Cholesteryl Ester Transfer Protein (CETP) Variations in Relation to Lipid Profiles and Cardiovascular Diseases: An Update


Cite item

Full Text

Abstract

Lipid metabolism plays an essential role in the pathogenesis of cardiovascular and metabolic diseases. Cholesteryl ester transfer protein (CETP) is a crucial glycoprotein involved in lipid metabolism by transferring cholesteryl esters (CE) and triglycerides (TG) between plasma lipoproteins. CETP activity results in reduced HDL-C and increased VLDL- and LDL-C concentrations, thus increasing the risk of cardiovascular and metabolic diseases. In this review, we discuss the structure of CETP and its mechanism of action. Furthermore, we focus on recent experiments on animal CETP-expressing models, deciphering the regulation and functions of CETP in various genetic backgrounds and interaction with different external factors. Finally, we discuss recent publications revealing the association of CETP single nucleotide polymorphisms (SNPs) with the risk of cardiovascular and metabolic diseases, lifestyle factors, diet and therapeutic interventions. While CETP SNPs can be used as effective diagnostic markers, diet, lifestyle, gender and ethnic specificity should also be considered for effective treatment.

About the authors

Siarhei Dabravolski

Department of Biotechnology Engineering, ORT Braude College, Braude Academic College of Engineering

Author for correspondence.
Email: info@benthamscience.net

Nikolay Orekhov

Laboratory of Angiopatology, Research Institute of General Pathology and Pathophysiology,, The Russian Academy of Medical Sciences,

Email: info@benthamscience.net

Alexandra Melnichenko

Laboratory of Angiopatology, Research Institute of General Pathology and Pathophysiology,, The Russian Academy of Medical Sciences,

Email: info@benthamscience.net

Vasily Sukhorukov

Laboratory of Angiopatology, Research Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences,

Email: info@benthamscience.net

Mikhail Popov

Laboratory of Angiopatology, Research Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences,

Email: info@benthamscience.net

Alexander Orekhov

Laboratory of Angiopatology, Research Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences,

Email: info@benthamscience.net

References

  1. Haa YC, Barter PJ. Differences in plasma cholesteryl ester transfer activity in sixteen vertebrate species. Comp Biochem Physiol B 1982; 71(2): 265-9. doi: 10.1016/0305-0491(82)90252-8 PMID: 7060347
  2. Yu Y, Song G. Lipopolysaccharide-binding protein and bactericidal/permeability-increasing protein in lipid metabolism and cardiovascular diseases. Lipid Transfer in Lipoprotein Metabolism and Cardiovascular Disease. Springer 2020.
  3. Alva V, Lupas AN. The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861(8): 913-23. doi: 10.1016/j.bbalip.2016.01.016 PMID: 26825693
  4. Qiu X, Mistry A, Ammirati MJ, et al. Crystal structure of cholesteryl ester transfer protein reveals a long tunnel and four bound lipid molecules. Nat Struct Mol Biol 2007; 14(2): 106-13. doi: 10.1038/nsmb1197 PMID: 17237796
  5. Koivuniemi A, Vuorela T, Kovanen PT, Vattulainen I, Hyvönen MT. Lipid exchange mechanism of the cholesteryl ester transfer protein clarified by atomistic and coarse-grained simulations. PLoS Comput Biol 2012; 8(1): e1002299. doi: 10.1371/journal.pcbi.1002299
  6. Zhang L, Yan F, Zhang S, et al. Structural basis of transfer between lipoproteins by cholesteryl ester transfer protein. Nat Chem Biol 2012; 8(4): 342-9. doi: 10.1038/nchembio.796 PMID: 22344176
  7. Chirasani VR, Revanasiddappa PD, Senapati S. Structural plasticity of cholesteryl ester transfer protein assists the lipid transfer activity. J Biol Chem 2016; 291(37): 19462-73. doi: 10.1074/jbc.M116.744623 PMID: 27445332
  8. Lauer ME, Graff-Meyer A, Rufer AC, et al. Cholesteryl ester transfer between lipoproteins does not require a ternary tunnel complex with CETP. J Struct Biol 2016; 194(2): 191-8. doi: 10.1016/j.jsb.2016.02.016 PMID: 26876146
  9. Brown ML, Inazu A, Hesler CB, et al. Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature 1989; 342(6248): 448-51. doi: 10.1038/342448a0 PMID: 2586614
  10. Inazu A, Brown ML, Hesler CB, et al. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med 1990; 323(18): 1234-8. doi: 10.1056/NEJM199011013231803 PMID: 2215607
  11. Yamashita S, Ruscica M, Macchi C, Corsini A, Matsuzawa Y, Sirtori CR. Cholesteryl ester transfer protein: An enigmatic pharmacology - Antagonists and agonists. Atherosclerosis 2018; 278: 286-98. doi: 10.1016/j.atherosclerosis.2018.09.035 PMID: 30347344
  12. Su X, Li G, Deng Y, Chang D. Cholesteryl ester transfer protein inhibitors in precision medicine. Clin Chim Acta 2020; 510: 733-40. doi: 10.1016/j.cca.2020.09.012 PMID: 32941836
  13. Xue H, Zhang M, Liu J, Wang J, Ren G. Structure-based mechanism and inhibition of cholesteryl ester transfer protein. Curr Atheroscler Rep 2023; 25(4): 155-66. doi: 10.1007/s11883-023-01087-1 PMID: 36881278
  14. Poznyak AV, Bezsonov EE, Popkova TV, Starodubova AV, Orekhov AN. Vaccination against atherosclerosis: Is it real? Int J Mol Sci 2022; 23(5): 2417. doi: 10.3390/ijms23052417 PMID: 35269559
  15. Nicholls SJ, Nelson AJ. CETP inhibitors: Should we continue to pursue this pathway? Curr Atheroscler Rep 2022; 24(12): 915-23. doi: 10.1007/s11883-022-01070-2 PMID: 36409446
  16. Di Bartolo BA, Duong M, Nicholls SJ. Clinical trials with cholesteryl ester transfer protein inhibitors. Curr Opin Lipidol 2016; 27(6): 545-9. doi: 10.1097/MOL.0000000000000352 PMID: 27676199
  17. Shrestha S, Wu BJ, Guiney L, Barter PJ, Rye KA. Cholesteryl ester transfer protein and its inhibitors. J Lipid Res 2018; 59(5): 772-83. doi: 10.1194/jlr.R082735 PMID: 29487091
  18. Winkler TW, Grassmann F, Brandl C, et al. Genome-wide association meta-analysis for early age-related macular degeneration highlights novel loci and insights for advanced disease. BMC Med Genomics 2020; 13(1): 120. doi: 10.1186/s12920-020-00760-7 PMID: 32843070
  19. Burgess S, Davey Smith G. Mendelian randomization implicates high-density lipoprotein cholesterol-associated mechanisms in etiology of age-related macular degeneration. Ophthalmology 2017; 124(8): 1165-74. doi: 10.1016/j.ophtha.2017.03.042 PMID: 28456421
  20. Millwood IY, Bennett DA, Holmes MV, et al. Association of CETP gene variants with risk for vascular and nonvascular diseases among chinese adults. JAMA Cardiol 2018; 3(1): 34-43. doi: 10.1001/jamacardio.2017.4177 PMID: 29141072
  21. Randomized Study of Obicetrapib as an Adjunct to Statin Therapy (ROSE). NCT04753606, 2021.
  22. Randomized Study of Obicetrapib in Combination with Ezetimibe (OCEAN). NCT04770389, 2021.
  23. Clinical trials for TA-8995. Available from: https://www.clinicaltrialsregister.eu/ctr-search/search?query=TA-8995
  24. Bu X, Niu D, Wu J, Yuan Y, Song J, Wang J. Elevated levels of preβ1-high-density lipoprotein are associated with cholesterol ester transfer protein, the presence and severity of coronary artery disease. Lipids Health Dis 2017; 16(1): 4. doi: 10.1186/s12944-016-0394-1 PMID: 28073362
  25. Martinelli AEM, Maranhão RC, Carvalho PO, et al. Cholesteryl ester transfer protein (CETP), HDL capacity of receiving cholesterol and status of inflammatory cytokines in patients with severe heart failure. Lipids Health Dis 2018; 17(1): 242. doi: 10.1186/s12944-018-0888-0 PMID: 30342531
  26. Xiao J, Ji J, Zhang N, et al. Association of genetically predicted lipid traits and lipid-modifying targets with heart failure. Eur J Prev Cardiol 2023; 30(4): 358-66. doi: 10.1093/eurjpc/zwac290 PMID: 36520639
  27. Bekhet OH, Zeljkovic A, Vekic J, et al. Hypertension, lipoprotein subclasses and lipid transfer proteins in obese children and adolescents. Scand J Clin Lab Invest 2016; 76(6): 472-8. doi: 10.1080/00365513.2016.1201849 PMID: 27379467
  28. Girona J, Ibarretxe D, Plana N, et al. Circulating PCSK9 levels and CETP plasma activity are independently associated in patients with metabolic diseases. Cardiovasc Diabetol 2016; 15(1): 107. doi: 10.1186/s12933-016-0428-z PMID: 27488210
  29. Sun J, Cai R, Huang R, et al. Cholesteryl ester transfer protein intimately involved in dyslipidemia-related susceptibility to cognitive deficits in type 2 diabetic patients. JAD 2016; 54(1): 175-84.
  30. Griffiths K, Pazderska A, Ahmed M, et al. Type 2 diabetes in young females results in increased serum amyloid a and changes to features of high density lipoproteins in both HDL2 and HDL3. J Diabetes Res 2017; 2017: 1-9. doi: 10.1155/2017/1314864 PMID: 28596970
  31. Ueland T, Roland MCP, Michelsen AE, et al. Elevated cholesteryl ester transfer protein activity early in pregnancy predicts prediabetes 5 years later. J Clin Endocrinol Metab 2020; 105(3): 854-65. doi: 10.1210/clinem/dgz119 PMID: 31665383
  32. Bortnick AE, Buzkova P, Otvos JD, et al. High-density lipoprotein and long-term incidence and progression of aortic valve calcification: The multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol 2022; 42(10): 1272-82. doi: 10.1161/ATVBAHA.122.318004 PMID: 35979837
  33. Nelson AJ, Sniderman AD, Ditmarsch M, et al. Cholesteryl ester transfer protein inhibition reduces major adverse cardiovascular events by lowering apolipoprotein B levels. Int J Mol Sci 2022; 23(16): 9417. doi: 10.3390/ijms23169417 PMID: 36012684
  34. Sacher S, Mukherjee A, Ray A. Deciphering structural aspects of reverse cholesterol transport: Mapping the knowns and unknowns. Biol Rev Camb Philos Soc 2023; 98(4): 1160-83. doi: 10.1111/brv.12948 PMID: 36880422
  35. Banerjee S, De A. Pathophysiology and inhibition of cholesteryl ester transfer protein for prevention of cardiovascular diseases: An update. Drug Discov Today 2021; 26(7): 1759-64. doi: 10.1016/j.drudis.2021.03.016 PMID: 33781947
  36. Kjeldsen EW, Thomassen JQ, Frikke-Schmidt R. HDL cholesterol concentrations and risk of atherosclerotic cardiovascular disease - Insights from randomized clinical trials and human genetics. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867(1): 159063. doi: 10.1016/j.bbalip.2021.159063 PMID: 34637926
  37. Shimada A, Kimura H, Oida K, et al. Serum CETP status is independently associated with reduction rates in LDL-C in pitavastatin-treated diabetic patients and possible involvement of LXR in its association. Lipids Health Dis 2016; 15(1): 57. doi: 10.1186/s12944-016-0223-6 PMID: 26984517
  38. Deng S, Liu J, Niu C. HDL and Cholesterol Ester Transfer Protein (CETP). HDL Metabolism and Diseases. Springer 2022.
  39. Werumeus Buning J, Dimova LG, Perton FG, Tietge UJF, van Beek AP, Dullaart RPF. Downregulation of cholesteryl ester transfer protein by glucocorticoids: A randomised study on HDL. Eur J Clin Invest 2017; 47(7): 494-503. doi: 10.1111/eci.12770 PMID: 28542805
  40. Freeze HH, Chong JX, Bamshad MJ, Ng BG. Solving glycosylation disorders: Fundamental approaches reveal complicated pathways. Am J Hum Genet 2014; 94(2): 161-75. doi: 10.1016/j.ajhg.2013.10.024 PMID: 24507773
  41. van den Boogert MAW, Crunelle CL, Ali L, et al. Reduced CETP glycosylation and activity in patients with homozygous B4GALT1 mutations. J Inherit Metab Dis 2020; 43(3): 611-7. doi: 10.1002/jimd.12200 PMID: 31800099
  42. Lee KH, Jeong ES, Jang G, et al. Unripe Rubus coreanus miquel extract containing ellagic acid regulates AMPK, SREBP-2, HMGCR, and INSIG-1 signaling and cholesterol metabolism in vitro and in vivo. Nutrients 2020; 12(3): 610. doi: 10.3390/nu12030610 PMID: 32110925
  43. Javandoost A, Afshari A, Nikbakht-Jam I, et al. Effect of crocin, a carotenoid from saffron, on plasma cholesteryl ester transfer protein and lipid profile in subjects with metabolic syndrome: A double blind randomized clinical trial. ARYA Atheroscler 2017; 13(5): 245-52. PMID: 29371871
  44. Javandoost A, Afshari A, Saberi-Karimian M, et al. The effects of curcumin and a modified curcumin formulation on serum cholesteryl ester transfer protein concentrations in patients with metabolic syndrome: A randomized, placebo-controlled clinical trial. Avicenna J Phytomed 2018; 8(4): 330-7. PMID: 30377591
  45. Wilkens TL, Tranæs K, Eriksen JN, Dragsted LO. Moderate alcohol consumption and lipoprotein subfractions: A systematic review of intervention and observational studies. Nutr Rev 2022; 80(5): 1311-39. doi: 10.1093/nutrit/nuab102 PMID: 34957513
  46. Casquero AC, Berti JA, Teixeira LLS, de Oliveira HCF. Chronic exercise reduces CETP and mesterolone treatment counteracts exercise benefits on plasma lipoproteins profile: Studies in transgenic mice. Lipids 2017; 52(12): 981-90. doi: 10.1007/s11745-017-4299-1 PMID: 29058169
  47. Marotti KR, Castle CK, Boyle TP, Lin AH, Murray RW, Melchior GW. Severe atherosclerosis in transgenic mice expressing simian cholesteryl ester transfer protein. Nature 1993; 364(6432): 73-5. doi: 10.1038/364073a0 PMID: 8316302
  48. Plump AS, Masucci-Magoulas L, Bruce C, Bisgaier CL, Breslow JL, Tall AR. Increased atherosclerosis in ApoE and LDL receptor gene knock-out mice as a result of human cholesteryl ester transfer protein transgene expression. Arterioscler Thromb Vasc Biol 1999; 19(4): 1105-10. doi: 10.1161/01.ATV.19.4.1105 PMID: 10195942
  49. Föger B, Chase M, Amar MJ, et al. Cholesteryl ester transfer protein corrects dysfunctional high density lipoproteins and reduces aortic atherosclerosis in lecithin cholesterol acyltransferase transgenic mice. J Biol Chem 1999; 274(52): 36912-20. doi: 10.1074/jbc.274.52.36912 PMID: 10601244
  50. Liang YQ, Isono M, Okamura T, Takeuchi F, Kato N. Alterations of lipid metabolism, blood pressure and fatty liver in spontaneously hypertensive rats transgenic for human cholesteryl ester transfer protein. Hypertens Res 2020; 43(7): 655-66. doi: 10.1038/s41440-020-0401-9 PMID: 31974485
  51. Bocan TMA, Bak Mueller S, Mazur MJ, Uhlendorf PD, Quenby Brown E, Kieft KA. The relationship between the degree of dietary-induced hypercholesterolemia in the rabbit and atherosclerotic lesion formation. Atherosclerosis 1993; 102(1): 9-22. doi: 10.1016/0021-9150(93)90080-E PMID: 8257456
  52. Collins HL, Drazul-Schrader D, Sulpizio AC, et al. L-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE-/- transgenic mice expressing CETP. Atherosclerosis 2016; 244: 29-37. doi: 10.1016/j.atherosclerosis.2015.10.108 PMID: 26584136
  53. Pinto PR, da Silva KS, Iborra RT, et al. Exercise training favorably modulates gene and protein expression that regulate arterial cholesterol content in CETP transgenic mice. Front Physiol 2018; 9: 502. doi: 10.3389/fphys.2018.00502 PMID: 29867549
  54. Raposo HF, Forsythe P, Chausse B, et al. Novel role of cholesteryl ester transfer protein (CETP): Attenuation of adiposity by enhancing lipolysis and brown adipose tissue activity. Metabolism 2021; 114: 154429. doi: 10.1016/j.metabol.2020.154429 PMID: 33166579
  55. Raposo HF, Vanzela EC, Berti JA, Oliveira HCF. Cholesteryl Ester Transfer Protein (CETP) expression does not affect glucose homeostasis and insulin secretion: Studies in human CETP transgenic mice. Lipids Health Dis 2016; 15(1): 9. doi: 10.1186/s12944-016-0179-6 PMID: 26758205
  56. Palmisano BT, Yu S, Neuman JC, Zhu L, Luu T, Stafford JM. Low-density lipoprotein receptor is required for cholesteryl ester transfer protein to regulate triglyceride metabolism in both male and female mice. Physiol Rep 2021; 9(4): e14732. doi: 10.14814/phy2.14732 PMID: 33625789
  57. Palmisano BT, Le TD, Zhu L, Lee YK, Stafford JM. Cholesteryl ester transfer protein alters liver and plasma triglyceride metabolism through two liver networks in female mice. J Lipid Res 2016; 57(8): 1541-51. doi: 10.1194/jlr.M069013 PMID: 27354419
  58. Cappel DA, Palmisano BT, Emfinger CH, Martinez MN, McGuinness OP, Stafford JM. Cholesteryl ester transfer protein protects against insulin resistance in obese female mice. Mol Metab 2013; 2(4): 457-67. doi: 10.1016/j.molmet.2013.08.007 PMID: 24327961
  59. Zhu L, An J, Chinnarasu S, et al. Expressing the human cholesteryl ester transfer protein minigene improves diet-induced fatty liver and insulin resistance in female mice. Front Physiol 2022; 12: 799096. doi: 10.3389/fphys.2021.799096 PMID: 35082691
  60. Liu N, Si Y, Zhang Y, Guo S, Qin S. Human cholesteryl ester transport protein transgene promotes macrophage reverse cholesterol transport in C57BL/6 mice and phospholipid transfer protein gene knockout mice. J Physiol Biochem 2021; 77(4): 683-94. doi: 10.1007/s13105-021-00834-9 PMID: 34403126
  61. Dong Z, Wu T, Qin W, et al. Serum amyloid A directly accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Mol Med 2011; 17(11-12): 1357-64. doi: 10.2119/molmed.2011.00186 PMID: 21953420
  62. Ji A, Trumbauer AC, Noffsinger VP, et al. Serum amyloid A augments the atherogenic effects of cholesteryl ester transfer protein. J Lipid Res 2023; 64(5): 100365. doi: 10.1016/j.jlr.2023.100365 PMID: 37004910
  63. Gao S, Wang X, Cheng D, et al. Overexpression of cholesteryl ester transfer protein increases macrophage-derived foam cell accumulation in atherosclerotic lesions of transgenic rabbits. Mediators Inflamm 2017; 2017: 1-9. doi: 10.1155/2017/3824276 PMID: 29317793
  64. Zhang J, Niimi M, Yang D, et al. Deficiency of cholesteryl ester transfer protein protects against atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 2017; 37(6): 1068-75. doi: 10.1161/ATVBAHA.117.309114 PMID: 28428219
  65. Chen T, Sun M, Wang JQ, Cui JJ, Liu ZH, Yu B. A novel swine model for evaluation of dyslipidemia and atherosclerosis induced by human CETP overexpression. Lipids Health Dis 2017; 16(1): 169. doi: 10.1186/s12944-017-0563-x PMID: 28893253
  66. Wanschel ACBA, Guizoni DM, Lorza-Gil E, et al. The presence of Cholesteryl Ester Transfer Protein (CETP) in endothelial cells generates vascular oxidative stress and endothelial dysfunction. Biomolecules 2021; 11(1): 69. doi: 10.3390/biom11010069 PMID: 33430172
  67. Dorighello GG, Assis LHP, Rentz T, et al. Novel role of CETP in macrophages: Reduction of mitochondrial oxidants production and modulation of cell immune-metabolic profile. Antioxidants 2022; 11(9): 1734. doi: 10.3390/antiox11091734 PMID: 36139808
  68. Maruyama T, Sakai N, Ishigami M, et al. Prevalence and phenotypic spectrum of cholesteryl ester transfer protein gene mutations in Japanese hyperalphalipoproteinemia. Atherosclerosis 2003; 166(1): 177-85. doi: 10.1016/S0021-9150(02)00327-1 PMID: 12482565
  69. Yamashita S, Matsuzawa Y, Okazaki M, et al. Small polydisperse low density lipoproteins in familial hyperalphalipoproteinemia with complete deficiency of cholesteryl ester transfer activity. Atherosclerosis 1988; 70(1-2): 7-12. doi: 10.1016/0021-9150(88)90094-9 PMID: 3355618
  70. Hitchcock E, Patankar JV, Tyson C, Hrynchak M, Hayden MR, Gibson WT. A novel microdeletion affecting the CETP gene raises HDL-associated cholesterol levels. Clin Genet 2016; 89(4): 495-500. doi: 10.1111/cge.12633 PMID: 26126777
  71. Cota BC, Suhett LG, Leite NN, Pereira PF, Ribeiro SAV, Franceschini SCC. Cardiometabolic risk and health behaviours in adolescents with normal-weight obesity: A systematic review. Public Health Nutr 2021; 24(5): 870-81. doi: 10.1017/S1368980020004863 PMID: 33256881
  72. Mokha JS, Srinivasan SR, DasMahapatra P, et al. Utility of waist- to-height ratio in assessing the status of central obesity and related cardiometabolic risk profile among normal weight and overweight/obese children: The Bogalusa Heart Study. BMC Pediatr 2010; 10(1): 73. doi: 10.1186/1471-2431-10-73 PMID: 20937123
  73. Thompson A, Di Angelantonio E, Sarwar N, et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA 2008; 299(23): 2777-88. doi: 10.1001/jama.299.23.2777 PMID: 18560005
  74. Ridker PM, Paré G, Parker AN, Zee RYL, Miletich JP, Chasman DI. Polymorphism in the CETP gene region, HDL cholesterol, and risk of future myocardial infarction: Genomewide analysis among 18 245 initially healthy women from the Women’s Genome Health Study. Circ Cardiovasc Genet 2009; 2(1): 26-33. doi: 10.1161/CIRCGENETICS.108.817304 PMID: 20031564
  75. Niu W, Qi Y. Circulating cholesteryl ester transfer protein and coronary heart disease: Mendelian randomization meta-analysis. Circ Cardiovasc Genet 2015; 8(1): 114-21. doi: 10.1161/CIRCGENETICS.114.000748 PMID: 25561046
  76. Nomura A, Won HH, Khera AV, et al. Protein-truncating variants at the cholesteryl ester transfer protein gene and risk for coronary heart disease. Circ Res 2017; 121(1): 81-8. doi: 10.1161/CIRCRESAHA.117.311145 PMID: 28506971
  77. Johannsen TH, Frikke-Schmidt R, Schou J, Nordestgaard BG, Tybjærg-Hansen A. Genetic inhibition of CETP, ischemic vascular disease and mortality, and possible adverse effects. J Am Coll Cardiol 2012; 60(20): 2041-8. doi: 10.1016/j.jacc.2012.07.045 PMID: 23083790
  78. Hong YM. Associations of cholesteryl ester transfer protein taqib polymorphism with the composite ischemic cardiovascular disease risk and HDL-C concentrations: A meta-analysis. IJERPH 2016; 13(9): 882. doi: 10.3390/ijerph13090882 PMID: 27608031
  79. Freeman DJ, Griffin BA, Holmes AP, et al. Regulation of plasma HDL cholesterol and subfraction distribution by genetic and environmental factors. Associations between the TaqI B RFLP in the CETP gene and smoking and obesity. Arterioscler Thromb 1994; 14(3): 336-44. doi: 10.1161/01.ATV.14.3.336 PMID: 7907227
  80. Drayna D, Lawn R. Multiple RFLPs at the human Cholesteryl Ester Transfer Protein (CETP) locus. Nucleic Acids Res 1987; 15(11): 4698-8. doi: 10.1093/nar/15.11.4698 PMID: 2884631
  81. Freeman DJ, Packard CJ, Shepherd J, Gaffney D. Polymorphisms in the gene coding for cholesteryl ester transfer protein are related to plasma high-density lipoprotein cholesterol and transfer protein activity. Clin Sci 1990; 79(6): 575-81. doi: 10.1042/cs0790575 PMID: 1980239
  82. Kondo I, Berg K, Drayna D, Lawn R. DNA polymorphism at the locus for human cholesteryl ester transfer protein (CETP) is associated with high density lipoprotein cholesterol and apolipoprotein levels. Clin Genet 1989; 35(1): 49-56. doi: 10.1111/j.1399-0004.1989.tb02904.x PMID: 2564326
  83. Cai G, Shi G, Huang Z. Gender specific effect of CETP rs708272 polymorphism on lipid and atherogenic index of plasma levels but not on the risk of coronary artery disease. Medicine 2018; 97(49): e13514. doi: 10.1097/MD.0000000000013514 PMID: 30544452
  84. Raina JK, Sharma M, Panjaliya RK, Dogra V, Bakaya A, Kumar P. Association of ESR1 (rs2234693 and rs9340799), CETP (rs708272), MTHFR (rs1801133 and rs2274976) and MS (rs185087) polymorphisms with Coronary Artery Disease (CAD). BMC Cardiovasc Disord 2020; 20(1): 340. doi: 10.1186/s12872-020-01618-7 PMID: 32682401
  85. Shahid SU, Shabana , Cooper JA, et al. Genetic risk analysis of coronary artery disease in Pakistani subjects using a genetic risk score of 21 variants. Atherosclerosis 2017; 258: 1-7. doi: 10.1016/j.atherosclerosis.2017.01.024 PMID: 28167353
  86. Kaman D, İlhan N, İlhan N, Akbulut M. TaqIB and severity of coronary artery disease in the Turkish population: A pilot study. Biomol Biomed 2015; 15(1): 9-13. doi: 10.17305/bjbms.2015.157 PMID: 25725138
  87. Vargas-Alarcon G, Perez-Mendez O, Herrera-Maya G, et al. CETP and LCAT gene polymorphisms are associated with high- density lipoprotein subclasses and acute coronary syndrome. Lipids 2018; 53(2): 157-66. doi: 10.1002/lipd.12017 PMID: 29570220
  88. Amer NN, Shaaban GM. Association of serum cholesterol ester transfer protein levels with Taq IB polymorphism in acute coronary syndrome. Lab Med 2019; lmz043. doi: 10.1093/labmed/lmz043 PMID: 31504738
  89. Abdel Maksoud SM, El-Garf WT, Ali OS, Shaaban GM, Amer NN. Association of cholesterol ester transfer protein Taq IB polymorphism with acute coronary syndrome in egyptian national patients. Lab Med 2017; 48(2): 154-65. doi: 10.1093/labmed/lmw071 PMID: 28387842
  90. Semaev S, Shakhtshneider E, Orlov P, et al. Association of RS708272 (CETP gene variant) with lipid profile parameters and the risk of myocardial infarction in the white population of western siberia. Biomolecules 2019; 9(11): 739. doi: 10.3390/biom9110739 PMID: 31739638
  91. Kanca D, Gormus U, Tokat B, et al. Additive antiatherogenic effects of CETP rs708272 on serum LDL subfraction levels in patients with CHD under statin therapy. Biochem Genet 2017; 55(2): 168-82. doi: 10.1007/s10528-016-9782-5 PMID: 27900488
  92. Wanmasae S, Sirintronsopon W, Porntadavity S, Jeenduang N. The effect of APOE, CETP, and PCSK9 polymorphisms on simvastatin response in Thai hypercholesterolemic patients. Cardiovasc Ther 2017; 35(6): e12302. doi: 10.1111/1755-5922.12302 PMID: 28851085
  93. Shamsudin AF, Bakar NS. Gender differences in the association between cholesteryl esters transfer protein polymorphism (rs708272) and plasma lipid levels in hyperlipidaemic participants at hospital universiti sains Malaysia. Malays J Med Sci 2023; 30(2): 96-110. doi: 10.21315/mjms2023.30.2.9 PMID: 37102051
  94. Campos-Perez W, Perez-Robles M, Torres-Castillo N, et al. Physical inactivity and excessive sucrose consumption are associated with higher serum lipids in subjects with Taq1B CETP polymorphism. J Hum Nutr Diet 2020; 33(3): 299-307. doi: 10.1111/jhn.12747 PMID: 32163222
  95. Perez-Robles M, Campos-Perez W, Torres-Vanegas J, Rodriguez-Reyes SC, Rivera-Valdés JJ, Martínez-Lopez E. Abdominal obesity, excessive adiposity, and the Taq1B CETP variant are positively associated with serum lipid levels in mexican women. Lifestyle Genomics 2023; 16(1): 83-9. doi: 10.1159/000529053 PMID: 36652934
  96. Maroufi NF, Farzaneh K, Alibabrdel M, et al. Taq1B polymorphism of Cholesteryl Ester Transfer Protein (CETP) and its effects on the serum lipid levels in metabolic syndrome patients. Biochem Genet 2016; 54(6): 894-902. doi: 10.1007/s10528-016-9766-5 PMID: 27496123
  97. Nagrani R, Foraita R, Gianfagna F, et al. Common genetic variation in obesity, lipid transfer genes and risk of Metabolic Syndrome: Results from IDEFICS/I. Family study and meta-analysis. Sci Rep 2020; 10(1): 7189. doi: 10.1038/s41598-020-64031-2 PMID: 32346024
  98. Kalantar Z, Eshraghian MR, Sotoudeh G, et al. Differences in the interaction between CETP Taq1B polymorphism and dietary fat intake on lipid profile of normolipedemic and dyslipidemic patients with type 2 diabetes mellitus. Clin Nutr 2018; 37(1): 270-5. doi: 10.1016/j.clnu.2016.12.024 PMID: 28065481
  99. Ramezani-Jolfaie N, Aghaei S, Farashahi Yazd E, et al. The combined effects of cholesteryl ester transfer protein (CETP) TaqIB gene polymorphism and canola, sesame and sesame-canola oils consumption on metabolic response in patients with diabetes and healthy people. J Cardiovasc Thorac Res 2020; 12(3): 185-94. doi: 10.34172/jcvtr.2020.32 PMID: 33123324
  100. Abaj F, Esmaeily Z, Naeini Z, Alvandi E, Rafiee M, Koohdani F. Dietary acid load and its interaction with CETP TaqB1 polymorphisms on lipid profile among patients with Type 2 diabetes mellitus. BMC Endocr Disord 2023; 23(1): 138. doi: 10.1186/s12902-023-01391-6 PMID: 37407953
  101. Agapakis D, Savopoulos C, Kypreos KE, et al. Association of the CETP Taq1B and LIPG Thr111Ile polymorphisms with glycated hemoglobin and blood lipids in newly diagnosed hyperlipidemic patients. Can J Diabetes 2016; 40(6): 515-20. doi: 10.1016/j.jcjd.2016.01.002 PMID: 27590083
  102. Kayıkcıoglu M. Polymorphisms of lipid metabolism enzyme-coding genes in patients with diabetic dyslipidemia. Anatol J Cardiol 2017; 17(4): 313-21.
  103. Samedy LA, Ryan GJ, Superko RH, Momary KM. CETP genotype and concentrations of HDL and lipoprotein subclasses in African-American men. Future Cardiol 2019; 15(3): 187-95. doi: 10.2217/fca-2018-0058 PMID: 31148465
  104. El-Lebedy D. Interaction between endothelial nitric oxide synthase rs1799983, cholesteryl ester-transfer protein rs708272 and angiopoietin-like protein 8 rs2278426 gene variants highly elevates the risk of type 2 diabetes mellitus and cardiovascular disease. Cardiovasc Diabetol 2018; 17(1): 97. doi: 10.1186/s12933-018-0742-8 PMID: 29973202
  105. Abaj F, Rafiee M, Koohdani F. Interaction between CETP polymorphism and dietary insulin index and load in relation to cardiovascular risk factors in diabetic adults. Sci Rep 2021; 11(1): 15906. doi: 10.1038/s41598-021-95359-y PMID: 34354158
  106. Cheema SK, Agarwal-Mawal A, Murray CM, Tucker S. Lack of stimulation of cholesteryl ester transfer protein by cholesterol in the presence of a high-fat diet. J Lipid Res 2005; 46(11): 2356-66. doi: 10.1194/jlr.M500051-JLR200 PMID: 16106052
  107. Fusegawa Y, Kelley KL, Sawyer JK, Shah RN, Rudel LL. Influence of dietary fatty acid composition on the relationship between CETP activity and plasma lipoproteins in monkeys. J Lipid Res 2001; 42(11): 1849-57. doi: 10.1016/S0022-2275(20)31511-X PMID: 11714854
  108. Karimpour F, Mohammadzadeh G, Kheirollah A, Ghaffari MA, Saki A. Association of I405V polymorphism of colesteryl ester transfer protein gene with coronary artery disease in men with type 2 diabetes. ARYA Atheroscler 2016; 12(2): 68-75. PMID: 27429626
  109. Goodarzynejad H, Boroumand M, Behmanesh M, Ziaee S, Jalali A. Cholesteryl ester transfer protein gene polymorphism (I405V) and premature coronary artery disease in an Iranian population. Biomol Biomed 2016; 16(2): 114-20.
  110. Bustami J, Sukiasyan A, Kupcinskas J, et al. Cholesteryl ester transfer protein (CETP) I405V polymorphism and cardiovascular disease in Eastern European Caucasians - A cross-sectional study. BMC Geriatr 2016; 16(1): 144. doi: 10.1186/s12877-016-0318-y PMID: 27439317
  111. Buraczynska K, Rejdak K, Buraczynska M. Cholesteryl ester transfer protein gene polymorphism (I405V) and risk of ischemic stroke. J Stroke Cerebrovasc Dis 2018; 27(10): 2887-91. doi: 10.1016/j.jstrokecerebrovasdis.2018.06.020 PMID: 30078763
  112. Hannon BA, Edwards CG, Thompson SV, et al. Genetic variants in lipid metabolism pathways interact with diet to influence blood lipid concentrations in adults with overweight and obesity. Lifestyle Genomics 2020; 13(6): 155-63. doi: 10.1159/000507021 PMID: 33105144
  113. Hosseini-Esfahani F, Esfandiar Z, Mirmiran P, Daneshpour MS, Ghanbarian A, Azizi F. The interaction of cholesteryl ester transfer protein gene variations and diet on changes in serum lipid profiles. Eur J Clin Nutr 2019; 73(9): 1291-8. doi: 10.1038/s41430-019-0397-x PMID: 30705383
  114. Esfandiar Z, Hosseini-Esfahani F, Daneshpour MS, Zand H, Mirmiran P, Azizi F. Cholesteryl ester transfer protein gene variations and macronutrient intakes interaction in relation to metabolic syndrome: Tehran lipid and glucose study. Iran J Basic Med Sci 2018; 21(6): 586-92. doi: 10.22038/ijbms.2018.26768.6555 PMID: 29942448
  115. Moors J, Krishnan M, Sumpter N, et al. A Polynesian-specific missense CETP variant alters the lipid profile. Human Genet Genom Adv 2023; 4(3): 100204. doi: 10.1016/j.xhgg.2023.100204 PMID: 37250494
  116. Devi A, Singh R, Dawar R, Tyagi S. Association of Cholesteryl Ester Transfer Protein (CETP) gene-629C/A polymorphism with angiographically proven atherosclerosis. Indian J Clin Biochem 2017; 32(2): 235-8. doi: 10.1007/s12291-016-0585-6 PMID: 28428701
  117. Lin S, Dai R, Lin R. A meta-analytic evaluation of cholesteryl ester transfer protein (CETP) C-629A polymorphism in association with coronary heart disease risk and lipid changes. Oncotarget 2017; 8(2): 2153-63. doi: 10.18632/oncotarget.12898 PMID: 27791990
  118. Colima-Fausto AG, Sánchez-Corona J, Ramírez-López G, García-Zapien AG, Magaña-Torres MT. Association of the -629C>A (rs1800775) CETP polymorphism with the development of essential hypertension in Mexican population. Genet Test Mol Biomarkers 2020; 24(7): 451-6. doi: 10.1089/gtmb.2020.0012 PMID: 32551884
  119. Lee HS, Kim Y, Park T. New common and rare variants influencing metabolic syndrome and its individual components in a Korean population. Sci Rep 2018; 8(1): 5701. doi: 10.1038/s41598-018-23074-2 PMID: 29632305
  120. Li W, Liu X, Huang C, Liu L, Tan X, Wang X. The loss-of-function mutation of CETP affects HDLc levels but not ApoA1 in patients with acute myocardial infarction. Nutr Metab Cardiovasc Dis 2021; 31(2): 602-7. doi: 10.1016/j.numecd.2020.10.019 PMID: 33358712
  121. Ganesan M, Nizamuddin S, Katkam SK, et al. A mutation in CETP is associated with coronary artery disease in South Indians. PLoS ONE 2016; 11(10): e0164151.
  122. Arikan GD, İsbir S, Yilmaz SG, İsbir T. Characteristics of coronary artery disease patients who have a polymorphism in the cholesterol ester transfer protein (CETP) gene. In Vivo 2019; 33(3): 787-92. doi: 10.21873/invivo.11540 PMID: 31028198
  123. Kurnaz Gömleksi̇ ZÖ. Investigation of metabolic effects of CETP gene rs289714 variation in coronary artery patients: A case-control study. Turk Kardiyol Dern Ars 2020; 48(7): 673-82.
  124. Sull JW, Kim S, Jee SH. Effects of obesity and family history of diabetes on the association of CETP rs6499861 with HDL-C level in Korean populations. J Lipid Atheroscler 2019; 8(2): 252-7. doi: 10.12997/jla.2019.8.2.252 PMID: 32821715
  125. de Luis D, Izaola O, Primo D, et al. Association of a cholesteryl ester transfer protein variant (rs1800777) with fat mass, HDL cholesterol levels, and metabolic syndrome. Endocrinol, Diab Nutr 2018; 65(7): 387-93. doi: 10.1016/j.endien.2018.07.002 PMID: 29705571
  126. Christie S, Robiou-du-Pont S, Anand SS, et al. Genetic contribution to lipid levels in early life based on 158 loci validated in adults: The FAMILY study. Sci Rep 2017; 7(1): 68. doi: 10.1038/s41598-017-00102-1 PMID: 28250428
  127. McCaffery JM, Ordovas JM, Huggins GS, et al. Weight gain prevention buffers the impact of CETP rs3764261 on high density lipoprotein cholesterol in young adulthood: The Study of Novel Approaches to Weight Gain Prevention (SNAP). Nutr Metab Cardiovasc Dis 2018; 28(8): 816-21. doi: 10.1016/j.numecd.2018.02.018 PMID: 29699816
  128. Naseri P, Khodakarim S, Guity K, Daneshpour MS. Familial aggregation and linkage analysis with covariates for metabolic syndrome risk factors. Gene 2018; 659: 118-22. doi: 10.1016/j.gene.2018.03.033 PMID: 29548861
  129. Qian F, Korat AA, Malik V, Hu FB. Metabolic effects of monounsaturated fatty acid-enriched diets compared with carbohydrate or polyunsaturated fatty acid-enriched diets in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Care 2016; 39(8): 1448-57. doi: 10.2337/dc16-0513 PMID: 27457635
  130. Rudkowska I, Ouellette C, Dewailly E, et al. Omega-3 fatty acids, polymorphisms and lipid related cardiovascular disease risk factors in the Inuit population. Nutr Metab 2013; 10(1): 26. doi: 10.1186/1743-7075-10-26 PMID: 23497168
  131. Rudkowska I, Dewailly E, Hegele RA, et al. Gene–diet interactions on plasma lipid levels in the Inuit population. Br J Nutr 2013; 109(5): 953-61. doi: 10.1017/S0007114512002231 PMID: 23021345
  132. Raposo HF, Patrício PR, Simões MC, Oliveira HCF. Fibrates and fish oil, but not corn oil, up-regulate the expression of the cholesteryl ester transfer protein (CETP) gene. J Nutr Biochem 2014; 25(6): 669-74. doi: 10.1016/j.jnutbio.2014.02.008 PMID: 24746832
  133. Walia GK, Gupta V, Aggarwal A, et al. Association of common genetic variants with lipid traits in the Indian population. PLoS One 2014; 9(7): e0101688. doi: 10.1371/journal.pone.0101688
  134. Zhu L, Luu T, Emfinger CH, et al. CETP inhibition improves HDL function but leads to fatty liver and insulin resistance in CETP-expressing transgenic mice on a high-fat diet. Diabetes 2018; 67(12): 2494-506. doi: 10.2337/db18-0474 PMID: 30213825
  135. Garcia-Rios A, Alcala-Diaz JF, Gomez-Delgado F, et al. Beneficial effect of CETP gene polymorphism in combination with a Mediterranean diet influencing lipid metabolism in metabolic syndrome patients: CORDIOPREV study. Clin Nutr 2018; 37(1): 229-34. doi: 10.1016/j.clnu.2016.12.011 PMID: 28057378
  136. Qi Q, Durst R, Schwarzfuchs D, et al. CETP genotype and changes in lipid levels in response to weight-loss diet intervention in the POUNDS LOST and DIRECT randomized trials. J Lipid Res 2015; 56(3): 713-21. doi: 10.1194/jlr.P055715 PMID: 25548261
  137. Srisawasdi P, Rodcharoen P, Vanavanan S, et al. Association of CETP gene variants with atherogenic dyslipidemia among thai patients treated with statin. Pharm Genomics Pers Med 2021; 14: 1-13. doi: 10.2147/PGPM.S278671 PMID: 33447072
  138. Sabatti C, Service SK, Hartikainen AL, et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet 2009; 41(1): 35-46. doi: 10.1038/ng.271 PMID: 19060910
  139. Kurano M, Tsukamoto K, Kamitsuji S, et al. Genome-wide association study of serum lipids confirms previously reported associations as well as new associations of common SNPs within PCSK7 gene with triglyceride. J Hum Genet 2016; 61(5): 427-33. doi: 10.1038/jhg.2015.170 PMID: 26763881
  140. Deek R, Nasser J, Ghanem A, et al. Genome-wide association analysis of HDL-C in a Lebanese cohort. PLoS One 2019; 14(6): e0218443. doi: 10.1371/journal.pone.0218443
  141. Zhou L, He M, Mo Z, et al. A genome wide association study identifies common variants associated with lipid levels in the Chinese population. Plos One 2013; 8(12): e0082420. doi: 10.1371/journal.pone.0082420
  142. Lettre G, Palmer CD, Young T, et al. Genome-wide association study of coronary heart disease and its risk factors in 8,090 African Americans: The NHLBI CARe project. PLoS Genet 2011; 7(2): e1001300.
  143. Bandesh K, Prasad G, Giri AK, et al. Genome-wide association study of blood lipids in Indians confirms universality of established variants. J Hum Genet 2019; 64(6): 573-87. doi: 10.1038/s10038-019-0591-7 PMID: 30911093
  144. Adeyemo A, Bentley AR, Meilleur KG, et al. Transferability and fine mapping of genome-wide associated loci for lipids in African Americans. BMC Med Genet 2012; 13(1): 88. doi: 10.1186/1471-2350-13-88 PMID: 22994408
  145. Wu Y, Marvelle AF, Li J, et al. Genetic association with lipids in Filipinos: waist circumference modifies an APOA5 effect on triglyceride levels. J Lipid Res 2013; 54(11): 3198-205. doi: 10.1194/jlr.P042077 PMID: 24023260
  146. Hsu TW, Tantoh DM, Lee KJ, et al. Genetic and non-genetic factor-adjusted association between coffee drinking and high-density lipoprotein cholesterol in taiwanese adults: Stratification by sex. Nutrients 2019; 11(5): 1102. doi: 10.3390/nu11051102 PMID: 31108953
  147. Walker CG, Loos RJF, Olson AD, et al. Genetic predisposition influences plasma lipids of participants on habitual diet, but not the response to reductions in dietary intake of saturated fatty acids. Atherosclerosis 2011; 215(2): 421-7. doi: 10.1016/j.atherosclerosis.2010.12.039 PMID: 21292264
  148. Tai ES, Ordovas JM, Corella D, et al. The TaqIB and -629C>A polymorphisms at the cholesteryl ester transfer protein locus: Associations with lipid levels in a multiethnic population. The 1998 Singapore National Health Survey. Clin Genet 2003; 63(1): 19-30. doi: 10.1034/j.1399-0004.2003.630104.x PMID: 12519368
  149. Rudkowska I, Guénard F, Julien P, et al. Genome-wide association study of the plasma triglyceride response to an n-3 polyunsaturated fatty acid supplementation. J Lipid Res 2014; 55(7): 1245-53. doi: 10.1194/jlr.M045898 PMID: 24847101
  150. Galan-Chilet I, Guallar E, Martin-Escudero JC, et al. Do genes modify the association of selenium and lipid levels? Antioxid Redox Signal 2015; 22(15): 1352-62. doi: 10.1089/ars.2015.6248 PMID: 25606668
  151. Prasad G, Bandesh K, Giri A, et al. Genome-wide association study of metabolic syndrome reveals primary genetic variants at CETP locus in Indians. Biomolecules 2019; 9(8): 321. doi: 10.3390/biom9080321 PMID: 31366177
  152. Hou H, Ma R, Guo H, et al. Association between six CETP polymorphisms and metabolic syndrome in uyghur adults from Xinjiang, China. Int J Environ Res Public Health 2017; 14(6): 653. doi: 10.3390/ijerph14060653 PMID: 28629169
  153. Piko P, Jenei T, Kosa Z, et al. Association of CETP gene polymorphisms and haplotypes with cardiovascular risk. Int J Mol Sci 2023; 24(12): 10281. doi: 10.3390/ijms241210281 PMID: 37373432
  154. Vargas-Alarcón G, Pérez-Méndez O, Posadas-Sánchez R, et al. Los polimorfismos rs4783961 y rs708272 del gen CETP son asociados con la enfermedad arterial coronaria y no con la restenosis tras el implante de un stent coronario. ACM 2021; 92(3): 7351. doi: 10.24875/ACM.21000039
  155. Rayat S, Ramezanidoraki N, Kazemi N, et al. Association study between polymorphisms in MIA3, SELE, SMAD3 and CETP genes and coronary artery disease in an Iranian population. BMC Cardiovasc Disord 2022; 22(1): 298. doi: 10.1186/s12872-022-02695-6 PMID: 35768776
  156. Iwanicka J, Iwanicki T, Niemiec P, et al. Relationship between CETP gene polymorphisms with coronary artery disease in Polish population. Mol Biol Rep 2018; 45(6): 1929-35. doi: 10.1007/s11033-018-4342-1 PMID: 30178218
  157. Nordestgaard LT, Christoffersen M, Lauridsen BK, et al. Long-term benefits and harms associated with genetic cholesteryl ester transfer protein deficiency in the general population. JAMA Cardiol 2022; 7(1): 55-64. doi: 10.1001/jamacardio.2021.3728 PMID: 34613338
  158. Colombo G, Bianconi V, Bonomi A, et al. The association between HDL-C and subclinical atherosclerosis depends on CETP plasma concentration: Insights from the Improve study. Biomedicines 2021; 9(3): 286. doi: 10.3390/biomedicines9030286 PMID: 33799675
  159. Niu S, Tao X, Li J, et al. Association of the CETP gene TaqIB and D442G polymorphisms with essential hypertension in the Chinese Mongolian population. Turk J Med Sci 2017; 47(2): 599-606. doi: 10.3906/sag-1510-92 PMID: 28425253
  160. Li-Gao R, Mook-Kanamori DO, Cannegieter SC, Willems van Dijk K, Rosendaal FR, van Hylckama Vlieg A. The association of genetic variants in the cholesteryl ester transfer protein gene with hemostatic factors and a first venous thrombosis. J Thromb Haemost 2019; 17(9): 1535-43. doi: 10.1111/jth.14528 PMID: 31148376
  161. Deguchi H, Banerjee Y, Elias DJ, Griffin JH. Elevated CETP lipid transfer activity is associated with the risk of venous thromboembolism. J Atheroscler Thromb 2016; 23(10): 1159-67. doi: 10.5551/jat.32201 PMID: 27169917
  162. Huang YC, Chen SY, Liu SP, et al. Cholesteryl ester transfer protein genetic variants associated with risk for type 2 diabetes and diabetic kidney disease in taiwanese population. Genes 2019; 10(10): 782. doi: 10.3390/genes10100782 PMID: 31597401

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers