Specific Targeting of Zinc Transporter LIV-1 with Immunocytokine Containing Anti-LIV-1 VHH and Human IL-2 and Evaluation of its In vitro Antitumor Activity


Cite item

Full Text

Abstract

Background:Interleukin 2 (IL-2) is a vital cytokine in the induction of T and NK cell responses, the proliferation of CD8+ T cells, and the effective treatment of human cancers, such as melanoma and renal cell carcinoma. However, widespread use of this cytokine is limited due to its short half-life, severe toxicity, lack of specific tumor targeting, and activation of Treg cells mediated by high-affinity interleukin-2 receptors.

Objective:In this study, a tumor-targeting LIV-1 VHH-mutIL2 immunocytokine with reduced CD25 (α chain of the high-affinity IL-2 receptor) binding activity was developed to improve IL-2 half-life by decreasing its renal infiltration in comparison with wild and mutant IL-2 molecules.

Methods:The recombinant immunocytokine was designed and expressed. the biological activity of the purified fusion protein was investigated in in vitro and in vivo experiments

Results:The fusion protein represented specific binding to MCF7 (the breast cancer cell line) and more efficient cytotoxicity than wild-type IL-2 and mutant IL-2. the PK parameters of the recombinant immunocytokine were also improved in comparison to the IL-2 molecules.

Conclusion:The observed results showed that LIV1-mIL2 immunocytokine could be considered an effective agent in the LIV-1-targeted treatment of cancers due to its longer half-life and stronger cytotoxicity.

About the authors

Rada Dehghan

Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran

Email: info@benthamscience.net

Arezoo Parikhani

Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran

Email: info@benthamscience.net

Reza Cohan

Department of Nanobiotechnology,, New Technologies Research Group, Pasteur Institute of Iran

Email: info@benthamscience.net

Mohammad Shokrgozar

National Cell Bank of Iran, Pasteur Institute of Iran

Email: info@benthamscience.net

Esmat Mirabzadeh

Department of Molecular Medicine, Pasteur Institute of Iran

Email: info@benthamscience.net

Soheila Ajdary

Department of Immunology, Pasteur Institute of Iran

Email: info@benthamscience.net

Sirous Zeinali

Department of Molecular Medicine, Pasteur Institute of Iran

Email: info@benthamscience.net

Hajarossadat Ghaderi

Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran

Email: info@benthamscience.net

Yeganeh Talebkhan

Department of Medical Biotechnology, Biotechnology Research Center,, Pasteur Institute of Iran

Author for correspondence.
Email: info@benthamscience.net

Mahdi Behdani

Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran

Author for correspondence.
Email: info@benthamscience.net

References

  1. Jiang T, Zhou C, Ren S. Role of IL-2 in cancer immunotherapy. OncoImmunology 2016; 5(6): e1163462. doi: 10.1080/2162402X.2016.1163462 PMID: 27471638
  2. Chen X, Xu J, Guo Q, et al. therapeutic efficacy of an anti-PD-L1 antibody based immunocytokine in a metastatic mouse model of colorectal cancer. Biochem Biophys Res Commun 2016; 480(2): 160-5. doi: 10.1016/j.bbrc.2016.10.011 PMID: 27720718
  3. Liao W, Lin JX, Leonard WJ. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 2013; 38(1): 13-25. doi: 10.1016/j.immuni.2013.01.004 PMID: 23352221
  4. Carmenate T, Pacios A, Enamorado M, et al. Human IL-2 mutein with higher antitumor efficacy than wild type IL-2. J Immunol 2013; 190(12): 6230-8. doi: 10.4049/jimmunol.1201895 PMID: 23677467
  5. Zhou Y, Quan G, Liu Y, et al. the application of Interleukin-2 family cytokines in tumor immunotherapy research. Front Immunol 2023; 14: 1090311. doi: 10.3389/fimmu.2023.1090311 PMID: 36936961
  6. Skrombolas D, Frelinger JG. Challenges and developing solutions for increasing the benefits of IL-2 treatment in tumor therapy. Expert Rev Clin Immunol 2014; 10(2): 207-17. doi: 10.1586/1744666X.2014.875856 PMID: 24410537
  7. Schliemann C, Palumbo A, Zuberbühler K, et al. Complete eradication of human B-cell lymphoma xenografts using rituximab in combination with the immunocytokine L19-IL2. Blood 2009; 113(10): 2275-83. doi: 10.1182/blood-2008-05-160747 PMID: 19005180
  8. Pasche N, Neri D. Immunocytokines: A novel class of potent armed antibodies. Drug Discov Today 2012; 17(11-12): 583-90. doi: 10.1016/j.drudis.2012.01.007 PMID: 22289353
  9. Sondel PM, Gillies SD. Immunocytokines. Antibodies 2012; 1(2): 149-71. doi: 10.3390/antib1020149 PMID: 24634778
  10. Ortiz-Sánchez E, Helguera G, Daniels TR, Penichet ML. Antibody–cytokine fusion proteins: Applications in cancer therapy. Expert Opin Biol ther 2008; 8(5): 609-32. doi: 10.1517/14712598.8.5.609 PMID: 18407765
  11. Mårlind J, Kaspar M, Trachsel E, et al. Antibody-mediated delivery of interleukin-2 to the stroma of breast cancer strongly enhances the potency of chemotherapy. Clin Cancer Res 2008; 14(20): 6515-24. doi: 10.1158/1078-0432.CCR-07-5041 PMID: 18927291
  12. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer 2012; 12(4): 278-87. doi: 10.1038/nrc3236 PMID: 22437872
  13. Gillies SD, Lan Y, Hettmann T, et al. A low-toxicity IL-2-based immunocytokine retains antitumor activity despite its high degree of IL-2 receptor selectivity. Clin Cancer Res 2011; 17(11): 3673-85. doi: 10.1158/1078-0432.CCR-10-2921 PMID: 21531812
  14. Connor JP, Cristea MC, Lewis NL, et al. A phase 1b study of humanized KS-interleukin-2 (huKS-IL2) immunocytokine with cyclophosphamide in patients with EpCAM- positive advanced solid tumors. BMC Cancer 2013; 13(1): 20. doi: 10.1186/1471-2407-13-20 PMID: 23320927
  15. Gout DY, Groen LS, van Egmond M. the present and future of immunocytokines for cancer treatment. Cell Mol Life Sci 2022; 79(10): 509. doi: 10.1007/s00018-022-04514-9 PMID: 36066630
  16. Polakis P. Antibody drug conjugates for cancer therapy. Pharmacol Rev 2016; 68(1): 3-19. doi: 10.1124/pr.114.009373 PMID: 26589413
  17. Arezumand R, Alibakhshi A, Ranjbari J, Ramazani A, Muyldermans S. Nanobodies as novel agents for targeting angiogenesis in solid cancers. Front Immunol 2017; 8: 1746. doi: 10.3389/fimmu.2017.01746 PMID: 29276515
  18. Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodies: Chemical functionalization strategies and intracellular applications. Angew Chem Int Ed 2018; 57(9): 2314-33. doi: 10.1002/anie.201708459 PMID: 28913971
  19. Spadiut O, Capone S, Krainer F, Glieder A, Herwig C. Microbials for the production of monoclonal antibodies and antibody fragments. Trends Biotechnol 2014; 32(1): 54-60. doi: 10.1016/j.tibtech.2013.10.002 PMID: 24183828
  20. Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature 1993; 363(6428): 446-8. doi: 10.1038/363446a0 PMID: 8502296
  21. Oliveira S, Heukers R, Sornkom J, Kok RJ, van en Henegouwen BPMP. Targeting tumors with nanobodies for cancer imaging and therapy. J Control Release 2013; 172(3): 607-17. doi: 10.1016/j.jconrel.2013.08.298 PMID: 24035975
  22. Siontorou CG. Nanobodies as novel agents for disease diagnosis and therapy. Int J Nanomed 2013; 8: 4215-27. doi: 10.2147/IJN.S39428 PMID: 24204148
  23. Muyldermans S. Nanobodies: Natural single-domain antibodies. Annu Rev Biochem 2013; 82(1): 775-97. doi: 10.1146/annurev-biochem-063011-092449 PMID: 23495938
  24. Lomedasht KF, Muyldermans S, Anbouhi HM, Behdani M. Design of a humanized anti vascular endothelial growth factor nanobody and evaluation of its in vitro function. Iran J Basic Med Sci 2018; 21(3): 260-6. PMID: 29511492
  25. Sussman D, Smith LM, Anderson ME, et al. SGN-LIV1A: A novel antibody-drug conjugate targeting LIV-1 for the treatment of metastatic breast cancer. Mol Cancer ther 2014; 13(12): 2991-3000. doi: 10.1158/1535-7163.MCT-13-0896 PMID: 25253783
  26. Unno J, Masamune A, Hamada S, Shimosegawa T. The zinc transporter LIV-1 is a novel regulator of stemness in pancreatic cancer cells. Scand J Gastroenterol 2014; 49(2): 215-21. doi: 10.3109/00365521.2013.865075 PMID: 24294832
  27. Shen R, Xie F, Shen H, et al. Negative correlation of LIV-1 and E-cadherin expression in hepatocellular carcinoma cells. PLoS One 2013; 8(2): e56542. doi: 10.1371/journal.pone.0056542 PMID: 23437163
  28. Ghaderi H, Noormohammadi Z, Anbouhi HM, Lomedasht KF, Behdani M. Development of camelid monoclonal nanobody against SLC39A6 zinc transporter protein. Iran J Basic Med Sci 2021; 24(12): 1726-33. PMID: 35432806
  29. Parikhani BA, Bagherzadeh K, Dehghan R, et al. Human IL-2Rɑ subunit binding modulation of IL-2 through a decline in electrostatic interactions: A computational and experimental approach. PLoS One 2022; 17(2): e0264353. doi: 10.1371/journal.pone.0264353 PMID: 35213635
  30. Dehghan R, Parikhani BA, Zeinali S, et al. Efficacy and antitumor activity of a mutant type of interleukin 2. Sci Rep 2022; 12(1): 5376. doi: 10.1038/s41598-022-09278-7 PMID: 35354847
  31. Sim GC, Liu C, Wang E, et al. IL2 variant circumvents ICOS+ regulatory T-cell expansion and promotes NK cell activation. Cancer Immunol Res 2016; 4(11): 983-94. doi: 10.1158/2326-6066.CIR-15-0195 PMID: 27697858
  32. Carmenate T, Ortíz Y, Enamorado M, et al. Blocking IL-2 signal in vivo with an IL-2 antagonist reduces tumor growth through the control of regulatory T cells. J Immunol 2018; 200(10): 3475-84. doi: 10.4049/jimmunol.1700433 PMID: 29618524
  33. Beyer M, Schumak B, Weihrauch MR, et al. In vivo expansion of naïve CD4+ CD25(high) FOXP3+ regulatory T cells in patients with colorectal carcinoma after IL-2 administration. PLoS One 2012; 7(1): e30422. doi: 10.1371/journal.pone.0030422 PMID: 22276195
  34. Chen X, Ai X, Wu C, et al. A novel human IL-2 mutein with minimal systemic toxicity exerts greater antitumor efficacy than wild- type IL-2. Cell Death Dis 2018; 9(10): 989. doi: 10.1038/s41419-018-1047-2 PMID: 30250191
  35. Tang A, Harding F. the challenges and molecular approaches surrounding interleukin-2-based therapeutics in cancer. Cytokine X 2019; 1(1): 100001. doi: 10.1016/j.cytox.2018.100001
  36. Levin AM, Bates DL, Ring AM, et al. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature 2012; 484(7395): 529-33. doi: 10.1038/nature10975 PMID: 22446627
  37. Hu P, Mizokami M, Ruoff G, Khawli LA, Epstein AL. Generation of low-toxicity interleukin-2 fusion proteins devoid of vasopermeability activity. Blood 2003; 101(12): 4853-61. doi: 10.1182/blood-2002-10-3089 PMID: 12609842
  38. Klein C, Waldhauer I, Nicolini VG, et al. Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: Overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines. OncoImmunology 2017; 6(3): e1277306. doi: 10.1080/2162402X.2016.1277306 PMID: 28405498
  39. Kim Y, Kim HS, Cui ZY, et al. Clinicopathological implications of EpCAM expression in adenocarcinoma of the lung. Anticancer Res 2009; 29(5): 1817-22. PMID: 19443410
  40. Connor JP, Felder M, Hank J, et al. Ex vivo evaluation of anti-EpCAM immunocytokine huKS-IL2 in ovarian cancer. J Immunother 2004; 27(3): 211-9. doi: 10.1097/00002371-200405000-00005 PMID: 15076138
  41. Went PTH, Lugli A, Meier S, et al. Frequent EpCam protein expression in human carcinomas. Hum Pathol 2004; 35(1): 122-8. doi: 10.1016/j.humpath.2003.08.026 PMID: 14745734
  42. Buhtoiarov IN, Neal ZC, Gan J, et al. Differential internalization of hu14.18-IL2 immunocytokine by NK and tumor cell: Impact on conjugation, cytotoxicity, and targeting. J Leukoc Biol 2011; 89(4): 625-38. doi: 10.1189/jlb.0710422 PMID: 21248148
  43. Sun Z, Ren Z, Yang K, et al. A next-generation tumor-targeting IL-2 preferentially promotes tumor-infiltrating CD8+ T-cell response and effective tumor control. Nat Commun 2019; 10(1): 3874. doi: 10.1038/s41467-019-11782-w PMID: 31462678
  44. Heaton KM, Ju G, Grimm EA. Human interleukin 2 analogues that preferentially bind the intermediate-affinity interleukin 2 receptor lead to reduced secondary cytokine secretion: Implications for the use of these interleukin 2 analogues in cancer immunotherapy. Cancer Res 1993; 53(11): 2597-602. PMID: 8495422
  45. Gutbrodt KL, Schliemann C, Giovannoni L, Frey K, Pabst T, Klapper W. Antibody-based delivery of interleukin-2 to neovasculature has potent activity against acute myeloid leukemia. Sci Transl Med 2013; 5(201): 201ra118-. doi: 10.1126/scitranslmed.3006221
  46. Krieg C, Létourneau S, Pantaleo G, Boyman O. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc Natl Acad Sci 2010; 107(26): 11906-11. doi: 10.1073/pnas.1002569107 PMID: 20547866

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers