Energy model of surface activation of mineral components of building composite materials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

To evaluate effectiveness of mechanical activation of mineral powder applied as a mineral additive for building materials structure formation control it is proposed to use two characteristics: the ratio of coefficients ka/ks and the surface fractal dimension Ds. Proposed mathematical algorithm allows us to characterize dispersed systems by changes in the energy properties of a surface of particles directly involved in the process, and to calculate the fractal dimension of the surface formed with grinding. The adequacy of the proposed model was tested on highly dispersed powders of quartz sand and saponite-containing material isolated from a recycled water suspension of kimberlite ores processing. It is shown that for the studied systems raw materials the 30-minute duration of mechanical dispersion process on a planetary ball mill leads to a significant change of the substance surface properties, and the fractal dimension was 2.36 for quartz sand and 2.46 for saponite-containing material. It is also shown that the traditionally used criteria for evaluating effectiveness of raw materials mechanical grinding on parameters specific surface area and particle size parameters are important, but insufficient. The developed model of mechanical activation, which uses treated substance various constants, establishes the relationship not only between the total number of bonds broken during processing and the number of bonds that change surface properties (the ratio of coefficients ka/ks), but also takes into account changes in the surface geometric characteristics.

Full Text

Restricted Access

About the authors

M. A. Frolova

Northern (Arctic) Federal University named after M.V. Lomonosov

Author for correspondence.
Email: m.aizenstadt@narfu.ru

Candidate of Sciences (Chemistry) 

Russian Federation, 17, Severnaya Dvina Embankment, Arkhangelsk, 163002

E. V. Korolev

Saint-Petersburg State University of Architecture and Civil Engineering

Email: prorector_nr@spbgasu.ru

Doctor of Sciences (Engineering), Professor 

Russian Federation, 4, 2nd Krasnoarmeyskaya Street, Saint Petersburg 190005

References

  1. Korolev E.V., Grishina A.N., Pustovgar A.P. Surface tension in the structure formation of materials. Meaning, calculation and application. Stroitel’nye Materialy [Construction Materials]. 2017. No. 1–2, pp. 104–109. (In Russian). EDN: XXIHWL. https://doi.org/10.31659/0585-430X-2017-745-1-2-104-108
  2. Korolev E.V. Assessment of the concentration of primary nanomaterials for modification of building composites. Stroitel’nye Materialy [Construction Materials]. 2014. No. 6, pp. 31–34. (In Russian). EDN: SHBYTP.
  3. Korolev E.V. Prospects for the development of building materials science. Academia. Arxitektura i Stroitel’stvo. 2020. No. 3, pp. 143–159. (In Russian). EDN: VPCOTZ. https://doi.org/10.22337/2077-9038-2020-3-143-159
  4. Lesovik V.S., Shakhova L.D., Kucherov D.E., Aksyutin Yu.S. Classification of active mineral additives for composite binders taking into account the genesis. Vestnik of the BSTU named after V.G. Shukhov. 2012. No. 3, pp. 10–14. (In Russian). EDN: PATBOZ
  5. Strokova V.V., Nelyubova V.V., Khmara N.O., Bukovtsova A.I., Denisova Yu.V. Expanded perlite sand as an effective additive to binder. Stroitel’nye Materialy [Construction Materials]. 2022. No. 6, pp. 61–66. (In Russian). EDN: WIXFQY. https://doi.org/10.31659/0585-430X-2022-803-6-61-66
  6. Yadykina V.V. Upravlenie processami formirovaniya i kachestvom stroitel’nyx kompozitov s uchetom sostoyaniya poverxnosti dispersnogo syr’ya [Management of molding processes and building composites quality considering condition of dispersed raw materials surface]. Moscow: Publishing House of the Association of Construction Universities, 2009. 374 p. EDN: SAPOYD
  7. Nelyubova V.V., Strokova V.V., Danilov V.E., Aizenshtadt A.M. Comprehensive assessment of the activity of silica-containing raw materials as an indicator of the effectiveness of mechanical activation. Obogashhenie Rud. 2022. No. 2, pp. 17–25. (In Russian). EDN: GTUQRF. https://doi.org/10.17580/or.2022.02.03
  8. Gusev B.V., Korolev E.V., Grishina A.N. Models of polydisperse systems: evaluation criteria and analysis of performance indicators. Promyshlennoe i Grazhdanskoe Stroitel’stvo. 2018. No. 8, pp. 31–39. (In Russian). EDN: UWOADU
  9. Rebinder P.A. Fiziko-ximicheskaya mexanika dispersny’x struktur [Physico-chemical mechanics of dispersed structures]. Moscow: Nauka. 1966. 400 p.
  10. Uryev N.B. Fiziko-ximicheskaya dinamika dispersny’x sistem i materialov. Fundamental’ny’e aspekty’, texnologicheskie prilozheniya [Physico-chemical dynamics of dispersed systems and materials. Fundamental aspects, technological applications]. Dolgoprudny: Intellect. 2013. 232 p.
  11. Vaisberg L.A., Kameneva E.E. Interconnection of structural features and physico-mechanical properties of rocks. Gornyi Zhurnal [Mining Journal]. 2017. No. 9, pp. 53–58. (In Russian). EDN: ZMJBLL. https://doi.org/10.17580/gzh.2017.09.10
  12. Adylkhodzhaev A.I., Kadyrov I.A., Umarov K.S., Nazarov A.A. On the issue of mechanical activation of zeolite-containing rocks. Izvestiya of the St. Petersburg University of Railway Communications. 2019. Vol. 16. No. 3, pp. 489–498. (In Russian). EDN: HCSHIW. https://doi.org/10.20295/1815-588X-2019-3-489-498
  13. Gurevich B.I., Kalinkin A.M., Kalinkina E.V., Tyukavkina V.V. Effect of nepheline concentrate mechanical activation on its astringent properties in mixed cements composition. Zhurnal Prikladnoj Khimii. 2013. Vol. 86. No. 7, pp. 1030–1035. (In Russian). EDN: KIGGSO
  14. Yevtushenko E.I., Cherevatova A.V., Kozhukhova N.I., Osadchaya M.S., Starostina I.V., Kozhukhova M.I. Stady of effectiveness of granite screening in mills of various types when synthesis of nanostructured binder . Vestnik of the BSTU named after V.G. Shukhov. 2020. No. 11, pp. 102–112. (In Russian). EDN: LFSJMU. https://doi.org/10.34031/2071-7318-2020-5-11-102-112
  15. Inozemtsev A.S., Korolev E.V. High-strength lightweight concretes. St.-Petersburg: St.-Petersburg State University of Architecture and Civil Engineering. 2022. 192 p. EDN: UCJRAZ
  16. Lesovik V.S., Frolova M.A., Aizenshtadt A.M. Surface activity of rocks. Stroitel’nye Materialy [Construction Materials]. 2013. No. 11, pp. 71–73. (In Russian). EDN: RKXZQX
  17. Zuev V.V., Potseluev L.N., Goncharov Yu.D. Kristalloenergetika kak osnova ocenki magnezialnyx svojstv tverdotelnyh materialov (vklyuchaya magnezialnye cementy) [Crystal energy as a basis for magnesian properties of solid-state materials assessing (including magnesian cements)]. St. Petersburg: ALFAPOL LLC, 2006. 119 p.
  18. Zuev V.V., Denisov G.A., Mochalov N.A., at al. Energoplotnost’ kak kriterij ocenki svojstv mineral’nyx i drugix kristallicheskix veshhestv [Energy density as a criterion for evaluating properties of mineral and other crystalline substances.] Moscow: Polymedia, 2000. 352 p.
  19. Frolova M.A. Conceptual aspects of designing mineral powder compositions from raw materials of natural and man-made origin. Stroitel’nye Materialy [Construction Materials]. 2024. No. 12, pp. 28–33. (In Russian). https://doi.org/10.31659/0585-430X-2024-831-12-28-33
  20. Shamanina A.V., Aizenshtadt A.M., Kononova V.M., Danilov V.E. Estimation of the efficiency of mechanical activation of silica-contaning rocks.Vestnik of the BSTU named after V.G. Shukhov. 2021. No. 5, pp. 19–27. (In Russian). EDN: URTMHC. https://doi.org/10.34031/2071-7318-2021-6-5-19-27
  21. Aizenshtadt A.M., Korolev V.E., Malygina M.A., Drozdiuk T.A., Frolova M.A. Structural modification of highly dispersed powders of saponite-containing bentonite clay overburden. Fizika i Himiya Obrabotki Materialov [Physics and Chemistry of materials Processing]. 2023. No. 1, pp. 56–63. (In Russian). EDN: BGBWRA. https://doi.org/10.30791/0015-3214-2023-1-56-63
  22. Rossman F. Giese, Carel J. van Oss. Colloid and surface properties of clays and related minerals. New York: CRC Press. 2002. 312 p. https://doi.org/10.1201/9780203910658
  23. Lambourne R., Strivens T.A. (ed.) Paint and surface coatings: Theory and practice (2nd ed.). Woodhead Publishing Ltd. 1999. 800 p.
  24. Ghasemi Y., Mats E., Cwirzen A. Estimation of specific surface area of particles based on size distribution curve. Magazine of Concrete Research. 2018. No. 70. Iss. 10, pp. 533–540. https://doi.org/10.1680/jmacr.17.00045
  25. Gomonay M.V. Proizvodstvo toplivnih briketov. Drevesnoe sirye, oborudovanie, tehnologii, rejimi raboti. Moscow: MGUL (Moscow State University of Forests). 2006. 68 p.
  26. Smirnov V.A., Korolev E.V., Albakasov A.I. Dimensional effects and topological features of nanomodified composites. Nanotexnologii v Stroitel’stve: nauchnyj internet-zhurnal. 2011. Vol. 3. No. 4, pp. 17–27. (In Russian). EDN: OWMYFH

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Electronic photographs of powders: a – quartz powder; b – saponite-containing material

Download (182KB)
3. Fig. 2. Rate of change of the ratio ka/ks and Ds by the grinding duration for: quartz powder (a) and saponite-containing material (b)

Download (143KB)

Copyright (c) 2025 ООО РИФ "СТРОЙМАТЕРИАЛЫ"