Current and Emerging Pharmacological Therapies for Cushing's Disease


Cite item

Full Text

Abstract

Cushing’s Disease (CD), hypercortisolism due to pituitary ACTH secreting neuroendocrine neoplasm, is associated with increased morbidity and, if untreated, mortality in about half of the affected individuals. Consequently, the timely initiation of effective treatment is mandatory. Neurosurgery is the first line and the only potentially curative treatment; however, 30% of patients will have persistent disease post-surgery. Furthermore, a small percentage of those initially controlled will develop hypercortisolism during long-term follow- up. Therefore, patients with persistent or recurrent disease, as well as those considered non-eligible for surgery, will need a second-line therapeutic approach, i.e., pharmacotherapy. Radiation therapy is reserved as a third-line therapeutic option due to its slower onset of action and its unfavorable profile regarding complications. During the past few years, the understanding of molecular mechanisms implicated in the physiology of the hypothalamus-pituitary-adrenal axis has evolved, and new therapeutic targets for CD have emerged. In the present review, currently available treatments, compounds currently tested in ongoing clinical trials, and interesting, potentially new targets emerging from unraveling molecular mechanisms involved in the pathophysiology of Cushing’s disease are discussed.

About the authors

Efstathios Divaris

Department of Endocrinology, "Hippokration" General Hospital of Thessaloniki,

Email: info@benthamscience.net

Georgios Kostopoulos

Department of Endocrinology,, "Hippokration" General Hospital of Thessaloniki,

Email: info@benthamscience.net

Zoe Efstathiadou

Department of Endocrinology,, "Hippokration" General Hospital of Thessaloniki

Author for correspondence.
Email: info@benthamscience.net

References

  1. Loriaux DL. Diagnosis and differential diagnosis of Cushing’s syndrome. N Engl J Med 2017; 376(15): 1451-9. doi: 10.1056/NEJMra1505550 PMID: 28402781
  2. Fleseriu M, Auchus R, Bancos I, et al. Consensus on diagnosis and management of Cushing’s disease: A guideline update. Lancet Diabetes Endocrinol 2021; 9(12): 847-75. doi: 10.1016/S2213-8587(21)00235-7 PMID: 34687601
  3. Clayton RN, Raskauskiene D, Reulen RC, Jones PW. Mortality and morbidity in Cushing’s disease over 50 years in Stoke-on-Trent, UK: Audit and meta-analysis of literature. J Clin Endocrinol Metab 2011; 96(3): 632-42. doi: 10.1210/jc.2010-1942 PMID: 21193542
  4. Gadelha MR, Vieira Neto L. Efficacy of medical treatment in Cushing’s disease: A systematic review. Clin Endocrinol (Oxf) 2014; 80(1): 1-12. doi: 10.1111/cen.12345 PMID: 24118077
  5. Bertagna X, Guignat L. Approach to the Cushing’s disease patient with persistent/recurrent hypercortisolism after pituitary surgery. J Clin Endocrinol Metab 2013; 98(4): 1307-18. doi: 10.1210/jc.2012-3200 PMID: 23564942
  6. Aghi MK. Management of recurrent and refractory Cushing disease. Nat Clin Pract Endocrinol Metab 2008; 4(10): 560-8. doi: 10.1038/ncpendmet0947 PMID: 18711406
  7. Patil CG, Veeravagu A, Prevedello DM, Katznelson L, Vance ML, Laws ER Jr. Outcomes after repeat transsphenoidal surgery for recurrent Cushing’s disease. Neurosurgery 2008; 63(2): 266-71. doi: 10.1227/01.NEU.0000313117.35824.9F PMID: 18797356
  8. Rutkowski MJ, Flanigan PM, Aghi MK. Update on the management of recurrent Cushing’s disease. Neurosurg Focus 2015; 38(2): E16. doi: 10.3171/2014.11.FOCUS14703 PMID: 25639318
  9. Feelders RA, Newell-Price J, Pivonello R, Nieman LK, Hofland LJ, Lacroix A. Advances in the medical treatment of Cushing’s syndrome. Lancet Diabetes Endocrinol 2019; 7(4): 300-12. doi: 10.1016/S2213-8587(18)30155-4 PMID: 30033041
  10. Tritos NA, Biller BMK, Swearingen B. Management of Cushing disease. Nat Rev Endocrinol 2011; 7(5): 279-89. doi: 10.1038/nrendo.2011.12 PMID: 21301487
  11. Pivonello R, De Martino MC, Cappabianca P, et al. The medical treatment of Cushing’s disease: Effectiveness of chronic treatment with the dopamine agonist cabergoline in patients unsuccessfully treated by surgery. J Clin Endocrinol Metab 2009; 94(1): 223-30. doi: 10.1210/jc.2008-1533 PMID: 18957500
  12. Ferriere A, Cortet C, Chanson P, et al. Cabergoline for Cushing’s disease: A large retrospective multicenter study. Eur J Endocrinol 2017; 176(3): 305-14. doi: 10.1530/EJE-16-0662 PMID: 28007845
  13. Casulari LA, Naves LA, Mello PA, Pereira Neto A, Papadia C. Nelson’s syndrome: Complete remission with cabergoline but not with bromocriptine or cyproheptadine treatment. Horm Res Paediatr 2004; 62(6): 300-5. doi: 10.1159/000082235 PMID: 15557761
  14. Woo I, Ehsanipoor RM. Cabergoline therapy for Cushing disease throughout pregnancy. Obstet Gynecol 2013; 122(2): 485-7. doi: 10.1097/AOG.0b013e31829e398a PMID: 23884269
  15. Godbout A, Manavela M, Danilowicz K, Beauregard H, Bruno OD, Lacroix A. Cabergoline monotherapy in the long-term treatment of Cushing’s disease. Eur J Endocrinol 2010; 163(5): 709-16. doi: 10.1530/EJE-10-0382 PMID: 20702648
  16. Dodd ML, Klos KJ, Bower JH, Geda YE, Josephs KA, Ahlskog JE. Pathological gambling caused by drugs used to treat Parkinson disease. Arch Neurol 2005; 62(9): 1377-81. doi: 10.1001/archneur.62.9.noc50009 PMID: 16009751
  17. Klos KJ, Bower JH, Josephs KA, Matsumoto JY, Ahlskog JE. Pathological hypersexuality predominantly linked to adjuvant dopamine agonist therapy in Parkinson’s disease and multiple system atrophy. Parkinsonism Relat Disord 2005; 11(6): 381-6. doi: 10.1016/j.parkreldis.2005.06.005 PMID: 16109498
  18. Auriemma RS, Pivonello R, Ferreri L, Priscitelli P, Colao A. Cabergoline use for pituitary tumors and valvular disorders. Endocrinol Metab Clin North Am 2015; 44(1): 89-97. doi: 10.1016/j.ecl.2014.10.007 PMID: 25732645
  19. de Bruin C, Pereira AM, Feelders RA, et al. Coexpression of dopamine and somatostatin receptor subtypes in corticotroph adenomas. J Clin Endocrinol Metab 2009; 94(4): 1118-24. doi: 10.1210/jc.2008-2101 PMID: 19141584
  20. de Bruin C, Feelders RA, Waaijers AM, et al. Differential regulation of human dopamine D2 and somatostatin receptor subtype expression by glucocorticoids in vitro. J Mol Endocrinol 2009; 42(1): 47-56. doi: 10.1677/JME-08-0110 PMID: 18852217
  21. Hofland LJ, van der Hoek J, Feelders R, et al. The multi-ligand somatostatin analogue SOM230 inhibits ACTH secretion by cultured human corticotroph adenomas via somatostatin receptor type 5. Eur J Endocrinol 2005; 152(4): 645-54. doi: 10.1530/eje.1.01876 PMID: 15817922
  22. Colao A, Petersenn S, Newell-Price J, et al. A 12-month phase 3 study of pasireotide in Cushing’s disease. N Engl J Med 2012; 366(10): 914-24. doi: 10.1056/NEJMoa1105743 PMID: 22397653
  23. Schopohl J, Gu F, Rubens R, et al. Pasireotide can induce sustained decreases in urinary cortisol and provide clinical benefit in patients with Cushing’s disease: Results from an open-ended, open-label extension trial. Pituitary 2015; 18(5): 604-12. doi: 10.1007/s11102-014-0618-1 PMID: 25537481
  24. Lacroix A, Gu F, Gallardo W, et al. Efficacy and safety of once- monthly pasireotide in Cushing’s disease: A 12 month clinical trial. Lancet Diabetes Endocrinol 2018; 6(1): 17-26. doi: 10.1016/S2213-8587(17)30326-1 PMID: 29032078
  25. Albani A, Perez-Rivas LG, Tang S, et al. Improved pasireotide response in USP8 mutant corticotroph tumours in vitro. Endocr Relat Cancer 2022; 29(8): 503-11. doi: 10.1530/ERC-22-0088 PMID: 35686696
  26. Colao A, De Block C, Gaztambide MS, Kumar S, Seufert J, Casanueva FF. Managing hyperglycemia in patients with Cushing’s disease treated with pasireotide: Medical expert recommendations. Pituitary 2014; 17(2): 180-6. doi: 10.1007/s11102-013-0483-3 PMID: 23564338
  27. Petersenn S, Salgado LR, Schopohl J, et al. Long-term treatment of Cushing’s disease with pasireotide: 5-year results from an open-label extension study of a Phase III trial. Endocrine 2017; 57(1): 156-65. doi: 10.1007/s12020-017-1316-3 PMID: 28597198
  28. Gadelha M, Gatto F, Wildemberg LE, Fleseriu M. Cushing’s syndrome. Lancet 2023; 402(10418): 2237-52. doi: 10.1016/S0140-6736(23)01961-X PMID: 37984386
  29. McCormack AI, Wass JAH, Grossman AB. Aggressive pituitary tumours: The role of temozolomide and the assessment of MGMT status. Eur J Clin Invest 2011; 41(10): 1133-48. doi: 10.1111/j.1365-2362.2011.02520.x PMID: 21496012
  30. Stupp R, Gander M, Leyvraz S, Newlands E. Current and future developments in the use of temozolomide for the treatment of brain tumours. Lancet Oncol 2001; 2(9): 552-60. doi: 10.1016/S1470-2045(01)00489-2 PMID: 11905710
  31. Hirohata T, Asano K, Ogawa Y, et al. DNA mismatch repair protein (MSH6) correlated with the responses of atypical pituitary adenomas and pituitary carcinomas to temozolomide: the national cooperative study by the Japan Society for Hypothalamic and Pituitary Tumors. J Clin Endocrinol Metab 2013; 98(3): 1130-6. doi: 10.1210/jc.2012-2924 PMID: 23365123
  32. Hinojosa-Amaya JM, Cuevas-Ramos D, Fleseriu M. Medical management of Cushing’s syndrome: Current and emerging treatments. Drugs 2019; 79(9): 935-56. doi: 10.1007/s40265-019-01128-7 PMID: 31098899
  33. Raverot G, Castinetti F, Jouanneau E, et al. Pituitary carcinomas and aggressive pituitary tumours: Merits and pitfalls of temozolomide treatment. Clin Endocrinol (Oxf) 2012; 76(6): 769-75. doi: 10.1111/j.1365-2265.2012.04381.x PMID: 22404748
  34. McCormack A, Dekkers OM, Petersenn S, et al. Treatment of aggressive pituitary tumours and carcinomas: Results of a European Society of Endocrinology (ESE) survey 2016. Eur J Endocrinol 2018; 178(3): 265-76. doi: 10.1530/EJE-17-0933 PMID: 29330228
  35. Dillard TH, Gultekin SH, Delashaw JB Jr, Yedinak CG, Neuwelt EA, Fleseriu M. Temozolomide for corticotroph pituitary adenomas refractory to standard therapy. Pituitary 2011; 14(1): 80-91. doi: 10.1007/s11102-010-0264-1 PMID: 20972839
  36. Bengtsson D, Schrøder HD, Andersen M, et al. Long-term outcome and MGMT as a predictive marker in 24 patients with atypical pituitary adenomas and pituitary carcinomas given treatment with temozolomide. J Clin Endocrinol Metab 2015; 100(4): 1689-98. doi: 10.1210/jc.2014-4350 PMID: 25646794
  37. Zhang D, Heaney AP. Nuclear receptors as regulators of pituitary corticotroph pro-opiomelanocortin transcription. Cells 2020; 9(4): 900. doi: 10.3390/cells9040900 PMID: 32272677
  38. Páez-Pereda M, Kovalovsky D, Hopfner U, et al. Retinoic acid prevents experimental Cushing syndrome. J Clin Invest 2001; 108(8): 1123-31. doi: 10.1172/JCI11098 PMID: 11602619
  39. Pecori Giraldi F, Ambrogio AG, Andrioli M, et al. Potential role for retinoic acid in patients with Cushing’s disease. J Clin Endocrinol Metab 2012; 97(10): 3577-83. doi: 10.1210/jc.2012-2328 PMID: 22851491
  40. Vilar L, Albuquerque JL, Lyra R, et al. The role of isotretinoin therapy for Cushing’s disease: Results of a prospective study. Int J Endocrinol 2016; 2016: 1-9. doi: 10.1155/2016/8173182 PMID: 27034666
  41. Occhi G, Regazzo D, Albiger NM, et al. Activation of the dopamine receptor type-2 (DRD2) promoter by 9-cis retinoic acid in a cellular model of Cushing’s disease mediates the inhibition of cell proliferation and ACTH secretion without a complete corticotroph-to-melanotroph transdifferentiation. Endocrinology 2014; 155(9): 3538-49. doi: 10.1210/en.2013-1820 PMID: 24926820
  42. Jordan S, Lidhar K, Korbonits M, Lowe DG, Grossman AB. Cyclin D and cyclin E expression in normal and adenomatous pituitary. Eur J Endocrinol 2000; 143(1): R1-6. doi: 10.1530/eje.0.143r001 PMID: 10870044
  43. Roussel-Gervais A, Bilodeau S, Vallette S, et al. Cooperation between cyclin E and p27(Kip1) in pituitary tumorigenesis. Mol Endocrinol 2010; 24(9): 1835-45. doi: 10.1210/me.2010-0091 PMID: 20660298
  44. Liu NA, Jiang H, Ben-Shlomo A, et al. Targeting zebrafish and murine pituitary corticotroph tumors with a cyclin-dependent kinase (CDK) inhibitor. Proc Natl Acad Sci 2011; 108(20): 8414-9. doi: 10.1073/pnas.1018091108 PMID: 21536883
  45. Liu NA, Araki T, Cuevas-Ramos D, et al. Cyclin E-mediated human proopiomelanocortin regulation as a therapeutic target for Cushing disease. J Clin Endocrinol Metab 2015; 100(7): 2557-64. doi: 10.1210/jc.2015-1606 PMID: 25942479
  46. Liu NA, Ben-Shlomo A, Carmichael JD, et al. Treatment of Cushing disease with pituitary-targeting seliciclib. J Clin Endocrinol Metab 2023; 108(3): 726-35. doi: 10.1210/clinem/dgac588 PMID: 36214832
  47. Perez-Rivas LG, Theodoropoulou M, Ferraù F, et al. The gene of the ubiquitin-specific protease 8 is frequently mutated in adenomas causing Cushing’s disease. J Clin Endocrinol Metab 2015; 100(7): E997-E1004. doi: 10.1210/jc.2015-1453 PMID: 25942478
  48. Theodoropoulou M, Reincke M, Fassnacht M, Komada M. Decoding the genetic basis of Cushing’s disease: USP8 in the spotlight. Eur J Endocrinol 2015; 173(4): M73-83. doi: 10.1530/EJE-15-0320 PMID: 26012588
  49. Reincke M, Sbiera S, Hayakawa A, et al. Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat Genet 2015; 47(1): 31-8. doi: 10.1038/ng.3166 PMID: 25485838
  50. Shen Y, Ji C, Jian X, et al. Regulation of the EGFR pathway by HSP90 is involved in the pathogenesis of Cushing’s disease. Front Endocrinol (Lausanne) 2021; 11: 601984. doi: 10.3389/fendo.2020.601984 PMID: 33537004
  51. Ma ZY, Song ZJ, Chen JH, et al. Recurrent gain-of-function USP8 mutations in Cushing’s disease. Cell Res 2015; 25(3): 306-17. doi: 10.1038/cr.2015.20 PMID: 25675982
  52. Kageyama K, Asari Y, Sugimoto Y, Niioka K, Daimon M. Ubiquitin-specific protease 8 inhibitor suppresses adrenocorticotropic hormone production and corticotroph tumor cell proliferation. Endocr J 2020; 67(2): 177-84. doi: 10.1507/endocrj.EJ19-0239 PMID: 31666445
  53. Treppiedi D, Di Muro G, Marra G, et al. USP8 inhibitor RA-9 reduces ACTH release and cell growth in tumor corticotrophs. Endocr Relat Cancer 2021; 28(8): 573-82. doi: 10.1530/ERC-21-0093 PMID: 34086599
  54. Duhamel C, Ilie MD, Salle H, et al. Immunotherapy in corticotroph and lactotroph aggressive tumors and carcinomas: Two case reports and a review of the literature. J Pers Med 2020; 10(3): 88. doi: 10.3390/jpm10030088 PMID: 32823651
  55. Clark AJ, Forfar R, Hussain M, et al. ACTH antagonists. Front Endocrinol 2016; 7: 101. doi: 10.3389/fendo.2016.00101 PMID: 27547198
  56. Crinetics Pharmaceuticals’ Oral ACTH Antagonist, CRN04894, Demonstrates Pharmacologic Proof-of-Concept with Strong Dose-Dependent Cortisol Suppression in Phase 1 Single Ascending Dose Study. 2021. Available from: https://crinetics.com/crn04894-demonstrates-pharmacologic-proof-of-concept/
  57. A Phase 1b/2a Open-label Multiple-ascending Dose Exploratory Study of CRN04894 in ACTH-dependent Cushing's Syndrome (Cushing's Disease or Ectopic ACTH Syndrome). 2023. Available from: https://www.medifind.com/articles/clinical-trial/439615084
  58. Feldhaus AL, Anderson K, Dutzar B, et al. ALD1613, a novel long-acting monoclonal antibody to control acth-driven pharmacology. Endocrinology 2016; 158(1): 1-8. doi: 10.1210/en.2016-1455
  59. Nensey NK, Bodager J, Gehrand AL, Raff H. Effect of novel melanocortin type 2 receptor antagonists on the corticosterone response to ACTH in the neonatal rat adrenal gland in vivo and in vitro. Front Endocrinol 2016; 7: 23. doi: 10.3389/fendo.2016.00023 PMID: 27047449
  60. Hu C, Yang J, Qi Z, et al. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm 2022; 3(3): e161. doi: 10.1002/mco2.161 PMID: 35928554
  61. Lacroix A, Feelders RA, Stratakis CA, Nieman LK. Cushing’s syndrome. Lancet 2015; 386(9996): 913-27. doi: 10.1016/S0140-6736(14)61375-1 PMID: 26004339
  62. Riebold M, Kozany C, Freiburger L, et al. A C-terminal HSP90 inhibitor restores glucocorticoid sensitivity and relieves a mouse allograft model of Cushing disease. Nat Med 2015; 21(3): 276-80. doi: 10.1038/nm.3776 PMID: 25665180
  63. Sugiyama A, Kageyama K, Murasawa S, Ishigame N, Niioka K, Daimon M. Inhibition of heat shock protein 90 decreases ACTH production and cell proliferation in AtT-20 cells. Pituitary 2015; 18(4): 542-53. doi: 10.1007/s11102-014-0607-4 PMID: 25280813
  64. Giraldi PF, Cassarino MF, Sesta A, Lasio G, Losa M. Silibinin, an HSP90 inhibitor, on human ACTH-secreting adenomas. Neuroendocrinology 2023; 113(6): 606-14. doi: 10.1159/000529710 PMID: 36791678
  65. Du L, Bergsneider M, Mirsadraei L, et al. Evidence for orphan nuclear receptor TR4 in the etiology of Cushing disease. Proc Natl Acad Sci 2013; 110(21): 8555-60. doi: 10.1073/pnas.1306182110 PMID: 23653479
  66. Xia L, Shen D, Zhang Y, et al. Targeting the TR4 nuclear receptor with antagonist bexarotene can suppress the proopiomelanocortin signalling in AtT-20 cells. J Cell Mol Med 2021; 25(5): 2404-17. doi: 10.1111/jcmm.16074 PMID: 33491272
  67. Fukuoka H, Cooper O, Ben-Shlomo A, et al. EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas. J Clin Invest 2011; 121(12): 4712-21. doi: 10.1172/JCI60417 PMID: 22105169
  68. Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets 2012; 16(1): 15-31. doi: 10.1517/14728222.2011.648617 PMID: 22239438
  69. Andl CD, Mizushima T, Oyama K, Bowser M, Nakagawa H, Rustgi AK. EGFR-induced cell migration is mediated predominantly by the JAK-STAT pathway in primary esophageal keratinocytes. Am J Physiol Gastrointest Liver Physiol 2004; 287(6): G1227-37. doi: 10.1152/ajpgi.00253.2004 PMID: 15284024
  70. Asari Y, Kageyama K, Nakada Y, et al. Inhibitory effects of a selective Jak2 inhibitor on adrenocorticotropic hormone production and proliferation of corticotroph tumor AtT20 cells. OncoTargets Ther 2017; 10: 4329-38. doi: 10.2147/OTT.S141345 PMID: 28919782
  71. Xu AW, Ste-Marie L, Kaelin CB, Barsh GS. Inactivation of signal transducer and activator of transcription 3 in proopiomelanocortin (Pomc) neurons causes decreased pomc expression, mild obesity, and defects in compensatory refeeding. Endocrinology 2007; 148(1): 72-80. doi: 10.1210/en.2006-1119 PMID: 17023536
  72. Sekizaki T, Kameda H, Nakamura A, et al. Neuromedin B receptor as a potential therapeutic target for corticotroph adenomas. Pituitary 2023; 26(5): 597-610. doi: 10.1007/s11102-023-01350-3 PMID: 37642928
  73. Hagiwara R, Kageyama K, Iwasaki Y, Niioka K, Daimon M. Effects of tubastatin A on adrenocorticotropic hormone synthesis and proliferation of AtT-20 corticotroph tumor cells. Endocr J 2022; 69(9): 1053-60. doi: 10.1507/endocrj.EJ21-0778 PMID: 35296577
  74. Nakada Y, Kageyama K, Sugiyama A, et al. Inhibitory effects of trichostatin A on adrenocorticotropic hormone production and proliferation of corticotroph tumor AtT-20 cells. Endocr J 2015; 62(12): 1083-90. doi: 10.1507/endocrj.EJ15-0369 PMID: 26497760
  75. Hagiwara R, Kageyama K, Niioka K, Takayasu S, Tasso M, Daimon M. Involvement of histone deacetylase 1/2 in adrenocorticotropic hormone synthesis and proliferation of corticotroph tumor AtT-20 cells. Peptides 2021; 136: 170441. doi: 10.1016/j.peptides.2020.170441 PMID: 33181265
  76. Lu J, Chatain GP, Bugarini A, et al. Histone deacetylase inhibitor SAHA is a promising treatment of Cushing disease. J Clin Endocrinol Metab 2017; 102(8): 2825-35. doi: 10.1210/jc.2017-00464 PMID: 28505327
  77. Zhang D, Damoiseaux R, Babayan L, et al. Targeting corticotroph HDAC and PI3-kinase in Cushing disease. J Clin Endocrinol Metab 2021; 106(1): e232-46. doi: 10.1210/clinem/dgaa699 PMID: 33000123
  78. Luque RM, Ibáñez-Costa A, López-Sánchez LM, et al. A cellular and molecular basis for the selective desmopressin-induced ACTH release in Cushing disease patients: Key role of AVPR1b receptor and potential therapeutic implications. J Clin Endocrinol Metab 2013; 98(10): 4160-9. doi: 10.1210/jc.2013-1992 PMID: 23884782
  79. Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC. Receptors for dopamine and somatostatin: Formation of hetero-oligomers with enhanced functional activity. Science 2000; 288(5463): 154-7. doi: 10.1126/science.288.5463.154 PMID: 10753124
  80. Günther T, Tulipano G, Dournaud P, et al. International union of basic and clinical pharmacology. CV. Somatostatin receptors: Structure, function, ligands, and new nomenclature. Pharmacol Rev 2018; 70(4): 763-835. doi: 10.1124/pr.117.015388 PMID: 30232095
  81. Cantone MC, Dicitore A, Vitale G. Somatostatin-dopamine chimeric molecules in neuroendocrine neoplasms. J Clin Med 2021; 10(3): 501. doi: 10.3390/jcm10030501 PMID: 33535394
  82. Pivonello R, De Leo M, Cozzolino A, Colao A. The treatment of Cushing’s disease. Endocr Rev 2015; 36(4): 385-486. doi: 10.1210/er.2013-1048 PMID: 26067718
  83. Feelders RA, Hofland LJ, de Herder WW. Medical treatment of Cushing’s syndrome: Adrenal-blocking drugs and ketaconazole. Neuroendocrinology 2010; 92 (Suppl. 1): 111-5. doi: 10.1159/000314292 PMID: 20829630
  84. Tritos NA. Adrenally directed medical therapies for Cushing syndrome. J Clin Endocrinol Metab 2021; 106(1): 16-25. doi: 10.1210/clinem/dgaa778 PMID: 33118025
  85. Viecceli C, Mattos ACV, Hirakata VN, Garcia SP, Rodrigues TC, Czepielewski MA. Ketoconazole as second-line treatment for Cushing’s disease after transsphenoidal surgery: Systematic review and meta-analysis. Front Endocrinol 2023; 14: 1145775. doi: 10.3389/fendo.2023.1145775 PMID: 37223017
  86. Galendi SCJ, Correa Neto ANS, Demetres M, Boguszewski CL, Nogueira VSN. Effectiveness of medical treatment of Cushing’s disease: A systematic review and meta-analysis. Front Endocrinol 2021; 12: 732240. doi: 10.3389/fendo.2021.732240 PMID: 34603209
  87. Broersen LHA, Jha M, Biermasz NR, Pereira AM, Dekkers OM. Effectiveness of medical treatment for Cushing’s syndrome: A systematic review and meta-analysis. Pituitary 2018; 21(6): 631-41. doi: 10.1007/s11102-018-0897-z PMID: 29855779
  88. Castinetti F, Guignat L, Giraud P, et al. Ketoconazole in Cushing’s disease: Is it worth a try? J Clin Endocrinol Metab 2014; 99(5): 1623-30. doi: 10.1210/jc.2013-3628 PMID: 24471573
  89. Viecceli C, Mattos ACV, Costa MCB, Melo RB, Rodrigues TC, Czepielewski MA. Evaluation of ketoconazole as a treatment for Cushing’s disease in a retrospective cohort. Front Endocrinol 2022; 13: 1017331. doi: 10.3389/fendo.2022.1017331 PMID: 36277689
  90. Valassi E, Crespo I, Gich I, Rodríguez J, Webb SM. A reappraisal of the medical therapy with steroidogenesis inhibitors in Cushing’s syndrome. Clin Endocrinol 2012; 77(5): 735-42. doi: 10.1111/j.1365-2265.2012.04424.x PMID: 22533782
  91. Young J, Bertherat J, Vantyghem MC, et al. Hepatic safety of ketoconazole in Cushing’s syndrome: Results of a compassionate use programme in France. Eur J Endocrinol 2018; 178(5): 447-58. doi: 10.1530/EJE-17-0886 PMID: 29472378
  92. Daniel E, Aylwin S, Mustafa O, et al. Effectiveness of metyrapone in treating Cushing’s syndrome: A retrospective multicenter study in 195 patients. J Clin Endocrinol Metab 2015; 100(11): 4146-54. doi: 10.1210/jc.2015-2616 PMID: 26353009
  93. Nieman LK, Boscaro M, Scaroni CM, et al. Metyrapone treatment in endogenous Cushing’s syndrome: Results at week 12 from PROMPT, a prospective international multicenter, open-label, phase III/IV study. J Endocr Soc 2021; 5(S1): A515-5. doi: 10.1210/jendso/bvab048.1053
  94. Caimari F, Valassi E, Garbayo P, et al. Cushing’s syndrome and pregnancy outcomes: A systematic review of published cases. Endocrine 2017; 55(2): 555-63. doi: 10.1007/s12020-016-1117-0 PMID: 27704478
  95. Pivonello R, Simeoli C, Di Paola N, Colao A. Cushing’s disease: Adrenal steroidogenesis inhibitors. Pituitary 2022; 25(5): 726-32. doi: 10.1007/s11102-022-01262-8 PMID: 36036308
  96. Bertagna X, Pivonello R, Fleseriu M, et al. LCI699, a potent 11β-hydroxylase inhibitor, normalizes urinary cortisol in patients with Cushing’s disease: Results from a multicenter, proof-of-concept study. J Clin Endocrinol Metab 2014; 99(4): 1375-83. doi: 10.1210/jc.2013-2117 PMID: 24423285
  97. Fleseriu M, Pivonello R, Young J, et al. Osilodrostat, a potent oral 11β-hydroxylase inhibitor: 22-week, prospective, Phase II study in Cushing’s disease. Pituitary 2016; 19(2): 138-48. doi: 10.1007/s11102-015-0692-z PMID: 26542280
  98. Pivonello R, Fleseriu M, Newell-Price J, et al. Efficacy and safety of osilodrostat in patients with Cushing’s disease (LINC 3): A multicentre phase III study with a double-blind, randomised withdrawal phase. Lancet Diabetes Endocrinol 2020; 8(9): 748-61. doi: 10.1016/S2213-8587(20)30240-0 PMID: 32730798
  99. Gadelha M, Bex M, Feelders RA, et al. Randomized trial of osilodrostat for the treatment of cushing disease. J Clin Endocrinol Metab 2022; 107(7): e2882-95. doi: 10.1210/clinem/dgac178 PMID: 35325149
  100. Fleseriu M, Newell-Price J, Pivonello R, et al. Long-term outcomes of osilodrostat in Cushing’s disease: LINC 3 study extension. Eur J Endocrinol 2022; 187(4): 531-41. doi: 10.1530/EJE-22-0317 PMID: 35980235
  101. Gadelha M, Snyder PJ, Witek P, et al. Long-term efficacy and safety of osilodrostat in patients with Cushing’s disease: Results from the LINC 4 study extension. Front Endocrinol 2023; 14: 1236465. doi: 10.3389/fendo.2023.1236465 PMID: 37680892
  102. Newell-Price J, Pivonello R, Tabarin A, et al. Use of late-night salivary cortisol to monitor response to medical treatment in Cushing’s disease. Eur J Endocrinol 2020; 182(2): 207-17. doi: 10.1530/EJE-19-0695 PMID: 31804965
  103. Fleseriu M, Biller BMK, Bertherat J, et al. Long-term efficacy and safety of osilodrostat in Cushing’s disease: Final results from a Phase II study with an optional extension phase (LINC 2). Pituitary 2022; 25(6): 959-70. doi: 10.1007/s11102-022-01280-6 PMID: 36219274
  104. Detomas M, Altieri B, Deutschbein T, Fassnacht M, Dischinger U. Metyrapone versus osilodrostat in the short-term therapy of endogenous Cushing’s syndrome: Results from a single center cohort study. Front Endocrinol 2022; 13: 903545. doi: 10.3389/fendo.2022.903545 PMID: 35769081
  105. Bonnet-Serrano F, Poirier J, Vaczlavik A, et al. Differences in the spectrum of steroidogenic enzyme inhibition between Osilodrostat and Metyrapone in ACTH-dependent Cushing syndrome patients. Eur J Endocrinol 2022; 187(2): 315-22. doi: 10.1530/EJE-22-0208 PMID: 35699971
  106. Poirier J, Bonnet-Serrano F, Thomeret L, Bouys L, Bertherat J. Prolonged adrenocortical blockade following discontinuation of Osilodrostat. Eur J Endocrinol 2023; 188(6): K29-32. doi: 10.1093/ejendo/lvad060 PMID: 37300549
  107. Heleno CT, Hong SPD, Cho HG, Kim MJ, Park Y, Chae YK. Cushing’s syndrome in adenocarcinoma of lung responding to osilodrostat. Case Rep Oncol 2023; 16(1): 130-4. doi: 10.1159/000527824 PMID: 36876215
  108. Haissaguerre M, Puerto M, Nunes ML, Tabarin A. Efficacy and tolerance of osilodrostat in patients with severe Cushing’s syndrome due to non-pituitary cancers. Eur J Endocrinol 2020; 183(4): L7-9. doi: 10.1530/EJE-20-0557 PMID: 32688343
  109. Dormoy A, Haissaguerre M, Vitellius G, et al. Efficacy and safety of osilodrostat in paraneoplastic cushing syndrome: A real-world multicenter study in France. J Clin Endocrinol Metab 2023; 108(6): 1475-87. doi: 10.1210/clinem/dgac691 PMID: 36470583
  110. Creemers SG, Feelders RA, de Jong FH, et al. Levoketoconazole, the 2S,4R enantiomer of ketoconazole, a new steroidogenesis inhibitor for Cushing’s syndrome treatment. J Clin Endocrinol Metab 2021; 106(4): 1618-30. doi: 10.1210/clinem/dgaa989 PMID: 33399817
  111. Fleseriu M, Pivonello R, Elenkova A, et al. Efficacy and safety of levoketoconazole in the treatment of endogenous Cushing’s syndrome (SONICS): A phase 3, multicentre, open-label, single-arm trial. Lancet Diabetes Endocrinol 2019; 7(11): 855-65. doi: 10.1016/S2213-8587(19)30313-4 PMID: 31542384
  112. Pivonello R, Zacharieva S, Elenkova A, et al. Levoketoconazole in the treatment of patients with endogenous Cushing’s syndrome: A double-blind, placebo-controlled, randomized withdrawal study (LOGICS). Pituitary 2022; 25(6): 911-26. doi: 10.1007/s11102-022-01263-7 PMID: 36085339
  113. Fleseriu M, Auchus RJ, Greenman Y, et al. Levoketoconazole treatment in endogenous Cushing’s syndrome: Extended evaluation of clinical, biochemical, and radiologic outcomes. Eur J Endocrinol 2022; 187(6): 859-71. doi: 10.1530/EJE-22-0506 PMID: 36251618
  114. Pivonello R, Elenkova A, Fleseriu M, et al. Levoketoconazole in the treatment of patients with Cushing’s syndrome and diabetes mellitus: Results from the SONICS phase 3 study. Front Endocrinol 2021; 12: 595894. doi: 10.3389/fendo.2021.595894 PMID: 33897615
  115. Preda VA, Sen J, Karavitaki N, Grossman AB. THERAPY IN ENDOCRINE DISEASE: Etomidate in the management of hypercortisolaemia in Cushing’s syndrome: A review. Eur J Endocrinol 2012; 167(2): 137-43. doi: 10.1530/EJE-12-0274 PMID: 22577107
  116. Carroll TB, Peppard WJ, Herrmann DJ, et al. Continuous etomidate infusion for the management of severe Cushing syndrome: Validation of a standard protocol. J Endocr Soc 2019; 3(1): 1-12. doi: 10.1210/js.2018-00269 PMID: 30560224
  117. Schulte HM, Benker G, Reinwein D, Sippell WG, Allolio B. Infusion of low dose etomidate: Correction of hypercortisolemia in patients with Cushing’s syndrome and dose-response relationship in normal subjects. J Clin Endocrinol Metab 1990; 70(5): 1426-30. doi: 10.1210/jcem-70-5-1426 PMID: 2159485
  118. Łebek-Szatańska A, Nowak KM, Zgliczyński W, Baum E, Żyłka A, Papierska L. Low-dose etomidate for the management of severe hypercortisolaemia in different clinical scenarios: A case series and review of the literature. Ther Adv Endocrinol Metab 2019; 10: 2042018819825541. doi: 10.1177/2042018819825541 PMID: 30800267
  119. McGrath M, Ma C, Raines DE. Dimethoxy-etomidate: A nonhypnotic etomidate analog that potently inhibits steroidogenesis. J Pharmacol Exp Ther 2018; 364(2): 229-37. doi: 10.1124/jpet.117.245332 PMID: 29203576
  120. Orth DN, Liddle GW. Results of treatment in 108 patients with Cushing’s syndrome. N Engl J Med 1971; 285(5): 243-7. doi: 10.1056/NEJM197107292850501 PMID: 4326256
  121. Baudry C, Coste J, Bou Khalil R, et al. Efficiency and tolerance of mitotane in Cushing’s disease in 76 patients from a single center. Eur J Endocrinol 2012; 167(4): 473-81. doi: 10.1530/EJE-12-0358 PMID: 22815335
  122. LaPensee CR, Mann JE, Rainey WE, Crudo V, Hunt SW III, Hammer GD. ATR-101, a selective and potent inhibitor of Acyl-CoA acyltransferase 1, induces apoptosis in h295r adrenocortical cells and in the adrenal cortex of dogs. Endocrinology 2016; 157(5): 1775-88. doi: 10.1210/en.2015-2052 PMID: 26986192
  123. Smith DC, Kroiss M, Kebebew E, et al. A phase 1 study of nevanimibe HCl, a novel adrenal-specific sterol O-acyltransferase 1 (SOAT1) inhibitor, in adrenocortical carcinoma. Invest New Drugs 2020; 38(5): 1421-9. doi: 10.1007/s10637-020-00899-1 PMID: 31984451
  124. El-Maouche D, Merke DP, Vogiatzi MG, et al. A phase 2, multicenter study of nevanimibe for the treatment of congenital adrenal hyperplasia. J Clin Endocrinol Metab 2020; 105(8): 2771-8. doi: 10.1210/clinem/dgaa381 PMID: 32589738
  125. Burris-Hiday SD, Scott EE. Steroidogenic cytochrome P450 17A1 structure and function. Mol Cell Endocrinol 2021; 528: 111261. doi: 10.1016/j.mce.2021.111261 PMID: 33781841
  126. Fiorentini C, Fragni M, Perego P, et al. Antisecretive and antitumor activity of abiraterone acetate in human adrenocortical cancer: A preclinical study. J Clin Endocrinol Metab 2016; 101(12): 4594-602. doi: 10.1210/jc.2016-2414 PMID: 27626976
  127. Auchus RJ, Buschur EO, Chang AY, et al. Abiraterone acetate to lower androgens in women with classic 21-hydroxylase deficiency. J Clin Endocrinol Metab 2014; 99(8): 2763-70. doi: 10.1210/jc.2014-1258 PMID: 24780050
  128. Chacko R, Abdel-Razeq NH, Abu Rous F, Loutfi R. Abiraterone acetate for treatment of ectopic Cushing syndrome caused by ACTH-producing neuroendocrine tumor: A case report. J Gastrointest Oncol 2022; 13(5): 2626-32. doi: 10.21037/jgo-22-376 PMID: 36388644
  129. Wu N, Katz DA, An G. Population target-mediated pharmacokinetic/pharmacodynamic modeling to evaluate SPI-62 exposure and hepatic 11β-hydroxysteroid dehydrogenase type 1 (HSD-1) inhibition in healthy adults. Clin Pharmacokinet 2023; 62(9): 1275-88. doi: 10.1007/s40262-023-01278-8 PMID: 37452998
  130. Brown DR, East HE, Eilerman BS, et al. Clinical management of patients with Cushing syndrome treated with mifepristone: Consensus recommendations. Clin Diabetes Endocrinol 2020; 6(1): 18. doi: 10.1186/s40842-020-00105-4 PMID: 33292727
  131. Fleseriu M, Biller BMK, Findling JW, et al. Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing’s syndrome. J Clin Endocrinol Metab 2012; 97(6): 2039-49. doi: 10.1210/jc.2011-3350 PMID: 22466348
  132. Pivonello R, Ferrigno R, De Martino MC, et al. Medical treatment of Cushing’s disease: An overview of the current and recent clinical trials. Front Endocrinol 2020; 11: 648. doi: 10.3389/fendo.2020.00648 PMID: 33363514
  133. Fein HG, Vaughan TB III, Kushner H, Cram D, Nguyen D. Sustained weight loss in patients treated with mifepristone for Cushing’s syndrome: A follow-up analysis of the SEISMIC study and long-term extension. BMC Endocr Disord 2015; 15(1): 63. doi: 10.1186/s12902-015-0059-5 PMID: 26507877
  134. Ault TA, Braxton DR, Watson RA, Marcus AO, Fong TL. Mifepristone induced liver injury in a patient with Cushing syndrome: A case report and review of the literature. J Med Case Reports 2023; 17(1): 33. doi: 10.1186/s13256-022-03696-x PMID: 36732814
  135. Castinetti F, Fassnacht M, Johanssen S, et al. Merits and pitfalls of mifepristone in Cushing’s syndrome. Eur J Endocrinol 2009; 160(6): 1003-10. doi: 10.1530/EJE-09-0098 PMID: 19289534
  136. Guarda FJ, Findling J, Yuen KCJ, Fleseriu M, Nachtigall LB. Mifepristone increases thyroid hormone requirements in patients with central hypothyroidism: A multicenter study. J Endocr Soc 2019; 3(9): 1707-14. doi: 10.1210/js.2019-00188 PMID: 31528830
  137. Pivonello R, Munster PN, Terzolo M, et al. Glucocorticoid receptor antagonism upregulates somatostatin receptor subtype 2 expression in acth-producing neuroendocrine tumors: New insight based on the selective glucocorticoid receptor modulator relacorilant. Front Endocrinol 2022; 12: 793262. doi: 10.3389/fendo.2021.793262 PMID: 35058882
  138. Molitch ME. Glucocorticoid receptor blockers. Pituitary 2022; 25(5): 733-6. doi: 10.1007/s11102-022-01227-x PMID: 35507245
  139. Pivonello R, Bancos I, Feelders RA, et al. Relacorilant, a selective glucocorticoid receptor modulator, induces clinical improvements in patients with Cushing syndrome: Results from a prospective, open-label phase 2 study. Front Endocrinol 2021; 12: 662865. doi: 10.3389/fendo.2021.662865 PMID: 34335465
  140. Donegan DM, Pivonello R, Stigliano A, et al. Relacorilant, a selective glucocorticoid receptor modulator in development for the treatment of patients with Cushing syndrome, does not cause prolongation of the cardiac QT interval. Endocr Pract 2024; 30(1): 11-8. doi: 10.1016/j.eprac.2023.09.011 PMID: 37805100
  141. Vilar L, Naves LA, Azevedo MF, et al. Effectiveness of cabergoline in monotherapy and combined with ketoconazole in the management of Cushing’s disease. Pituitary 2010; 13(2): 123-9. doi: 10.1007/s11102-009-0209-8 PMID: 19943118
  142. Barbot M, Albiger N, Ceccato F, et al. Combination therapy for Cushing’s disease: Effectiveness of two schedules of treatment. Should we start with cabergoline or ketoconazole? Pituitary 2014; 17(2): 109-17. doi: 10.1007/s11102-013-0475-3 PMID: 23468128
  143. Kamenický P, Droumaguet C, Salenave S, et al. Mitotane, metyrapone, and ketoconazole combination therapy as an alternative to rescue adrenalectomy for severe ACTH-dependent Cushing’s syndrome. J Clin Endocrinol Metab 2011; 96(9): 2796-804. doi: 10.1210/jc.2011-0536 PMID: 21752886
  144. Pivonello R, Kadioglu P, Bex M, Devia DG, Boguszewski C, Yavuz DG. Pasireotide alone or in combination with cabergoline effectively controls urinary free cortisol levels: Results from a prospective study in patients with Cushing’s disease (CAPACITY). Endocr Abstr 2017. 49: Bioscientifica. doi: 10.1530/endoabs.49.GP187
  145. Feelders RA, de Bruin C, Pereira AM, et al. Pasireotide alone or with cabergoline and ketoconazole in Cushing’s disease. N Engl J Med 2010; 362(19): 1846-8. doi: 10.1056/NEJMc1000094 PMID: 20463350
  146. Amodru V, Brue T, Castinetti F. Synergistic cortisol suppression by ketoconazole–osilodrostat combination therapy. Endocrinol Diabetes Metab Case Rep 2021; 2021: 21-0071. doi: 10.1530/EDM-21-0071 PMID: 34877930
  147. Bogusławska A, Kluczyński Ł, Godlewska M, Rzepka E, Hubalewska-Dydejczyk A, Gilis-Januszewska A. Multimodal treatment including temozolomide (TMZ) and pasireotide for aggressive, giant silent corticotroph PiTNET in a young patient. Endocr Abstr 2022. 81: Bioscientifica. doi: 10.1530/endoabs.81.P693
  148. Castinetti F, Morange I, Jaquet P, Conte-Devolx B, Brue T. Ketoconazole revisited: A preoperative or postoperative treatment in Cushing’s disease. Eur J Endocrinol 2008; 158(1): 91-9. doi: 10.1530/EJE-07-0514 PMID: 18166822
  149. Ghervan C, Nemes C, Valea A, Silaghi A, Georgescu CE, Ghervan L. Ketoconazole treatment in Cushing’s syndrome: Results of a tertiary referral center in Romania. Acta Endocrinol 2015; 11(1): 46-54. doi: 10.4183/aeb.2015.46
  150. Invitti C, Giraldi PF, de Martin M, Cavagnini F. Diagnosis and management of Cushing’s syndrome: Results of an Italian multicentre study. J Clin Endocrinol Metab 1999; 84(2): 440-8. doi: 10.1210/jc.84.2.440 PMID: 10022398
  151. Luisetto G, Zangari M, Camozzi V, Boscaro M, Sonino N, Fallo F. Recovery of bone mineral density after surgical cure, but not by ketoconazole treatment, in Cushing’s syndrome. Osteoporos Int 2001; 12(11): 956-60. doi: 10.1007/s001980170025 PMID: 11804023
  152. Moncet D, Morando DJ, Pitoia F, et al. Ketoconazole therapy: An efficacious alternative to achieve eucortisolism in patients with Cushing's syndrome. Medicina 2007; 67(1): 26-31.
  153. Sonino N, Boscaro M, Paoletta A, Mantero F, Zillotto D. Ketoconazole treatment in Cushing’s syndrome: Experience in 34 patients. Clin Endocrinol 1991; 35(4): 347-52. doi: 10.1111/j.1365-2265.1991.tb03547.x PMID: 1752063
  154. van den Bosch OFC, Stades AME, Zelissen PMJ. Increased long-term remission after adequate medical cortisol suppression therapy as presurgical treatment in Cushing’s disease. Clin Endocrinol 2014; 80(2): 184-90. doi: 10.1111/cen.12286 PMID: 23841642
  155. Ceccato F, Zilio M, Barbot M, et al. Metyrapone treatment in Cushing’s syndrome: A real-life study. Endocrine 2018; 62(3): 701-11. doi: 10.1007/s12020-018-1675-4 PMID: 30014438
  156. Verhelst JA, Trainer PJ, Howlett TA, et al. Short and long-term responses to metyrapone in the medical management of 91 patients with Cushing’s syndrome. Clin Endocrinol 1991; 35(2): 169-78. doi: 10.1111/j.1365-2265.1991.tb03517.x PMID: 1657460
  157. Thorén M, Adamson U, Sjöberg HE. Aminoglutethimide and metyrapone in the management of Cushing’s syndrome. Eur J Endocrinol 1985; 109(4): 451-7. doi: 10.1530/acta.0.1090451 PMID: 3898689
  158. Jeffcoate WJ, Rees LH, Tomlin S, Jones AE, Edwards CR, Besser GM. Metyrapone in long-term management of Cushing’s disease. BMJ 1977; 2(6081): 215-7. doi: 10.1136/bmj.2.6081.215 PMID: 195666
  159. Schteingart D, Tsao HS, Taylor CI, McKenzie A, Victoria R, Therrien BA. Sustained remission of Cushing’s disease with mitotane and pituitary irradiation. Ann Intern Med 1980; 92(5): 613-9. doi: 10.7326/0003-4819-92-5-613 PMID: 6247946
  160. Luton JP, Mahoudeau JA, Bouchard P, et al. Treatment of Cushing’s disease by o,p′DDD. N Engl J Med 1979; 300(9): 459-64. doi: 10.1056/NEJM197903013000903 PMID: 215912

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers