Метод анализа антимикробной активности пептидов с помощью экспрессии кодирующих их генов в клетках Escherichia coli
- Авторы: Графская Е.Н.1, Харлампиева Д.Д.1, Бобровский П.А.1,2, Серебренникова М.Ю.1,2, Лазарев В.Н.1,2, Манувера В.А.1,2
-
Учреждения:
- Федеральный научно-клинический центр физико-химической медицины имени академика Ю.М. Лопухина Федерального медико-биологического агентства
- Московский физико-технический институт (национальный исследовательский университет)
- Выпуск: Том 61, № 1 (2025)
- Страницы: 25-34
- Раздел: Статьи
- URL: https://vestnikugrasu.org/0555-1099/article/view/683309
- DOI: https://doi.org/10.31857/S0555109925010038
- EDN: https://elibrary.ru/CZLYIY
- ID: 683309
Цитировать
Аннотация
Предложена система тестирования новых потенциальных антимикробных пептидов (АМП), основанная на экспрессии кодирующих их рекомбинантных генов в клетках Escherichia coli. Такой подход имеет ряд преимуществ по сравнению с использованием химически синтезированных пептидов, при этом оба подхода эффективно дополняют друг друга. Используемый метод не налагает ограничений на размер АМП, позволяет проводить массовый скрининг мутантных плазмидных библиотек, имеет меньшую стоимость по сравнению с использованием синтетических пептидов. Суть метода заключается в трансформации модельной грамотрицательной бактерии E. coli плазмидами, несущими в себе рекомбинантный ген, кодирующий АМП, под контролем индуцибельного промотора. После индукции транскрипции бактерии синтезируют АМП, что приводит их к гибели. Детекцию роста бактерий проводят либо путем измерения оптической плотности жидкой культуры, выращиваемой в микропланшете, либо путем капельного высева серийных разведений культуры на агаризованную питательную среду.
Ключевые слова
Полный текст

Об авторах
Е. Н. Графская
Федеральный научно-клинический центр физико-химической медицины имени академика Ю.М. Лопухина Федерального медико-биологического агентства
Автор, ответственный за переписку.
Email: grafskayacath@gmail.com
Россия, Москва, 119435
Д. Д. Харлампиева
Федеральный научно-клинический центр физико-химической медицины имени академика Ю.М. Лопухина Федерального медико-биологического агентства
Email: grafskayacath@gmail.com
Россия, Москва, 119435
П. А. Бобровский
Федеральный научно-клинический центр физико-химической медицины имени академика Ю.М. Лопухина Федерального медико-биологического агентства; Московский физико-технический институт (национальный исследовательский университет)
Email: grafskayacath@gmail.com
Россия, Москва, 119435; Долгопрудный, 141701
М. Ю. Серебренникова
Федеральный научно-клинический центр физико-химической медицины имени академика Ю.М. Лопухина Федерального медико-биологического агентства; Московский физико-технический институт (национальный исследовательский университет)
Email: grafskayacath@gmail.com
Россия, Москва, 119435; Долгопрудный, 141701
В. Н. Лазарев
Федеральный научно-клинический центр физико-химической медицины имени академика Ю.М. Лопухина Федерального медико-биологического агентства; Московский физико-технический институт (национальный исследовательский университет)
Email: grafskayacath@gmail.com
Россия, Москва, 119435; Долгопрудный, 141701
В. А. Манувера
Федеральный научно-клинический центр физико-химической медицины имени академика Ю.М. Лопухина Федерального медико-биологического агентства; Московский физико-технический институт (национальный исследовательский университет)
Email: grafskayacath@gmail.com
Россия, Москва, 119435; Долгопрудный, 141701
Список литературы
- Muteeb G., Rehman M.T., Shahwan M., Aatif M. // Pharmaceuticals. 2023. V. 16. № 11. P. 1615. https://doi.org/10.3390/ph16111615
- Salam Md.A., Al-Amin Md.Y., Salam M.T., Pawar J.S., Akhter N., Rabaan A.A., Alqumber M.A.A. // Healthcare. 2023. V. 11. № 13. P. 1946. https://doi.org/10.3390/healthcare11131946
- Mba I.E., Nweze E.I. // Yale J. Biol. Med. 2022. V. 95. № 4. P. 445–463.
- Moretta A., Scieuzo C., Petrone A.M., Salvia R., Manniello M.D., Franco A. et al. // Front. Cell. Infect. Microbiol. 2021. V. 11. P. 668632. https://doi.org/10.3389/fcimb.2021.668632
- Browne K., Chakraborty S., Chen R., Willcox M.D., Black D.S., Walsh W.R., Kumar N. // IJMS. 2020. V. 21. № 19. P. 7047. https://doi.org/10.3390/ijms21197047
- Kumar P., Kizhakkedathu J., Straus S. // Biomolecules. 2018. V. 8. № 1. P. 4. https://doi.org/10.3390/biom8010004
- Huan Y., Kong Q., Mou H., Yi H. // Front. Microbiol. 2020. V. 11. P. 582779. https://doi.org/10.3389/fmicb.2020.582779
- Galzitskaya O.V. // IJMS. 2023. V. 24. № 11. P. 9451. https://doi.org/10.3390/ijms24119451
- Agüero-Chapin G., Antunes A., Marrero-Ponce Y. // Antibiotics. 2023. V. 12. № 6. P. 1011. https://doi.org/10.3390/antibiotics12061011
- Yan J., Cai J., Zhang B., Wang Y., Wong D.F., Siu S.W.I. // Antibiotics. 2022. V. 11. № 10. P. 1451. https://doi.org/10.3390/antibiotics11101451
- Bakare O.O., Gokul A., Niekerk L.-A., Aina O., Abiona A., Barker A.M., et al. // IJMS. 2023. V. 24. № 14. P. 11864. https://doi.org/10.3390/ijms241411864
- Bin Hafeez A., Jiang X., Bergen P.J., Zhu Y. // IJMS. 2021. V. 22. № 21. P. 11691. https://doi.org/10.3390/ijms222111691
- Dini I., De Biasi M.-G., Mancusi A. // Antibiotics. 2022. V. 11. № 11. P. 1483. https://doi.org/10.3390/antibiotics11111483
- Cardoso M.H., Orozco R.Q., Rezende S.B., Rodrigues G., Oshiro K.G.N., Cândido E.S., Franco O.L. // Front. Microbiol. 2020. V. 10. P. 3097. https://doi.org/10.3389/fmicb.2019.03097
- Yoshida M., Hinkley T., Tsuda S., Abul-Haija Y.M., McBurney R.T., Kulikov V. et al. // Chem. 2018. V. 4. № 3. P. 533–543. https://doi.org/10.1016/j.chempr.2018.01.005
- Aronica P.G.A., Reid L.M., Desai N., Li J., Fox S.J., Yadahalli S. et al. // J. Chem. Inf. Model. 2021. V. 61. № 7. P. 3172–3196. https://doi.org/10.1021/acs.jcim.1c00175
- Merrifield R.B., Stewart J.Morrow., Jernberg Nils. // Anal. Chem. 1966. V. 38. № 13. P. 1905–1914. https://doi.org/10.1021/ac50155a057
- Bello-Madruga R., Torrent Burgas M. // Comput. Struct. Biotechnol.J. 2024. V. 23. P. 972–981. https://doi.org/10.1016/j.csbj.2024.02.008
- Zhang H.-Q., Sun C., Xu N., Liu W. // Front. Immunol. 2024. V. 15. P. 1326033. https://doi.org/10.3389/fimmu.2024.1326033
- Steiner H., Hultmark D., Engström Å., Bennich H., Boman H.G. // Nature. 1981. V. 292. № 5820. P. 246–248. https://doi.org/10.1038/292246a0
- Casteels P., Ampe C., Jacobs F., Vaeck M., Tempst P. // The EMBO Journal. 1989. V. 8. № 8. P. 2387–2391. https://doi.org/10.1002/j.1460-2075.1989.tb08368.x
- Grafskaia E.N., Pavlova E.R., Latsis I.A., Malakhova M.V., Ivchenkov D.V., Bashkirov P.V., et al. // Materials & Design. 2022. V. 224. P. 111364. https://doi.org/10.1016/j.matdes.2022.111364
- Klock H.E., Lesley S.A. High Throughput Protein Expression and Purification. / Ed. S.A. Doyle. Totowa, NJ: Humana Press, 2009. V. 498. P. 91–103. https://doi.org/10.1007/978-1-59745-196-3_6
- Wiegand I., Hilpert K., Hancock R.E.W. // Nat. Protoc. 2008. V. 3. № 2. P. 163–175. https://doi.org/10.1038/nprot.2007.521
Дополнительные файлы
