Cumulative Exposure to Oxidized Low-density Lipoprotein is a Potential Predictor for Prognosis in Acute Ischemic Stroke: A Cohort Study


Cite item

Full Text

Abstract

Background:Oxidized Low-Density Lipoprotein (ox-LDL) is crucial in the recrudescence and prognosis of acute ischemic stroke (AIS). We aimed to probe into the influence of cumulative ox-LDL exposure on the 90-day prognosis of AIS.

Methods:Patients with AIS were recruited in this research. AIS severity at admission was estimated with infarct volumes and National Institute of Health Stroke Scale (NIHSS) scores. AIS prognosis was assessed using Modified Rankin Scale (mRS) scores at 90 days and the change in NIHSS scores from admission to discharge. Cumulative ox-LDL exposure was defined as ox-LDL level (pg/mL) multiplied by age(y). Multivariate logistic regression analysis was employed to reveal the correlation between exposure factors and the prognosis of AIS. The prognostic prediction ability of cumulative ox-LDL exposure was compared with cumulative LDL exposure by the receiver operating characteristic curve (ROC).

Results:Higher cumulative ox-LDL exposure was related to worse prognosis, including neurological worsening at discharge (NIHSS increasing more than 2 points) (OR = 3.02, 95% CI, 1.30-6.98, P = 0.01) and poor functional prognosis at 90 days (mRS ≥ 3) (OR = 21.21, 95% CI, 4.72-95.36, p < 0.001). As multivariate regression analysis showed, significantly increased cumulative ox-LDL exposure was relevant to poor functional prognosis at 90 days (OR = 9.92, 95% CI, 1.23-79.76, P = 0.031), but not with neurological worsening at discharge (P = 0.414). ROC curve revealed that cumulative ox-LDL exposure had a higher predictive value (AUC = 0.843, p < 0.001) for functional prognosis of AIS than cumulative LDL exposure(AUC = 0.629, P = 0.023).

Conclusion:Cumulative ox-LDL exposure has a positive correlation with poor prognosis at 90 days of AIS, and has a more accurate predictive ability than cumulative LDL exposure.

About the authors

Kaili Cheng

Department of Neurology, Shanghai Fifth People’s Hospital, Fudan Universiyu

Email: info@benthamscience.net

Xiuqi Chen

Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University

Email: info@benthamscience.net

Yufan Luo

Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University

Email: info@benthamscience.net

Wenbo Sun

Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University

Email: info@benthamscience.net

Xiaoli Yang

Department of Neurology, hanghai Fifth People’s Hospital, Fudan University

Email: info@benthamscience.net

Shengwen Huang

Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University

Email: info@benthamscience.net

Yuanyuan Wang

Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University

Email: info@benthamscience.net

Danhong Wu

Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Feigin VL, Stark BA, Johnson CO, et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 2021; 20(10): 795-820. doi: 10.1016/S1474-4422(21)00252-0 PMID: 34487721
  2. Benjamin EJ, Virani SS, Callaway CW, et al. Heart disease and stroke statistics-2018 update: A report from the american heart association. Circulation 2018; 137(12): e67-e492. doi: 10.1161/CIR.0000000000000558 PMID: 29386200
  3. Ma Q, Li R, Wang L, et al. Temporal trend and attributable risk factors of stroke burden in China, 1990–2019: An analysis for the global burden of disease study 2019. Lancet Public Health 2021; 6(12): e897-906. doi: 10.1016/S2468-2667(21)00228-0 PMID: 34838196
  4. Vos T, Lim SS, Abbafati C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019. Lancet 2020; 396(10258): 1204-22. doi: 10.1016/S0140-6736(20)30925-9 PMID: 33069326
  5. Bamford J, Sandercock P, Dennis M, Burn J, Warlow C. A prospective study of acute cerebrovascular disease in the community: The Oxfordshire Community Stroke Project-1981-86. 2. Incidence, case fatality rates and overall outcome at one year of cerebral infarction, primary intracerebral and subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 1990; 53(1): 16-22. doi: 10.1136/jnnp.53.1.16 PMID: 2303826
  6. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002; 105(9): 1135-43. doi: 10.1161/hc0902.104353 PMID: 11877368
  7. Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 2008; 4(5): 278-86. doi: 10.1038/nchembio.85 PMID: 18421291
  8. Poznyak AV, Nikiforov NG, Markin AM, et al. Overview of OxLDL and its impact on cardiovascular health: Focus on atherosclerosis. Front Pharmacol 2021; 11: 613780. doi: 10.3389/fphar.2020.613780 PMID: 33510639
  9. Jiang H, Zhou Y, Nabavi SM, et al. Mechanisms of oxidized LDL-mediated endothelial dysfunction and its consequences for the development of atherosclerosis. Front Cardiovasc Med 2022; 9: 925923. doi: 10.3389/fcvm.2022.925923 PMID: 35722128
  10. Wang A, Xu J, Chen G, et al. Oxidized low-density lipoprotein predicts recurrent stroke in patients with minor stroke or TIA. Neurology 2018; 91(10): e947-55. doi: 10.1212/WNL.0000000000006118 PMID: 30089614
  11. Wang A, Cui Y, Meng X, et al. The relationship between oxidized low-density lipoprotein and the NIHSS score among patients with acute ischemic stroke: The SOS-stroke study. Atherosclerosis 2018; 270: 21-5. doi: 10.1016/j.atherosclerosis.2018.01.028 PMID: 29407884
  12. Wang A, Yang Y, Su Z, et al. Association of oxidized low-density lipoprotein with prognosis of stroke and stroke subtypes. Stroke 2017; 48(1): 91-7. doi: 10.1161/STROKEAHA.116.014816 PMID: 27899755
  13. Yang X, Sun W, Hou D, et al. The degree of plasma oxidized low-density lipoprotein level decrease is related to clinical outcomes for patients with acute ischemic stroke. Dis Markers 2021; 2021: 1-7. doi: 10.1155/2021/4998823 PMID: 34950249
  14. Ference BA, Graham I, Tokgozoglu L, Catapano AL. Impact of lipids on cardiovascular health. J Am Coll Cardiol 2018; 72(10): 1141-56. doi: 10.1016/j.jacc.2018.06.046 PMID: 30165986
  15. Brott T, Adams HP Jr, Olinger CP, et al. Measurements of acute cerebral infarction: A clinical examination scale. Stroke 1989; 20(7): 864-70. doi: 10.1161/01.STR.20.7.864 PMID: 2749846
  16. Mattern L, Chen C, McClure LA, et al. Serum zinc levels and incidence of ischemic stroke: The reasons for geographic and racial differences in stroke study. Stroke 2021; 52(12): 3953-60. doi: 10.1161/STROKEAHA.120.033187 PMID: 34412513
  17. Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006; 31(3): 1116-28. doi: 10.1016/j.neuroimage.2006.01.015 PMID: 16545965
  18. Haley EC Jr, Brott TG, Sheppard GL, et al. Pilot randomized trial of tissue plasminogen activator in acute ischemic stroke. Stroke 1993; 24(7): 1000-4. doi: 10.1161/01.STR.24.7.1000 PMID: 8322373
  19. Toyoda K, Fujimoto S, Kamouchi M, Iida M, Okada Y. Acute blood pressure levels and neurological deterioration in different subtypes of ischemic stroke. Stroke 2009; 40(7): 2585-8. doi: 10.1161/STROKEAHA.108.543587 PMID: 19407233
  20. Kumar S, Sahana D, Rathore L, et al. Extra-axial endoscopic third ventriculostomy: Preliminary experience with a technique to circumvent conventional endoscopic third ventriculostomy complications. J Neurosurg 2023; 138(2): 503-13. doi: 10.3171/2022.5.JNS22589 PMID: 35901703
  21. Libby P. Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 2001; 104(3): 365-72. doi: 10.1161/01.CIR.104.3.365 PMID: 11457759
  22. Xu S, Ilyas I, Little PJ, et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: From mechanism to pharmacotherapies. Pharmacol Rev 2021; 73(3): 924-67. doi: 10.1124/pharmrev.120.000096 PMID: 34088867
  23. Vink H, Constantinescu AA, Spaan JAE. Oxidized lipoproteins degrade the endothelial surface layer: Implications for platelet-endothelial cell adhesion. Circulation 2000; 101(13): 1500-2. doi: 10.1161/01.CIR.101.13.1500 PMID: 10747340
  24. Fujimura N, Jitsuiki D, Maruhashi T, et al. Geranylgeranylacetone, heat shock protein 90/AMP-activated protein kinase/endothelial nitric oxide synthase/nitric oxide pathway, and endothelial function in humans. Arterioscler Thromb Vasc Biol 2012; 32(1): 153-60. doi: 10.1161/ATVBAHA.111.237263 PMID: 21998134
  25. Ning DS, Ma J, Peng YM, et al. Apolipoprotein A-I mimetic peptide inhibits atherosclerosis by increasing tetrahydrobiopterin via regulation of GTP-cyclohydrolase 1 and reducing uncoupled endothelial nitric oxide synthase activity. Atherosclerosis 2021; 328: 83-91. doi: 10.1016/j.atherosclerosis.2021.05.019 PMID: 34118596
  26. Obermayer G, Afonyushkin T, Binder CJ. Oxidized low-density lipoprotein in inflammation-driven thrombosis. J Thromb Haemost 2018; 16(3): 418-28. doi: 10.1111/jth.13925 PMID: 29316215
  27. Kita T, Kume N, Minami M, et al. Role of oxidized LDL in atherosclerosis. Ann N Y Acad Sci 2001; 947(1): 199-206. doi: 10.1111/j.1749-6632.2001.tb03941.x PMID: 11795267
  28. Kakutani M, Masaki T, Sawamura T. A platelet–endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1. Proc Natl Acad Sci USA 2000; 97(1): 360-4. doi: 10.1073/pnas.97.1.360 PMID: 10618423
  29. Hu C, Dandapat A, Sun L, et al. Modulation of angiotensin II-mediated hypertension and cardiac remodeling by lectin-like oxidized low-density lipoprotein receptor-1 deletion. Hypertension 2008; 52(3): 556-62. doi: 10.1161/HYPERTENSIONAHA.108.115287 PMID: 18645046
  30. Frostegård J, Wu R, Lemne C, Thulin T, Witztum JL, De Faire U. Circulating oxidized low-density lipoprotein is increased in hypertension. Clin Sci 2003; 105(5): 615-20. doi: 10.1042/CS20030152 PMID: 12837127
  31. Dotevall A, Hulthe J, Rosengren A, Wiklund O, Wilhelmsen L. Autoantibodies against oxidized low-density lipoprotein and C-reactive protein are associated with diabetes and myocardial infarction in women. Clin Sci 2001; 101(5): 523-31. doi: 10.1042/cs1010523 PMID: 11672458
  32. Lautamäki R, Rönnemaa T, Huupponen R, et al. Low serum adiponectin is associated with high circulating oxidized low-density lipoprotein in patients with type 2 diabetes mellitus and coronary artery disease. Metabolism 2007; 56(7): 881-6. doi: 10.1016/j.metabol.2007.01.018 PMID: 17570246
  33. Bak S, Gaist D, Sindrup SH, Skytthe A, Christensen K. Genetic liability in stroke: A long-term follow-up study of Danish twins. Stroke 2002; 33(3): 769-74. doi: 10.1161/hs0302.103619 PMID: 11872902

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers