The Emerging Role of Cell Membrane-coated Nanomaterials in Cancer Therapy


Cite item

Full Text

Abstract

This review investigates the revolutionary application of cell membrane-coated nanoparticles (CMNPs) as a promising avenue for cancer therapy within the embryonic landscape of nanotechnology. Nanoparticles, pivotal in cancer treatment, are systematically examined for their diverse physicochemical structures, categorized as organic (lipid-based, protein-based, and polymer-assisted) and inorganic (carbon-based and metal) varieties. A significant focus is placed on CMNPs, which serve as an innovative drug delivery vehicle, overcoming limitations associated with conventional nanoparticle therapies. This manuscript accurately explores the advantages and challenges of various cell membranes, including those derived from cancer cells, red blood cells, platelets, stem cells, and white blood cells. Importance is placed on their roles in enhancing drug delivery precision, immune system circumvention, and targeted recognition. Detailed insights into the crafting of CMNPs are provided, elucidating membrane extraction and fusion techniques, such as sonication, extrusion, co-extrusion, and microfluidic electroporation. Maintaining membrane integrity during extraction and the benefits of coating techniques in augmenting biocompatibility and targeted drug delivery are underscored. This comprehensive resource consolidates the latest advancements in targeted drug delivery, positioning itself at the forefront of nanotechnology and biomedicine research. Encapsulating various methodologies like membrane extrusion, electrospray, and chemical conjugation, this manuscript showcases the expanding toolbox available to researchers in this dynamic field. Focusing on the unique characteristics of CMNPs, this review explores their multifaceted applications in biomedical research, particularly in tumour therapy. It provides an indepth analysis of the biocompatibility of CMNPs, their stability, immune evasion capabilities, targeted drug delivery precision, increased payload capacity, and retained biological functionality. The manuscript outlines current applications and future prospects of CMNPs in targeted chemotherapy, photothermal and photodynamic therapy, immunotherapy, gene therapy, and innovative therapeutic methods. It concludes by highlighting the advantages of CMNPs in tumour therapy and their transformative potential in reshaping the landscape of cancer treatment.

About the authors

Sankha Bhattacharya

Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University

Author for correspondence.
Email: info@benthamscience.net

Paul Beninger

Public Health & Community Medicine,, Tufts University School of Medicine

Email: info@benthamscience.net

References

  1. Wang X, Dong Y, Zhang H, et al. DNA methylation drives a new path in gastric cancer early detection: Current impact and prospects. Genes Dis 2024; 11(2): 847-60. doi: 10.1016/j.gendis.2023.02.038 PMID: 37692483
  2. Li S, Meng X, Peng B, et al. Cell membrane-based biomimetic technology for cancer phototherapy: Mechanisms, recent advances and perspectives. Acta Biomater 2023; 174: 26-48.
  3. Naderpour H, Abbasi M, Kontoni D-PN, Mirrashid M, Ezami N, Savvides A-A. Integrating image processing and machine learning for the non-destructive assessment of RC beams damage. Buildings 2024; 14(1): 214. doi: 10.3390/buildings14010214
  4. Nelleke Seghers PAL, Hamaker ME, O’Hanlon S, et al. Self-reported electronic symptom monitoring in older patients with multimorbidity treated for cancer: Development of a core dataset based on expert consensus, literature review, and quality of life questionnaires. J Geriatr Oncol 2024; 15(1): 101643. doi: 10.1016/j.jgo.2023.101643 PMID: 37979368
  5. Neetika M, Sharma M, Thakur P, et al. Cancer treatment and toxicity outlook of nanoparticles. Environ Res 2023; 237(Pt 1): 116870. doi: 10.1016/j.envres.2023.116870 PMID: 37567383
  6. Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C 2019; 98: 1252-76. doi: 10.1016/j.msec.2019.01.066 PMID: 30813007
  7. Bhattacharya S. Fabrication and characterization of chitosan-based polymeric nanoparticles of Imatinib for colorectal cancer targeting application. Int J Biol Macromol 2020; 151: 104-15. doi: 10.1016/j.ijbiomac.2020.02.151 PMID: 32070732
  8. Manthalkar L, Bhattacharya S, Hatware K, et al. Fabrication of D-α-tocopheryl polyethylene glycol 1000 succinates and human serum albumin conjugated chitosan nanoparticles of bosutinib for colon targeting application; in vitro-in vivo investigation. Int J Biol Macromol 2023; 253(Pt 7): 127531. doi: 10.1016/j.ijbiomac.2023.127531 PMID: 37858658
  9. Bhattacharya S, Bonde S, Hatware K, Sharma S, Anjum MM, Sahu RK. Physicochemical characterization, in vitro and in vivo evaluation of chitosan/carrageenan encumbered with Imatinib mesylate-polysarcosine nanoparticles for sustained drug release and enhanced colorectal cancer targeted therapy. Int J Biol Macromol 2023; 245: 125529. doi: 10.1016/j.ijbiomac.2023.125529 PMID: 37379942
  10. Xu B, Zeng F, Deng J, et al. A homologous and molecular dual- targeted biomimetic nanocarrier for EGFR-related non-small cell lung cancer therapy. Bioact Mater 2023; 27: 337-47. doi: 10.1016/j.bioactmat.2023.04.005 PMID: 37122898
  11. Gowda BHJ, Ahmed MG, Almoyad MAA, Wahab S, Almalki WH, Kesharwani P. Nanosponges as an emerging platform for cancer treatment and diagnosis. Advan Func Mat 2023; 2307074.
  12. Bhattacharya S, Shinde P, Page A, Sharma S. 5-Fluorouracil and Anti-EGFR antibody scaffold chitosan-stabilized Pickering emulsion: Formulations, physical characterization, in-vitro studies in NCL-H226 cells, and in-vivo investigations in Wistar rats for the augmented therapeutic effects against squamous cell carcinoma. Int J Biol Macromol 2023; 253(Pt 1): 126716. doi: 10.1016/j.ijbiomac.2023.126716 PMID: 37673158
  13. Khan MS, Jaswanth Gowda BH, Almalki WH, Singh T, Sahebkar A, Kesharwani P. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment. Drug Discov Today 2024; 29(1): 103819. doi: 10.1016/j.drudis.2023.103819 PMID: 37940034
  14. Hasan N, Imran M, Jain D, et al. Advanced targeted drug delivery by bioengineered white blood cell-membrane camouflaged nanoparticulate delivery nanostructures. Environ Res 2023; 238(Pt 1): 117007. doi: 10.1016/j.envres.2023.117007 PMID: 37689337
  15. Zeng L, Gowda BHJ, Ahmed MG, et al. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer 2023; 22(1): 10. doi: 10.1186/s12943-022-01708-4 PMID: 36635761
  16. Bhattacharya S, Pawde D, Dumpala RL. Preparation of Sorafenib tosylate self-emulsified drug delivery system and the effect on combination therapy with Bosutinib against HCT116/SW1417 cells. Results Chem 2022; 4: 100385. doi: 10.1016/j.rechem.2022.100385
  17. Sahu R, Shah K, Malviya R, et al. E-Cigarettes and associated health risks: An update on cancer potential. Adv Respir Med 2023; 91(6): 516-31. doi: 10.3390/arm91060038 PMID: 37987300
  18. Saindane D, Bhattacharya S, Shah R, Prajapati BG. The recent development of topical nanoparticles for annihilating skin cancer. All Life 2022; 15(1): 843-69. doi: 10.1080/26895293.2022.2103592
  19. Bhattacharya S, Saindane D, Prajapati BG. Liposomal drug delivery and its potential impact on cancer research. Anticancer Agents Med Chem 2022; 22(15): 2671-83. doi: 10.2174/1871520622666220418141640 PMID: 35440318
  20. Raghani NR, Chorawala MR, Mahadik M, Patel RB, Prajapati BG, Parekh PS. Revolutionizing cancer treatment: Comprehensive insights into immunotherapeutic strategies. Med Oncol 2024; 41(2): 51. doi: 10.1007/s12032-023-02280-7 PMID: 38195781
  21. Bhattacharya S, Singh D, Aich J, Ajazuddin MB, Shete MB. Development and characterization of hyaluronic acid surface scaffolds Encorafenib loaded polymeric nanoparticles for colorectal cancer targeting. Mater Today Commun 2022; 31: 103757. doi: 10.1016/j.mtcomm.2022.103757
  22. Mohite P, Rajput T, Pandhare R, Sangale A, Singh S, Prajapati BG. Nanoemulsion in management of colorectal cancer: Challenges and future prospects. Nanomanufacturing 2023; pp. 139-66.
  23. Bhattacharya S, Prajapati BG, Ali N, Mohany M, Aboul-Soud MAM, Khan R. Therapeutic potential of methotrexate-loaded superparamagnetic iron oxide nanoparticles coated with poly(lactic-co-glycolic acid) and polyethylene glycol against breast cancer: Development, characterization, and comprehensive in vitro investigation. ACS Omega 2023; 8(30): 27634-49. doi: 10.1021/acsomega.3c03430 PMID: 37546601
  24. Sahu R, Shah K, Malviya R, et al. Recent advancement in pyrrolidine moiety for the management of cancer: A review. Results Chem 2024; 7: 101301. doi: 10.1016/j.rechem.2023.101301
  25. Saikia S, Ahmed F, Prajapati BG, et al. Reprogramming of lipid metabolism in cancer: New insight into pathogenesis and therapeutic strategies. Curr Pharm Biotechnol 2023; 24(15): 1847-58. doi: 10.2174/1389201024666230413084603 PMID: 37069718
  26. Sakore P, Bhattacharya S, Belemkar S, Prajapati BG, Elossaily GM. The theranostic potential of green nanotechnology-enabled gold nanoparticles in cancer: A paradigm shift on diagnosis and treatment approaches. Results in Chemistry 2024; 7: 101264. doi: 10.1016/j.rechem.2023.101264
  27. kapoor D, Garg R, Gaur M, et al. Polymeric nanoparticles approach and identification and characterization of novel biomarkers for colon cancer. Results in Chemistry 2023; 6: 101167. doi: 10.1016/j.rechem.2023.101167
  28. Hani U, Gowda BHJ, Haider N, et al. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review. AAPS PharmSciTech 2023; 24(8): 233. doi: 10.1208/s12249-023-02670-0 PMID: 37973643
  29. Banazadeh M, Behnam B, Ganjooei NA, Gowda BHJ, Kesharwani P, Sahebkar A. Curcumin-based nanomedicines: A promising avenue for brain neoplasm therapy. J Drug Deliv Sci Technol 2023; 89: 105040. doi: 10.1016/j.jddst.2023.105040
  30. Gowda BHJ, Ahmed MG, Alshehri SA, et al. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics. Environ Res 2023; 237(Pt 1): 116894. doi: 10.1016/j.envres.2023.116894 PMID: 37586450
  31. Khan MS, Gowda BHJ, Nasir N, et al. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer. Int J Pharm 2023; 643: 123276. doi: 10.1016/j.ijpharm.2023.123276 PMID: 37516217
  32. Hani U, Osmani RAM, Yasmin S, et al. Novel drug delivery systems as an emerging platform for stomach cancer therapy. Pharmaceutics 2022; 14(8): 1576. doi: 10.3390/pharmaceutics14081576 PMID: 36015202
  33. Dubey SK, Parab S, Achalla VPK, et al. Microparticulate and nanotechnology mediated drug delivery system for the delivery of herbal extracts. J Biomater Sci Polym Ed 2022; 33(12): 1531-54. doi: 10.1080/09205063.2022.2065408 PMID: 35404217
  34. Hani U, Jaswanth Gowda BH, Siddiqua A, et al. Herbal approach for treatment of cancer using curcumin as an anticancer agent: A review on novel drug delivery systems. J Mol Liq 2023; 390: 123037. doi: 10.1016/j.molliq.2023.123037
  35. Gutierrez-Romero L, Díez P, Montes-Bayón M. Bioanalytical strategies to evaluate cisplatin nanodelivery systems: From synthesis to incorporation in individual cells and biological response. J Pharm Biomed Anal 2024; 237: 115760. doi: 10.1016/j.jpba.2023.115760 PMID: 37839264
  36. Narayana S, Ahmed MG, Gowda BHJ, et al. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review. Fut J Pharma Sci 2021; 7(1): 186. doi: 10.1186/s43094-021-00331-2
  37. Mohanto S, Narayana S, Merai KP, et al. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int J Biol Macromol 2023; 253(Pt 5): 127143. doi: 10.1016/j.ijbiomac.2023.127143 PMID: 37793512
  38. A S, Ahmed MG, Gowda BHJ, Surya S. Formulation and characteristic evaluation of tacrolimus cubosomal gel for vitiligo. J Dispers Sci Technol 2024; 45(2): 224-33. doi: 10.1080/01932691.2022.2139716
  39. Chen Q, Liu X, Zeng J, Cheng Z, Liu Z. Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors. Biomaterials 2016; 98: 23-30. doi: 10.1016/j.biomaterials.2016.04.041 PMID: 27177219
  40. Sahu P, Kashaw SK, Sau S, Iyer AK. Polylactide-co-glycolide-based Nanogel: Concept and Functions. In: Holban A-M, Grumezescu AM, Eds. Materials for Biomedical Engineering. Elsevier 2019; pp. 399-423. doi: 10.1016/B978-0-12-818433-2.00012-1
  41. Dhas N, García MC, Kudarha R, et al. Advancements in cell membrane camouflaged nanoparticles: A bioinspired platform for cancer therapy. J Control Release 2022; 346: 71-97. doi: 10.1016/j.jconrel.2022.04.019 PMID: 35439581
  42. Zhao L, Zhou J, Deng D. Inorganic virus-like nanoparticles for biomedical applications: A mini-review. J Future Foods 2024; 4(1): 71-82. doi: 10.1016/j.jfutfo.2023.05.006
  43. Thankachan D, Anbazhagan R, Tsai HC, et al. Enhanced tumor targeting with near-infrared light-activated indocyanine green encapsulated in covalent organic framework for combined photodynamic therapy (PDT) and photothermal therapy (PTT). Dyes Pigments 2024; 221: 111812. doi: 10.1016/j.dyepig.2023.111812
  44. Wu J. The enhanced permeability and retention (EPR) effect: The significance of the concept and methods to enhance its application. J Pers Med 2021; 11(8): 771. doi: 10.3390/jpm11080771 PMID: 34442415
  45. Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; What is the appropriate target? Theranostics 2014; 4(1): 81-9. doi: 10.7150/thno.7193 PMID: 24396516
  46. Li Q, Zhou R, Xie Y, Li Y, Chen Y, Cai X. Sulphur-doped carbon dots as a highly efficient nano-photodynamic agent against oral squamous cell carcinoma. Cell Prolif 2020; 53(4): e12786. doi: 10.1111/cpr.12786 PMID: 32301195
  47. Verma AK, Soni RK. Laser ablation synthesis of bimetallic gold- palladium core@ shell nanoparticles for trace detection of explosives. Opt Laser Technol 2023; 163: 109429. doi: 10.1016/j.optlastec.2023.109429
  48. Freitas LF, Hamblin MR, Anzengruber F, et al. Zinc phthalocyanines attached to gold nanorods for simultaneous hyperthermic and photodynamic therapies against melanoma in vitro. J Photochem Photobiol B 2017; 173: 181-6. doi: 10.1016/j.jphotobiol.2017.05.037 PMID: 28595072
  49. Issa B, Obaidat I, Albiss B, Haik Y. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int J Mol Sci 2013; 14(11): 21266-305. doi: 10.3390/ijms141121266 PMID: 24232575
  50. Mohammapdour R, Ghandehari H. Mechanisms of immune response to inorganic nanoparticles and their degradation products. Adv Drug Deliv Rev 2022; 180: 114022. doi: 10.1016/j.addr.2021.114022 PMID: 34740764
  51. Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent advances in tumor targeting via EPR effect for cancer treatment. J Pers Med 2021; 11(6): 571. doi: 10.3390/jpm11060571 PMID: 34207137
  52. Masseroni A, Fossati M, Ponti J, et al. Sublethal effects induced by different plastic nano-sized particles in Daphnia magna at environmentally relevant concentrations. Environ Pollut 2024; 343: 123107. doi: 10.1016/j.envpol.2023.123107 PMID: 38070641
  53. Wang S, Ma Y, Khan FU, et al. Size-dependent effects of plastic particles on antioxidant and immune responses of the thick- shelled mussel Mytilus coruscus. Sci Total Environ 2024; 914: 169961. doi: 10.1016/j.scitotenv.2024.169961 PMID: 38211852
  54. Alsaleh NB, Aljarbou AM, Assal ME, et al. Synthesis, characterization, and toxicity assessment of zinc oxide-doped manganese oxide nanoparticles in a macrophage model. Pharmaceuticals 2024; 17(2): 168. doi: 10.3390/ph17020168
  55. Liu W, Wang L, Wang J, Du J, Jing C. New insights into microbial-mediated synthesis of Au@biolayer nanoparticles. Environ Sci Nano 2018; 5(7): 1757-63.
  56. Chen QY, Xie JW, Zhong Q, et al. Safety and efficacy of indocyanine green tracer-guided lymph node dissection during laparoscopic radical gastrectomy in patients with gastric cancer. JAMA Surg 2020; 155(4): 300-11. doi: 10.1001/jamasurg.2019.6033 PMID: 32101269
  57. Yu Y, Peng Y, Shen W-T, et al. Hybrid cell membrane-coated nanoparticles for biomedical applications. Small Struct 2024; 2300473.
  58. Zeng H, Yan G, Zheng R, Wang X. Cancer cell membrane-biomimetic nanoparticles based on gelatin and mitoxantrone for synergetic chemo-photothermal therapy of metastatic breast cancer. ACS Biomater Sci Eng 2024; 10: 875-89. doi: 10.1021/acsbiomaterials.3c01325 PMID: 38284758
  59. Li Y, Ke J, Jia H, et al. Cancer cell membrane coated PLGA nanoparticles as biomimetic drug delivery system for improved cancer therapy. Colloids Surf B Biointerfaces 2023; 222: 113131. doi: 10.1016/j.colsurfb.2023.113131 PMID: 36646005
  60. Han X, Gong C, Yang Q, Zheng K, Wang Z, Zhang W. Biomimetic nano-drug delivery system: An emerging platform for promoting tumor treatment. Intern J Nanomed 2024; 19: 571-608.
  61. D’oronzo S, Lovero D, Palmirotta R, et al. Targeted RNA-seq signature of breast cancer (BC) circulating tumor cells (CTCs) correlates with the onset of bone-only metastases. Bone Rep 2021; 14: 100840. doi: 10.1016/j.bonr.2021.100840
  62. Peng C, Xu Y, Wu J, Wu D, Zhou L, Xia X. TME-related biomimetic strategies against cancer. Intern J Nanomed 2024; 19: 109-35.
  63. Duan Y, Wang D, Wang S, et al. Cell membrane-coated nanoparticles and their biomedical applications. In: Yin Y, Lu Y, Xia Y, Eds. Encyclopedia of Nanomaterials. (1st ed.). Oxford: Elsevier 2023; pp. 519-42. doi: 10.1016/B978-0-12-822425-0.00020-8
  64. Wang D, Wang S, Zhou Z, et al. White blood cell membrane-coated nanoparticles: Recent development and medical applications. Adv Healthc Mater 2022; 11(7): 2101349. doi: 10.1002/adhm.202101349 PMID: 34468090
  65. Zhou K, Yang C, Shi K, et al. Activated macrophage membrane- coated nanoparticles relieve osteoarthritis-induced synovitis and joint damage. Biomaterials 2023; 295: 122036. doi: 10.1016/j.biomaterials.2023.122036 PMID: 36804660
  66. Jiang F, Wu G, Yang H, Zhang Y, Shen X, Tao L. Diethylaminoethyl-dextran and monocyte cell membrane coated 1,8-cineole delivery system for intracellular delivery and synergistic treatment of atherosclerosis. Int J Biol Macromol 2023; 253(Pt 7): 127365. doi: 10.1016/j.ijbiomac.2023.127365 PMID: 37827418
  67. Bulatao BP, Nalinratana N, Jantaratana P, Vajragupta O, Rojsitthisak P, Rojsitthisak P. Design and development of a magnetic field-enabled platform for delivering polymer-coated iron oxide nanoparticles to breast cancer cells. MethodsX 2023; 11: 102318. doi: 10.1016/j.mex.2023.102318 PMID: 37608960
  68. Chen S, Wu F, Wang H, et al. N-doped graphitized carbon-coated Fe2O3 nanoparticles in highly graphitized carbon hollow fibers for advanced lithium-ion batteries anodes. Electrochim Acta 2023; 467: 143032. doi: 10.1016/j.electacta.2023.143032
  69. Wu Y, Xu L, Xia C, Gan L. High performance flexible and antibacterial strain sensor based on silver-carbon nanotubes coated cellulose/polyurethane nanofibrous membrane: Cellulose as reinforcing polymer blend and polydopamine as compatibilizer. Int J Biol Macromol 2022; 223(Pt A): 184-92. doi: 10.1016/j.ijbiomac.2022.10.266 PMID: 36343837
  70. Karami Z, Akrami M, Mehrzad J, Esfandyari-Manesh M, Haririan I, Nateghi S. An anti-inflammatory Glyburide-loaded nanoghost for atherosclerosis therapy: A red blood cell based bio-mimetic strategy. Giant 2023; 16: 100206. doi: 10.1016/j.giant.2023.100206
  71. Zhang P, Xiang S, Gonzales RR, et al. Wetting-and scaling-resistant superhydrophobic hollow fiber membrane with hierarchical surface structure for membrane distillation. J Membr Sci 2024; 693: 122338. doi: 10.1016/j.memsci.2023.122338
  72. Zuo H, Qiang J, Wang Y, et al. Design of red blood cell membrane-cloaked dihydroartemisinin nanoparticles with enhanced antimalarial efficacy. Int J Pharm 2022; 618: 121665. doi: 10.1016/j.ijpharm.2022.121665 PMID: 35288223
  73. Zhu Y, Xu L, Kang Y, Cheng Q, He Y, Ji X. Platelet-derived drug delivery systems: Pioneering treatment for cancer, cardiovascular diseases, infectious diseases, and beyond. Biomaterials 2024; 306: 122478. doi: 10.1016/j.biomaterials.2024.122478 PMID: 38266348
  74. Huang Y, Ji W, Zhang J, et al. The involvement of the mitochondrial membrane in drug delivery. Acta Biomater 2024; 24: 1742-7061. doi: 10.1016/j.actbio.2024.01.027 PMID: 38280553
  75. Porębska N, Ciura K, Chorążewska A, Zakrzewska M, Otlewski J, Opaliński Ł. Multivalent protein-drug conjugates: An emerging strategy for the upgraded precision and efficiency of drug delivery to cancer cells. Biotechnol Adv 2023; 67: 108213. doi: 10.1016/j.biotechadv.2023.108213 PMID: 37453463
  76. Lee ES, Robinson D, Rognlien JL, et al. Microfluidic electroporation of robust 10-µm vesicles for manipulation of picoliter volumes. Bioelectrochemistry 2006; 69(1): 117-25. doi: 10.1016/j.bioelechem.2005.12.002 PMID: 16483852
  77. Ge Q, Rong S, Yin C, et al. Calcium ions induced ι-carrageenan-based gel-coating deposited on zein nanoparticles for encapsulating the curcumin. Food Chem 2024; 434: 137488. doi: 10.1016/j.foodchem.2023.137488 PMID: 37741234
  78. Cui S, McClements DJ, He X, et al. Interfacial properties and structure of Pickering emulsions co-stabilized by different charge emulsifiers and zein nanoparticles. Food Hydrocoll 2024; 146: 109285. doi: 10.1016/j.foodhyd.2023.109285
  79. Zhao Y, Xu J, Wang Q, Xie ZH, Munroe P. (TiZrNbTaMo)N nanocomposite coatings embedded with silver nanoparticles: imparting mechanical, osteogenic and antibacterial traits to dental implants. J Alloys Compd 2024; 972: 172824. doi: 10.1016/j.jallcom.2023.172824
  80. Cacciatore FA, Maders C, Alexandre B, Barreto Pinilla CM, Brandelli A, da Silva Malheiros P. Carvacrol encapsulation into nanoparticles produced from chia and flaxseed mucilage: Characterization, stability and antimicrobial activity against Salmonella and Listeria monocytogenes. Food Microbiol 2022; 108: 104116. doi: 10.1016/j.fm.2022.104116 PMID: 36088121
  81. Sahin S, Ozmen I. Determination of optimum conditions for glucose-6-phosphate dehydrogenase immobilization on chitosan-coated magnetic nanoparticles and its characterization. J Mol Catal, B Enzym 2016; 133: S25-33. doi: 10.1016/j.molcatb.2016.11.004
  82. Yang HM, Park CW, Park S, Kim JD. Cross-linked magnetic nanoparticles with a biocompatible amide bond for cancer-targeted dual optical/magnetic resonance imaging. Colloids Surf B Biointerfaces 2018; 161: 183-91. doi: 10.1016/j.colsurfb.2017.10.049 PMID: 29080502
  83. Hegde M, Kumar A, Girisa S, et al. Exosomal noncoding RNA- mediated spatiotemporal regulation of lipid metabolism: Implications in immune evasion and chronic inflammation. Cytokine Growth Factor Rev 2023; 73: 114-34. doi: 10.1016/j.cytogfr.2023.06.001 PMID: 37419767
  84. Bakr M, Abd-Elmawla MA, Elimam H, et al. Telomerase RNA component lncRNA as potential diagnostic biomarker promotes CRC cellular migration and apoptosis evasion via modulation of β-catenin protein level. Noncoding RNA Res 2023; 8(3): 302-14. doi: 10.1016/j.ncrna.2023.03.004 PMID: 37032720
  85. Yaman S, Ramachandramoorthy H, Iyer P, et al. Targeted chemotherapy via HER2-based chimeric antigen receptor (CAR) engineered T-cell membrane coated polymeric nanoparticles. Bioact Mater 2024; 34: 422-35. doi: 10.1016/j.bioactmat.2023.12.027 PMID: 38282968
  86. Firouzi Amandi A, Bahmanyar Z, Dadashpour M, et al. Fabrication of magnetic niosomal platform for delivery of resveratrol: Potential anticancer activity against human pancreatic cancer Capan-1 cell. Cancer Cell Int 2024; 24(1): 46. doi: 10.1186/s12935-024-03219-2 PMID: 38287318
  87. Zhang Y, Kang X, Li J, et al. Inflammation-responsive nanoagents for activatable photoacoustic molecular imaging and tandem therapies in rheumatoid arthritis. ACS Nano 2024; 18(3): 2231-49. doi: 10.1021/acsnano.3c09870 PMID: 38189230
  88. Zhao C, Zhu X, Tan J, Mei C, Cai X, Kong F. Lipid-based nanoparticles to address the limitations of GBM therapy by overcoming the blood-brain barrier, targeting glioblastoma stem cells, and counteracting the immunosuppressive tumor microenvironment. Biomed Pharmacother 2024; 171: 116113. doi: 10.1016/j.biopha.2023.116113 PMID: 38181717
  89. Lin H, Lu Q, Ge S, Cai Q, Grimes CA. Detection of pathogen Escherichia coli O157:H7 with a wireless magnetoelastic-sensing device amplified by using chitosan-modified magnetic Fe3O4 nanoparticles. Sens Actuators B Chem 2010; 147(1): 343-9. doi: 10.1016/j.snb.2010.03.011
  90. Chen B, Sun H, Zhang J, et al. Cell-based micro/nano-robots for biomedical applications: A review. Small 2024; 20(1): 2304607. doi: 10.1002/smll.202304607 PMID: 37653591
  91. Agwa MM, Elmotasem H, Moustafa RI, Abdelsattar AS, Mohy-Eldin MS, Fouda MMG. Advent in proteins, nucleic acids, and biological cell membranes functionalized nanocarriers to accomplish active or homologous tumor targeting for smart amalgamated chemotherapy/photo-therapy: A review. Int J Biol Macromol 2023; 253(Pt 8): 127460. doi: 10.1016/j.ijbiomac.2023.127460 PMID: 37866559
  92. Weng S, Pan L, Jiang D, et al. Idarubicin and IR780 co-loaded PEG-b-PTMC nanoparticle for non-Hodgkin’s lymphoma therapy by photothermal/photodynamic strategy. Mater Des 2023; 230: 112008. doi: 10.1016/j.matdes.2023.112008
  93. Yao C, Zhang D, Wang H, Zhang P. Recent advances in cell membrane coated-nanoparticles as drug delivery systems for tackling urological diseases. Pharmaceutics 2023; 15(7): 1899. doi: 10.3390/pharmaceutics15071899 PMID: 37514085
  94. Sousa-Junior AA, Mello-Andrade F, Rocha JVR, et al. Immunogenic cell death photothermally mediated by erythrocyte membrane-coated magnetofluorescent nanocarriers improves survival in sarcoma model. Pharmaceutics 2023; 15(3): 943. doi: 10.3390/pharmaceutics15030943 PMID: 36986804
  95. Li X, Ding B, Zheng P, Ma P, Lin J. Advanced nanomaterials for enhanced immunotherapy via metabolic regulation. Coord Chem Rev 2024; 500: 215540. doi: 10.1016/j.ccr.2023.215540
  96. Zhang G, Ji P, Xia P, et al. Identification and targeting of cancer-associated fibroblast signature genes for prognosis and therapy in Cutaneous melanoma. Comput Biol Med 2023; 167: 107597. doi: 10.1016/j.compbiomed.2023.107597 PMID: 37875042
  97. Issaka E, Wariboko MA, Agyekum EA. Synergy and coordination between biomimetic nanoparticles and biological cells/tissues/organs/systems: Applications in nanomedicine and prospect. Biomedical Materials & Devices. Springer Science and Business Media LLC 2023.
  98. Li J, Soradi-Zeid S, Yousefpour A, Pan D. Improved differential evolution algorithm based convolutional neural network for emotional analysis of music data. Appl Soft Comput 2024; 153: 111262. doi: 10.1016/j.asoc.2024.111262
  99. Wang Y, Liu Y, Zhang J, et al. Nanomaterial-mediated modulation of the cGAS-STING signaling pathway for enhanced cancer immunotherapy. Acta Biomater 2024; 24: 1742-7061. doi: 10.1016/j.actbio.2024.01.008 PMID: 38237711
  100. Hermida L, Agustian J. The application of conventional or magnetic materials to support immobilization of amylolytic enzymes for batch and continuous operation of starch hydrolysis processes. Rev Chem Eng 2024; 40(1): 1-34.
  101. Yu S, Wu G, Gu X, et al. Magnetic and pH-sensitive nanoparticles for antitumor drug delivery. Colloids Surf B Biointerfaces 2013; 103: 15-22. doi: 10.1016/j.colsurfb.2012.10.041 PMID: 23201714
  102. Anjum T, Hussain N, Hafsa HMN, et al. Magnetic nanomaterials as drug delivery vehicles and therapeutic constructs to treat cancer. J Drug Deliv Sci Technol 2023; 80: 104103. doi: 10.1016/j.jddst.2022.104103
  103. Dheilly E, Moine V, Broyer L, et al. Selective blockade of the ubiquitous checkpoint receptor CD47 Is enabled by dual-targeting bispecific antibodies. Mol Ther 2017; 25(2): 523-33.
  104. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm Res 2016; 33(10): 2373-87. doi: 10.1007/s11095-016-1958-5 PMID: 27299311
  105. Hameed Y, Nabi-Afjadi M, Gu Y, Wu L. Cell membrane-coated nanoparticles for cancer therapy. Cancer Insight 2023; 2(1): 145-62.
  106. Fondaj D, Arduino I, Lopedota AA, Denora N, Iacobazzi RM. Exploring the microfluidic production of biomimetic hybrid nanoparticles and their pharmaceutical applications. Pharmaceutics 2023; 15(7): 1953. doi: 10.3390/pharmaceutics15071953 PMID: 37514139
  107. Hu T, Huang Y, Liu J, Shen C, Wu F, He Z. Biomimetic cell-derived nanoparticles: Emerging platforms for cancer immunotherapy. Pharmaceutics 2023; 15(7): 1821. doi: 10.3390/pharmaceutics15071821 PMID: 37514008
  108. Tapeinos C, Torrieri G, Wang S, Martins JP, Santos HA. Evaluation of cell membrane-derived nanoparticles as therapeutic carriers for pancreatic ductal adenocarcinoma using an in vitro tumour stroma model. J Control Release 2023; 362: 225-42. doi: 10.1016/j.jconrel.2023.08.045 PMID: 37625597
  109. Wang Z, Tang Y, Gao M, et al. Cell-membrane coated self-immolative poly(thiourethane) for cysteine/homocysteine-triggered intracellular H2S delivery. ACS Macro Lett 2023; 12(11): 1583-8. doi: 10.1021/acsmacrolett.3c00558 PMID: 37937586
  110. Shi T, Liu K, Peng Y, et al. Research progress on the therapeutic effects of nanoparticles loaded with drugs against atherosclerosis. Cardiovasc Drugs Ther 2023. doi: 10.1007/s10557-023-07461-0 PMID: 37178241
  111. Jia E, Zhu H, Geng H, et al. The inhibition of osteoblast viability by monosodium urate crystal-stimulated neutrophil-derived exosomes. Front Immunol 2022; 13: 809586. doi: 10.3389/fimmu.2022.809586 PMID: 35655781
  112. Sharma S, Sharma H, Sharma R. A review on functionalization and potential application spectrum of magnetic nanoparticles (MNPs) based systems. Chem Inorg Mat 2024; 2: 100035. doi: 10.1016/j.cinorg.2024.100035
  113. Almofty S, Ravinayagam V, Alghamdi N, et al. Effect of CeO2/spherical silica and halloysite nanotubes engineered for targeted drug delivery system to treat breast cancer cells. OpenNano 2023; 13: 100169. doi: 10.1016/j.onano.2023.100169
  114. Agnihotri T, Prajapati SK, Gomte SS, Jain A. Chemically modified carbon nanotubes in cancer therapy. In: Aslam J, Hussain CM, Aslam R, Eds. Chemically Modified Carbon Nanotubes for Commercial Applications 2023; pp. 299-330. doi: 10.1002/9783527838790.ch13
  115. Ya-Ting Huang A, Kao CL, Selvaraj A, Peng L. Solid-phase dendrimer synthesis: A promising approach to transform dendrimer construction. Mater Today Chem 2023; 27: 101285. doi: 10.1016/j.mtchem.2022.101285
  116. Mondal J, Pillarisetti S, Junnuthula V, et al. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. J Control Release 2023; 353: 1127-49. doi: 10.1016/j.jconrel.2022.12.027 PMID: 36528193
  117. Setia A, Mehata AK, Vikas AK, Malik AK, Viswanadh MK, Muthu MS. Theranostic magnetic nanoparticles: Synthesis, properties, toxicity, and emerging trends for biomedical applications. J Drug Deliv Sci Technol 2023; 81: 104295. doi: 10.1016/j.jddst.2023.104295
  118. Urbanova M, Cihova M, Buocikova V, et al. Nanomedicine and epigenetics: New alliances to increase the odds in pancreatic cancer survival. Biomed Pharmacother 2023; 165: 115179. doi: 10.1016/j.biopha.2023.115179 PMID: 37481927
  119. Ijaz M, Aslam B, Hasan I, Ullah Z, Roy S, Guo B. Cell membrane-coated biomimetic nanomedicines: Productive cancer theranostic tools. Biomater Sci 2024; 1-33. doi: 10.1039/D3BM01552A PMID: 38230669
  120. Xie J, Zhu X, Wang M, Liu C, Ling G, Zhang P. Dissolving microneedle-mediated transdermal delivery of flurbiprofen axetil-loaded pH-responsive liposomes for arthritis treatment. Chem Eng J 2024; 482: 148840. doi: 10.1016/j.cej.2024.148840
  121. Chai W, Chen X, Liu J, et al. Recent progress in functional metal-organic frameworks for bio-medical application. Regen Biomater 2024; 11: rbad115. doi: 10.1093/rb/rbad115 PMID: 38313824
  122. Zeng S, Tang Q, Xiao M, et al. Cell membrane-coated nanomaterials for cancer therapy. Mater Today Bio 2023; 20: 100633. doi: 10.1016/j.mtbio.2023.100633 PMID: 37128288
  123. Dutta B, Shelar SB, Nirmalraj A, et al. Smart magnetic nanocarriers for codelivery of nitric oxide and doxorubicin for enhanced apoptosis in cancer cells. ACS Omega 2023; 8(47): 44545-57. doi: 10.1021/acsomega.3c03734 PMID: 38046289
  124. Habeeb M, Vengateswaran HT, You HW, Saddhono K, Aher KB, Bhavar GB. Nanomedicine facilitated cell signaling blockade: Difficulties and strategies to overcome glioblastoma. J Mater Chem B Mater Biol Med 2024; 1-29. doi: 10.1039/D3TB02485G PMID: 38288615

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers