Network Pharmacology along with Molecular Docking to Explore the Mechanism of Danshen Injection against Anthracycline-induced Cardiotoxicity and Transcriptome Validation


Cite item

Full Text

Abstract

Introduction:Although anthracyclines have demonstrated efficacy in cancer therapy, their utilization is constrained by cardiotoxicity. In contrast, Danshen injection (DSI), derived from Salvia miltiorrhiza, has a longstanding tradition of being employed to ameliorate cardiovascular ailments, including anthracycline- induced cardiotoxicity (AIC). Nonetheless, there is a notable dearth of comprehensive systematic investigation into the molecular mechanisms underlying DSI's effects on AIC. Consequently, this study was undertaken to explore the underlying mechanism by which DSI acted against AIC.

Methods:Employing network pharmacology approach, the current investigation undertook a comprehensive analysis of the impact of DSI on AIC, which was further validated by transcriptome sequencing with in vitro AIC model. Additionally, molecular docking was conducted to evaluate the binding of active ingredients to core targets. A total of 3,404 AIC-related targets and 12 active ingredients in DSI, including chrysophanol, luteolin, tanshinone IIA, isoimperatorin, among others, were collected by differentially expressed analysis and database search, respectively.

Results:The network pharmacology and enrichment analysis suggested 102 potential targets and 29 signaling pathways associated with the protective effect of DSI on AIC. Three core targets (CA12, NOS3, and POLH) and calcium signaling pathways were further validated by transcriptomic analysis of the in-vitro model. The high affinity of the active ingredients binding to corresponding targets was confirmed by molecular docking.

Conclusion:The present study suggested that DSI might exert a cardioprotective effect on AIC via the inhibition of CA12, NOS3, and POLH, as well as the modulation of calcium signaling. Further experiments are warranted to verify the findings.

About the authors

Quankai Dai

Department of Oncology, Hubei University of Medicine

Email: info@benthamscience.net

Yijun Pan

Department of Oncology, Hubei University of Medicine

Email: info@benthamscience.net

Xiwen Zhu

Department of Oncology, Hubei University of Medicine

Email: info@benthamscience.net

Mengyao Chen

Department of Oncology, Renmin Hospital, Institute of Medicine and Nursing, Hubei University of Medicine

Email: info@benthamscience.net

Lin Xie

Department of Oncology, Renmin Hospital, Institute of Medicine and Nursing, Hubei University of Medicine

Email: info@benthamscience.net

Yu Zhu

Department of Research and Teaching, Renmin Hospital, Hubei University of Medicine

Email: info@benthamscience.net

Guoxing Wan

Department of Oncology, Renmin Hospital, Hubei University of Medicine

Author for correspondence.
Email: info@benthamscience.net

References

  1. Volkova M, Russell R III. Anthracycline cardiotoxicity: Prevalence, pathogenesis and treatment. Curr Cardiol Rev 2012; 7(4): 214-20. doi: 10.2174/157340311799960645 PMID: 22758622
  2. Songbo M, Lang H, Xinyong C, Bin X, Ping Z, Liang S. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett 2019; 307: 41-8. doi: 10.1016/j.toxlet.2019.02.013 PMID: 30817977
  3. Christidi E, Brunham LR. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis 2021; 12(4): 339. doi: 10.1038/s41419-021-03614-x PMID: 33795647
  4. Renu K, v G A , P B TP , Arunachalam S. Molecular mechanism of doxorubicin-induced cardiomyopathy - An update. Eur J Pharmacol 2018; 818: 241-53. doi: 10.1016/j.ejphar.2017.10.043 PMID: 29074412
  5. Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother 2021; 139: 111708. doi: 10.1016/j.biopha.2021.111708 PMID: 34243633
  6. Mody H, Vaidya TR, Ait-Oudhia S. In vitro to clinical translational pharmacokinetic/pharmacodynamic modeling of doxorubicin (DOX) and dexrazoxane (DEX) interactions: Safety assessment and optimization. Sci Rep 2023; 13(1): 3100. doi: 10.1038/s41598-023-29964-4 PMID: 36813809
  7. Bhagat A, Kleinerman ES. Anthracycline-induced cardiotoxicity: Causes, mechanisms, and prevention. Adv Exp Med Biol 2020; 1257: 181-92. doi: 10.1007/978-3-030-43032-0_15 PMID: 32483740
  8. Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol 2012; 52(6): 1213-25. doi: 10.1016/j.yjmcc.2012.03.006 PMID: 22465037
  9. Wang F, Iskra B, Kleinerman E, et al. Aerobic exercise during early murine doxorubicin exposure mitigates cardiac toxicity. J Pediatr Hematol Oncol 2018; 40(3): 208-15. doi: 10.1097/MPH.0000000000001112 PMID: 29557918
  10. Han D, Wang Y, Wang Y, et al. The tumor-suppressive human circular rna circitch sponges mir-330-5p to ameliorate doxorubicin-induced cardiotoxicity through upregulating sirt6, survivin, and serca2a. Circ Res 2020; 127(4): e108-25. doi: 10.1161/CIRCRESAHA.119.316061 PMID: 32392088
  11. Jun-feng Z, Xiao-jiao Y, Li-ke Z. Tcm theory and research progress on pharmacological effects of traditional Chinese medicine against doxorubicin-induced cardiotoxicity. Chin J Tradit Chin Med 2022; 37(08): 4592-8.
  12. Jinghao L, Dongli Y, Lin L. Research progress of doxorubicin cardiotoxicity treated with tcm. Western J Tradit Chin Med 2021; 34(11): 134-40. doi: 10.12174/j.issn.2096-9600.2021.11.31
  13. Zhang G, Zhang Y, Zhang X, et al. Different network pharmacology mechanisms of Danshen-based Fangjis in the treatment of stable angina. Acta Pharmacol Sin 2018; 39(6): 952-60. doi: 10.1038/aps.2017.191 PMID: 29417948
  14. Shao H, Li M, Chen F, Chen L, Jiang Z, Zhao L. The efficacy of danshen injection as adjunctive therapy in treating angina pectoris: a systematic review and meta-analysis. Heart Lung Circ 2018; 27(4): 433-42. doi: 10.1016/j.hlc.2017.10.016 PMID: 29150156
  15. Wang L, Yu J, Fordjour PA, et al. Danshen injection prevents heart failure by attenuating post-infarct remodeling. J Ethnopharmacol 2017; 205: 22-32. doi: 10.1016/j.jep.2017.04.027 PMID: 28465251
  16. Li Z, Xu S, Liu P. Salvia miltiorrhiza Burge (Danshen): A golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin 2018; 39(5): 802-24. doi: 10.1038/aps.2017.193 PMID: 29698387
  17. Liang WY, Chen WJ, Yang GH, et al. Research progress on salvianolic acids of Salvia miltiorrhiza. Zhongguo Zhongyao Zazhi 2016; 41(5): 806-12. doi: 10.4268/cjcmm20160508 PMID: 28875631
  18. Chen J, Yuan S, Zhou J, et al. Danshen injection induces autophagy in podocytes to alleviate nephrotic syndrome via the PI3K/AKT/mTOR pathway. Phytomedicine 2022; 107: 154477. doi: 10.1016/j.phymed.2022.154477 PMID: 36215790
  19. Yuan T, Chen Y, Zhou X, Lin X, Zhang Q. Effectiveness and safety of Danshen injection on heart failure. Medicine 2019; 98(22): e15636. doi: 10.1097/MD.0000000000015636 PMID: 31145280
  20. Zhu Z, Wang Y, Liao W, Li H, Wang D. Effect of various Danshen injections on patients with coronary heart disease after percutaneous coronary intervention. Medicine 2018; 97(24): e11062. doi: 10.1097/MD.0000000000011062 PMID: 29901609
  21. Xianjin Z, Lianxun S, Liuzhong C. Research on effects of Danshen injection in preventing cardiotoxicity induced by chemotherapy of pyrroxine or epirubicin. Eval Anal Drug-Use Hosp China 2018; 18(04): 511-3. doi: 10.14009/j.issn.1672-2124.2018.04.031
  22. Liu J, Liu J, Tong X, et al. Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of Huai Hua San against ulcerative colitis. Drug Des Devel Ther 2021; 15: 3255-76. doi: 10.2147/DDDT.S319786 PMID: 34349502
  23. Dulf PL, Mocan M, Coadă CA, et al. Doxorubicin-induced acute cardiotoxicity is associated with increased oxidative stress, autophagy, and inflammation in a murine model. Naunyn Schmiedebergs Arch Pharmacol 2023; 396(6): 1105-15. doi: 10.1007/s00210-023-02382-z PMID: 36645429
  24. Shao-mei W, Li-fang Y, Li-hong W. Traditional Chinese medicine enhances myocardial metabolism during heart failure. Biomed Pharmacother 2022; 146: 112538. doi: 10.1016/j.biopha.2021.112538 PMID: 34922111
  25. Wang L, Ma R, Liu C, et al. Salvia miltiorrhiza: A potential red light to the development of cardiovascular diseases. Curr Pharm Des 2017; 23(7): 1077-97. doi: 10.2174/1381612822666161010105242 PMID: 27748194
  26. Zhang Y, Ma C, Liu C, Wei F. Luteolin attenuates doxorubicin-induced cardiotoxicity by modulating the PHLPP1/AKT/Bcl-2 signalling pathway. PeerJ 2020; 8: e8845. doi: 10.7717/peerj.8845 PMID: 32435528
  27. Xu H, Yu W, Sun S, Li C, Zhang Y, Ren J. Luteolin attenuates doxorubicin-induced cardiotoxicity through promoting mitochondrial autophagy. Front Physiol 2020; 11: 113. doi: 10.3389/fphys.2020.00113 PMID: 32116805
  28. Xu L, He D, Wu Y, Shen L, Wang Y, Xu Y. Tanshinone IIA inhibits cardiomyocyte apoptosis and rescues cardiac function during doxorubicin-induced cardiotoxicity by activating the DAXX/MEK/ERK1/2 pathway. Phytomedicine 2022; 107: 154471. doi: 10.1016/j.phymed.2022.154471 PMID: 36182795
  29. Wang X, Li C, Wang Q, et al. Tanshinone iia restores dynamic balance of autophagosome/autolysosome in doxorubicin-induced cardiotoxicity via targeting beclin1/lamp1. Cancers (Basel) 2019; 11(7): 910. doi: 10.3390/cancers11070910 PMID: 31261758
  30. Hong HJ, Liu JC, Chen PY, Chen JJ, Chan P, Cheng TH. Tanshinone IIA prevents doxorubicin-induced cardiomyocyte apoptosis through Akt-dependent pathway. Int J Cardiol 2012; 157(2): 174-9. doi: 10.1016/j.ijcard.2010.12.012 PMID: 21190747
  31. Lu J, Li J, Hu Y, et al. Chrysophanol protects against doxorubicin-induced cardiotoxicity by suppressing cellular PARylation. Acta Pharm Sin B 2019; 9(4): 782-93. doi: 10.1016/j.apsb.2018.10.008 PMID: 31384538
  32. Hosseinzadeh L, Shokoohinia Y, Jalilian F, Moieni-Arya M. Oxypeucedanin and isoimperatorin extracted from Prangos ferulacea (L.) Lindl protect PC12 pheochromocytoma cells from oxidative stress and apoptosis induced by doxorubicin. Res Pharm Sci 2022; 17(1): 12-21. doi: 10.4103/1735-5362.329922 PMID: 34909040
  33. Chen K, Guan Y, Ma Y, et al. Danshenol a alleviates hypertension-induced cardiac remodeling by ameliorating mitochondrial dysfunction and suppressing reactive oxygen species production. Oxid Med Cell Longev 2019; 2019: 1-18. doi: 10.1155/2019/2580409 PMID: 31612073
  34. Carnicer R, Crabtree MJ, Sivakumaran V, Casadei B, Kass DA. Nitric oxide synthases in heart failure. Antioxid Redox Signal 2013; 18(9): 1078-99. doi: 10.1089/ars.2012.4824 PMID: 22871241
  35. Liu Y, Feng Q. NOing the heart: Role of nitric oxide synthase-3 in heart development. Differentiation 2012; 84(1): 54-61. doi: 10.1016/j.diff.2012.04.004 PMID: 22579300
  36. Neilan TG, Blake SL, Ichinose F, et al. Disruption of nitric oxide synthase 3 protects against the cardiac injury, dysfunction, and mortality induced by doxorubicin. Circulation 2007; 116(5): 506-14. doi: 10.1161/CIRCULATIONAHA.106.652339 PMID: 17638931
  37. Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N. The effects of doxorubicin on cardiac calcium homeostasis and contractile function. J Cardiol 2022; 80(2): 125-32. doi: 10.1016/j.jjcc.2022.01.001 PMID: 35086744
  38. Gao Y, Zhang K, Zhu F. Salvia miltiorrhiza (danshen) inhibits ltype calcium current and attenuates calcium transient and contractility in rat ventricular myocytes. J Ethnopharmacol 2014; 158(Pt A): 397-403. doi: 10.1016/j.jep.2014.10.049
  39. Lin YK, Chen YJ, Li JY, et al. Salvianolic acid A from danhong injection induces vasorelaxation by regulating L-type calcium channel in isolated mouse arteries. J Ethnopharmacol 2022; 296: 115431. doi: 10.1016/j.jep.2022.115431 PMID: 35700852
  40. Lam FFY, Yeung JHK, Chan KM, Mei Yu Or P. Relaxant effects of danshen aqueous extract and its constituent danshensu on rat coronary artery are mediated by inhibition of calcium channels. Vascul Pharmacol 2007; 46(4): 271-7. doi: 10.1016/j.vph.2006.10.011 PMID: 17188580
  41. D’Angelo NA, Noronha MA, Câmara MCC, et al. Doxorubicin nanoformulations on therapy against cancer: An overview from the last 10 years. Biomat Adv 2022; 133: 112623. doi: 10.1016/j.msec.2021.112623 PMID: 35525766
  42. Chen R, Sun G, Yang L, Wang J, Sun X. Salvianolic acid B protects against doxorubicin induced cardiac dysfunction via inhibition of ER stress mediated cardiomyocyte apoptosis. Toxicol Res 2016; 5(5): 1335-45. doi: 10.1039/C6TX00111D PMID: 30090438
  43. Naz I, Merarchi M, Ramchandani S, et al. An overview of the anti-cancer actions of Tanshinones, derived from Salvia miltiorrhiza (Danshen). Explor Targeted Anti-tumor Ther 2020; 1(3): 153-70. doi: 10.37349/etat.2020.00010 PMID: 36046197
  44. Zhou J, Jiang Y, Chen H, Wu Y, Zhang L. Tanshinone I attenuates the malignant biological properties of ovarian cancer by inducing apoptosis and autophagy via the inactivation of PI3K/AKT/mTOR pathway. Cell Prolif 2020; 53(2): e12739. doi: 10.1111/cpr.12739 PMID: 31820522

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers