been widely described as a significant element in all types of metabolic disorders. Additionally, high sirtuin levels and AMPK signaling stimulate hypoxia-inducible factor 1 beta and promote ketonemia. Consequently, enhanced autophagy and mitophagy advance through cardiac cells, sweeping away debris and silencing the orchestra of oxidative stress and inflammation, ultimately protecting vulnerable tissue from damage. To highlight and of particular interest, SGLT2 inhibitors (SGLT2i) profoundly influence all these mechanisms. Randomized clinical trials have evidenced a compelling picture of SGLT2i emerging as game-changers, wielding their power to demonstrably improve cardiac function and slash the rates of cardiovascular and renal events. Furthermore, driven by recent evidence, SGLT2i emerge as cellular supermolecules, exerting their beneficial actions to increase mitochondrial efficiency, alleviate oxidative stress, and curb severe inflammation. Its actions strengthen tissues and create a resilient defense against disease. In conclusion, like a treasure chest brimming with untold riches, the influence of SGLT2i on mitochondrial function holds untold potential for cardiovascular health. Unlocking these secrets, like a map guiding adventurers to hidden riches, promises to pave the way for even more potent therapeutic strategies.

About the authors

Raúl Lelio Sanz

Departamento de Patologie et Pharmacologie,, Instituto de Medicina y Biologia Experimental de Cuyo, Consejo Nacional de In vestigación Cientifica y Tecnológica (IMBECU- CONICET)

Email: info@benthamscience.net

Sebastián Menéndez

Departamento de Patologie et Pharmacologie, Instituto de Medicina y Biologia Experimental de Cuyo, Consejo Nacional de In vestigación Cientifica y Tecnológica (IMBECU- CONICET)

Email: info@benthamscience.net

Felipe Inserra

Departmento de Pathologie et Pharmacologie, Universidad Maimónides

Email: info@benthamscience.net

León Ferder

Departmento de Pathologie et Pharmacologie, Universidad Maimónides

Email: info@benthamscience.net

Walter Manucha

Departamento de Patologie et Pharmacologie,, Instituto de Medicina y Biologia Experimental de Cuyo, Consejo Nacional de In vestigación Cientifica y Tecnológica (IMBECU- CONICET),

Author for correspondence.
Email: info@benthamscience.net

References

  1. Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics-2021 update. Circulation 2021; 143(8): e254-743. doi: 10.1161/CIR.0000000000000950 PMID: 33501848
  2. Jia G, Bai H, Mather B, Hill MA, Jia G, Sowers JR. Diabetic vasculopathy: Molecular mechanisms and clinical insights. Int J Mol Sci 2024; 25(2): 804. doi: 10.3390/ijms25020804 PMID: 38255878
  3. Zhang J, Lv W, Zhang G, et al. Nrf2 and mitochondria form a mutually regulating circuit in the prevention and treatment of metabolic syndrome. Antioxid Redox Signal 2024; 2024: 0339. doi: 10.1089/ars.2023.0339 PMID: 38183629
  4. Todosenko N, Khaziakhmatova O, Malashchenko V, et al. Mitochondrial dysfunction associated with mtdna in metabolic syndrome and obesity. Int J Mol Sci 2023; 24(15): 12012. doi: 10.3390/ijms241512012 PMID: 37569389
  5. Li A, Lian L, Chen X, et al. The role of mitochondria in myocardial damage caused by energy metabolism disorders: From mechanisms to therapeutics. Free Radic Biol Med 2023; 208: 236-51. doi: 10.1016/j.freeradbiomed.2023.08.009 PMID: 37567516
  6. Preston KJ, Kawai T, Torimoto K, et al. Mitochondrial fission inhibition protects against hypertension induced by angiotensin II. Hypertens Res 2024; 2024: 7. doi: 10.1038/s41440-024-01610-0 PMID: 38383894
  7. Actis Dato V, Lange S, Cho Y. Metabolic flexibility of the heart: The role of fatty acid metabolism in health, heart failure, and cardiometabolic diseases. Int J Mol Sci 2024; 25(2): 1211. doi: 10.3390/ijms25021211 PMID: 38279217
  8. Santamans AM, Cicuéndez B, Mora A, et al. MCJ: A mitochondrial target for cardiac intervention in pulmonary hypertension. Sci Adv 2024; 10(3): 6524. doi: 10.1126/sciadv.adk6524 PMID: 38241373
  9. Hang L, Zhang Y, Zhang Z, Jiang H, Xia L. Metabolism serves as a bridge between cardiomyocytes and immune cells in cardiovascular diseases. Cardiovasc Drugs Ther 2024; 2024: 26. doi: 10.1007/s10557-024-07545-5 PMID: 38236378
  10. Lin X, Fei MZ, Huang AX, Yang L, Zeng ZJ, Gao W. Breviscapine protects against pathological cardiac hypertrophy by targeting FOXO3a-mitofusin-1 mediated mitochondrial fusion. Free Radic Biol Med 2024; 212: 477-92. doi: 10.1016/j.freeradbiomed.2024.01.007 PMID: 38190924
  11. Sanz RL, Inserra F, Garcia Menéndez S, Mazzei L, Ferder L, Manucha W. Metabolic syndrome and cardiac remodeling due to mitochondrial oxidative stress involving gliflozins and sirtuins. Curr Hypertens Rep 2023; 25(6): 91-106. doi: 10.1007/s11906-023-01240-w PMID: 37052810
  12. Wang M, Pan W, Xu Y, Zhang J, Wan J, Jiang H. Microglia-mediated neuroinflammation: A potential target for the treatment of cardiovascular diseases. J Inflamm Res 2022; 15: 3083-94. doi: 10.2147/JIR.S350109 PMID: 35642214
  13. Poznyak AV, Bharadwaj D, Prasad G, Grechko AV, Sazonova MA, Orekhov AN. Renin-angiotensin system in pathogenesis of atherosclerosis and treatment of CVD. Int J Mol Sci 2021; 22(13): 6702. doi: 10.3390/ijms22136702 PMID: 34206708
  14. Ferder L, Inserra F, Martinez-Maldonado M. Inflammation and the metabolic syndrome: Role of angiotensin II and oxidative stress. Curr Hypertens Rep 2006; 8(3): 191-8. doi: 10.1007/s11906-006-0050-7 PMID: 17147916
  15. Cabandugama PK, Gardner MJ, Sowers JR. The renin angiotensin aldosterone system in obesity and hypertension. Med Clin North Am 2017; 101(1): 129-37. doi: 10.1016/j.mcna.2016.08.009 PMID: 27884224
  16. Verdejo HE, del Campo A, Troncoso R, et al. Mitochondria, myocardial remodeling, and cardiovascular disease. Curr Hypertens Rep 2012; 14(6): 532-9. doi: 10.1007/s11906-012-0305-4 PMID: 22972531
  17. de Cavanagh EMV, Inserra F, Ferder L. Angiotensin II blockade: How its molecular targets may signal to mitochondria and slow aging. Coincidences with calorie restriction and mTOR inhibition. Am J Physiol Heart Circ Physiol 2015; 309(1): H15-44. doi: 10.1152/ajpheart.00459.2014 PMID: 25934099
  18. Maissan P, Mooij E, Barberis M. Sirtuins-mediated system-level regulation of mammalian tissues at the interface between metabolism and cell cycle: A systematic review. Biology (Basel) 2021; 10(3): 194. doi: 10.3390/biology10030194 PMID: 33806509
  19. Wan TT, Li Y, Li JX, et al. ACE2 activation alleviates sepsis-induced cardiomyopathy by promoting MasR-Sirt1-mediated mitochondrial biogenesis. Arch Biochem Biophys 2024; 752: 109855. doi: 10.1016/j.abb.2023.109855 PMID: 38097099
  20. Yu H, Gan D, Luo Z, et al. α-Ketoglutarate improves cardiac insufficiency through NAD+-SIRT1 signaling-mediated mitophagy and ferroptosis in pressure overload-induced mice. Mol Med 2024; 30(1): 15. doi: 10.1186/s10020-024-00783-1 PMID: 38254035
  21. Ding T, Zeng L, Xia Y, Zhang B, Cui D. MiR-135a mediate mitochondrial oxidative respiratory function through SIRT1 to regulate atrial fibrosis. Cardiology 2024; 24: 1-11. doi: 10.1159/000536059 PMID: 38228115
  22. Ye H, Zhang Y, Yun Q, et al. Resveratrol alleviates hyperglycemia-induced cardiomyocyte hypertrophy by maintaining mitochondrial homeostasis via enhancing SIRT1 expression. Nan Fang Yi Ke Da Xue Xue Bao 2024; 44(1): 45-51. PMID: 38293975
  23. Singh CK, Chhabra G, Ndiaye MA, Garcia-Peterson LM, Mack NJ, Ahmad N. The role of sirtuins in antioxidant and redox signaling. Antioxid Redox Signal 2018; 28(8): 643-61. doi: 10.1089/ars.2017.7290 PMID: 28891317
  24. Merksamer PI, Liu Y, He W, Hirschey MD, Chen D, Verdin E. The sirtuins, oxidative stress and aging: An emerging link. Aging (Albany NY) 2013; 5(3): 144-50. doi: 10.18632/aging.100544 PMID: 23474711
  25. O’Neill S, O’Driscoll L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes Rev 2015; 16(1): 1-12. doi: 10.1111/obr.12229 PMID: 25407540
  26. Zhang Y, Wang X, Li XK, et al. Sirtuin 2 deficiency aggravates ageing-induced vascular remodelling in humans and mice. Eur Heart J 2023; 44(29): 2746-59. doi: 10.1093/eurheartj/ehad381 PMID: 37377116
  27. Ren CZ, Wu ZT, Wang W, et al. SIRT1 exerts anti-hypertensive effect via FOXO1 activation in the rostral ventrolateral medulla. Free Radic Biol Med 2022; 188: 1-13. doi: 10.1016/j.freeradbiomed.2022.06.003 PMID: 35688305
  28. Gui M, Yao L, Lu B, et al. Huoxue Qianyang Qutan recipe attenuates Ang II-induced cardiomyocyte hypertrophy by regulating reactive oxygen species production. Exp Ther Med 2021; 22(6): 1446. doi: 10.3892/etm.2021.10881 PMID: 34721688
  29. Kalupahana NS, Moustaid-Moussa N, Claycombe KJ. Immunity as a link between obesity and insulin resistance. Mol Aspects Med 2012; 33(1): 26-34. doi: 10.1016/j.mam.2011.10.011 PMID: 22040698
  30. Abadir PM, Foster DB, Crow M, et al. Identification and characterization of a functional mitochondrial angiotensin system. Proc Natl Acad Sci USA 2011; 108(36): 14849-54. doi: 10.1073/pnas.1101507108 PMID: 21852574
  31. Manucha W, Ritchie B, Ferder L. Hypertension and insulin resistance: Implications of mitochondrial dysfunction. Curr Hypertens Rep 2015; 17(1): 504. doi: 10.1007/s11906-014-0504-2 PMID: 25432896
  32. Matsushima S, Sadoshima J. The role of sirtuins in cardiac disease. Am J Physiol Heart Circ Physiol 2015; 309(9): H1375-89. doi: 10.1152/ajpheart.00053.2015 PMID: 26232232
  33. Ahn BH, Kim HS, Song S, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 2008; 105(38): 14447-52. doi: 10.1073/pnas.0803790105 PMID: 18794531
  34. Luo YX, Tang X, An XZ, et al. SIRT4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity. Eur Heart J 2017; 38(18): 1389-98. PMID: 27099261
  35. Li H, Shin SE, Seo MS, et al. The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels. Life Sci 2018; 197: 46-55. doi: 10.1016/j.lfs.2018.01.032 PMID: 29409796
  36. Zhang N, Feng B, Ma X, Sun K, Xu G, Zhou Y. Dapagliflozin improves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction. Cardiovasc Diabetol 2019; 18(1): 107. doi: 10.1186/s12933-019-0914-1 PMID: 31429767
  37. Huang Y, Zhang K, Liu M, et al. An herbal preparation ameliorates heart failure with preserved ejection fraction by alleviating microvascular endothelial inflammation and activating NO-cGMP-PKG pathway. Phytomedicine 2021; 91: 153633. doi: 10.1016/j.phymed.2021.153633 PMID: 34320423
  38. Packer M. Mitigation of the adverse consequences of nutrient excess on the kidney: A unified hypothesis to explain the renoprotective effects of sodium-glucose cotransporter 2 inhibitors. Am J Nephrol 2020; 51(4): 289-93. doi: 10.1159/000506534 PMID: 32126558
  39. Xu L, Nagata N, Nagashimada M, et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMed 2017; 20: 137-49. doi: 10.1016/j.ebiom.2017.05.028 PMID: 28579299
  40. Yang X, Liu Q, Li Y, et al. The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway. Adipocyte 2020; 9(1): 484-94. doi: 10.1080/21623945.2020.1807850 PMID: 32835596
  41. Packer M. Differential pathophysiological mechanisms in heart failure with a reduced or preserved ejection fraction in diabetes. JACC Heart Fail 2021; 9(8): 535-49. doi: 10.1016/j.jchf.2021.05.019 PMID: 34325884
  42. Huang S, Wu B, He Y, et al. Canagliflozin ameliorates the development of NAFLD by preventing NLRP3-mediated pyroptosis through FGF21-ERK1/2 pathway. Hepatol Commun 2023; 7(3): e0045. doi: 10.1097/HC9.0000000000000045 PMID: 36757426
  43. Osataphan S, Macchi C, Singhal G, et al. SGLT2 inhibition reprograms systemic metabolism via FGF21-dependent and -independent mechanisms. JCI Insight 2019; 4(5): e123130. doi: 10.1172/jci.insight.123130 PMID: 30843877
  44. Ding P, Yang R, Li C, et al. Fibroblast growth factor 21 attenuates ventilator-induced lung injury by inhibiting the NLRP3/caspase-1/GSDMD pyroptotic pathway. Crit Care 2023; 27(1): 196. doi: 10.1186/s13054-023-04488-5 PMID: 37218012
  45. Cinti S. Obese adipocytes have altered redox homeostasis with metabolic consequences. Antioxidants 2023; 12(7): 1449. doi: 10.3390/antiox12071449 PMID: 37507987
  46. Saponaro C, Pattou F, Bonner C. SGLT2 inhibition and glucagon secretion in humans. Diabetes Metab 2018; 44(5): 383-5. doi: 10.1016/j.diabet.2018.06.005 PMID: 30017776
  47. Liu P, Zhang Z, Wang J, Zhang X, Yu X, Li Y. Empagliflozin protects diabetic pancreatic tissue from damage by inhibiting the activation of the NLRP3/caspase-1/GSDMD pathway in pancreatic β cells: In vitro and in vivo studies. Bioengineered 2021; 12(2): 9356-66. doi: 10.1080/21655979.2021.2001240 PMID: 34823419
  48. Gao YM, Feng ST, Wen Y, Tang TT, Wang B, Liu BC. Cardiorenal protection of SGLT2 inhibitors-perspectives from metabolic reprogramming. EBioMedicine 2022; 83: 104215. doi: 10.1016/j.ebiom.2022.104215 PMID: 35973390
  49. Inoue MK, Matsunaga Y, Nakatsu Y, et al. Possible involvement of normalized Pin1 expression level and AMPK activation in the molecular mechanisms underlying renal protective effects of SGLT2 inhibitors in mice. Diabetol Metab Syndr 2019; 11(1): 57. doi: 10.1186/s13098-019-0454-6 PMID: 31367234
  50. Yang Y, Li Q, Ling Y, et al. m6A eraser FTO modulates autophagy by targeting SQSTM1/P62 in the prevention of canagliflozin against renal fibrosis. Front Immunol 2023; 13: 1094556. doi: 10.3389/fimmu.2022.1094556 PMID: 36685533
  51. Pirklbauer M, Schupart R, Fuchs L, et al. Unraveling reno-protective effects of SGLT2 inhibition in human proximal tubular cells. Am J Physiol Renal Physiol 2019; 316(3): F449-62. doi: 10.1152/ajprenal.00431.2018 PMID: 30539648
  52. Chino Y, Samukawa Y, Sakai S, et al. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm Drug Dispos 2014; 35(7): 391-404. doi: 10.1002/bdd.1909 PMID: 25044127
  53. Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: A state-of-the-art review. JACC Basic Transl Sci 2020; 5(6): 632-44. doi: 10.1016/j.jacbts.2020.02.004 PMID: 32613148
  54. Zou R, Shi W, Qiu J, et al. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis. Cardiovasc Diabetol 2022; 21(1): 106. doi: 10.1186/s12933-022-01532-6 PMID: 35705980
  55. Kitada M, Kume S, Takeda-Watanabe A, Kanasaki K, Koya D. Sirtuins and renal diseases: Relationship with aging and diabetic nephropathy. Clin Sci (Lond) 2013; 124(3): 153-64. doi: 10.1042/CS20120190 PMID: 23075334
  56. Lin PY, Chen CH, Wallace CG, et al. Therapeutic effect of rosuvastatin and propylthiouracil on ameliorating high-cholesterol diet-induced fatty liver disease, fibrosis and inflammation in rabbit. Am J Transl Res 2017; 9(8): 3827-41. PMID: 28861173
  57. Lee FY, Shao PL, Wallace C, et al. Combined therapy with SS31 and mitochondria mitigates myocardial ischemia-reperfusion injury in rats. Int J Mol Sci 2018; 19(9): 2782. doi: 10.3390/ijms19092782 PMID: 30223594
  58. Sung PH, Luo CW, Chiang JY, Yip HK. The combination of G9a histone methyltransferase inhibitors with erythropoietin protects heart against damage from acute myocardial infarction. Am J Transl Res 2020; 12(7): 3255-71. PMID: 32774698
  59. Kundu A, Gali S, Sharma S, et al. Dendropanoxide alleviates thioacetamide-induced hepatic fibrosis via inhibition of ROS production and inflammation in BALB/C mice. Int J Biol Sci 2023; 19(9): 2630-47. doi: 10.7150/ijbs.80743 PMID: 37324954
  60. Horton JL, Davidson MT, Kurishima C, et al. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense. JCI Insight 2019; 4(4): e124079. doi: 10.1172/jci.insight.124079 PMID: 30668551
  61. Wang CY, Chen CC, Lin MH, et al. TLR9 binding to beclin 1 and mitochondrial SIRT3 by a sodium-glucose co-transporter 2 inhibitor protects the heart from doxorubicin toxicity. Biology (Basel) 2020; 9(11): 369. doi: 10.3390/biology9110369 PMID: 33138323
  62. Noriega LG, Feige JN, Canto C, et al. CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep 2011; 12(10): 1069-76. doi: 10.1038/embor.2011.151 PMID: 21836635
  63. Penke M, Larsen PS, Schuster S, et al. Hepatic NAD salvage pathway is enhanced in mice on a high-fat diet. Mol Cell Endocrinol 2015; 412: 65-72. doi: 10.1016/j.mce.2015.05.028 PMID: 26033245
  64. Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009; 458(7241): 1056-60. doi: 10.1038/nature07813 PMID: 19262508
  65. Wichaiyo S, Saengklub N. Alterations of sodium-hydrogen exchanger 1 function in response to SGLT2 inhibitors: What is the evidence? Heart Fail Rev 2022; 27(6): 1973-90. doi: 10.1007/s10741-022-10220-2 PMID: 35179683
  66. Packer M. Critical reanalysis of the mechanisms underlying the cardiorenal benefits of SGLT2 inhibitors and reaffirmation of the nutrient deprivation signaling/autophagy hypothesis. Circulation 2022; 146(18): 1383-405. doi: 10.1161/CIRCULATIONAHA.122.061732 PMID: 36315602
  67. Uthman L, Baartscheer A, Bleijlevens B. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: Inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia 2018; 61(3): 722-6.
  68. Wang J, Wang Y, Wang Y, et al. Effects of first-line antidiabetic drugs on the improvement of arterial stiffness: A Bayesian network meta-analysis. J Diabetes 2023; 15(8): 685-98. doi: 10.1111/1753-0407.13405 PMID: 37165762
  69. Fujiki S, Tanaka A, Imai T, et al. Body fluid regulation via chronic inhibition of sodium-glucose cotransporter-2 in patients with heart failure: A post hoc analysis of the CANDLE trial. Clin Res Cardiol 2023; 112(1): 87-97. doi: 10.1007/s00392-022-02049-4 PMID: 35729430
  70. Anker SD, Butler J, Filippatos G, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 2021; 385(16): 1451-61. doi: 10.1056/NEJMoa2107038 PMID: 34449189
  71. Packer M. Cardioprotective effects of sirtuin-1 and its downstream effectors. Circ Heart Fail 2020; 13(9): e007197. doi: 10.1161/CIRCHEARTFAILURE.120.007197 PMID: 32894987
  72. Peng K, Yang F, Qiu C, Yang Y, Lan C. Rosmarinic acid protects against lipopolysaccharide-induced cardiac dysfunction via activating Sirt1/PGC-1α pathway to alleviate mitochondrial impairment. Clin Exp Pharmacol Physiol 2023; 50(3): 218-27. doi: 10.1111/1440-1681.13734 PMID: 36350269
  73. Martinez-Moreno JM, Fontecha-Barriuso M, Martin-Sanchez D, et al. Epigenetic modifiers as potential therapeutic targets in diabetic kidney disease. Int J Mol Sci 2020; 21(11): 4113. doi: 10.3390/ijms21114113 PMID: 32526941
  74. Kogot-Levin A, Riahi Y, Abramovich I, et al. Mapping the metabolic reprogramming induced by sodium-glucose cotransporter 2 inhibition. JCI Insight 2023; 8(7): e164296. doi: 10.1172/jci.insight.164296 PMID: 36809274

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers