Biologically Active Quinolinone Alkaloid from Marine Fungus Penicillium polonicum KMM 4719
- 作者: Starnovskaya S.S.1, Kirichuk N.N.1, Chausova V.E.1, Khudyakova U.V.1, Chingizova E.A.1, Chingizov A.R.1, Yurchenko A.N.1, Yurchenko E.A.1
-
隶属关系:
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences
- 期: 卷 61, 编号 1 (2025)
- 页面: 58-67
- 栏目: Articles
- URL: https://vestnikugrasu.org/0555-1099/article/view/683312
- DOI: https://doi.org/10.31857/S0555109925010065
- EDN: https://elibrary.ru/CZQSYF
- ID: 683312
如何引用文章
详细
The marine fungal strain KMM 4719 was isolated from the sea cucumber Apostichopus japonicus and identified as Penicillium polonicum based on three molecular genetic markers: ITS, BenA, and CaM. 3-O-methylviridicatin was isolated from the ethyl acetate extract of the strain culture. 3-O-methylviridicatin demonstrated cardioprotective activity for the first time, as well as urease inhibitory activity (IC50 97.3 μM). In addition, 3-O-methylviridicatin at a concentration of 100 μM (25.1 μg/ml) inhibited the growth of the yeast-like fungus Candida albicans at 23.2%.
全文:

作者简介
S. Starnovskaya
G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: starnovskaya_ss@piboc.dvo.ru
俄罗斯联邦, Vladivostok, 690022
N. Kirichuk
G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences
Email: starnovskaya_ss@piboc.dvo.ru
俄罗斯联邦, Vladivostok, 690022
V. Chausova
G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences
Email: starnovskaya_ss@piboc.dvo.ru
俄罗斯联邦, Vladivostok, 690022
U. Khudyakova
G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences
Email: starnovskaya_ss@piboc.dvo.ru
俄罗斯联邦, Vladivostok, 690022
E. Chingizova
G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences
Email: starnovskaya_ss@piboc.dvo.ru
俄罗斯联邦, Vladivostok, 690022
A. Chingizov
G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences
Email: starnovskaya_ss@piboc.dvo.ru
俄罗斯联邦, Vladivostok, 690022
A. Yurchenko
G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences
Email: starnovskaya_ss@piboc.dvo.ru
俄罗斯联邦, Vladivostok, 690022
E. Yurchenko
G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences
Email: starnovskaya_ss@piboc.dvo.ru
俄罗斯联邦, Vladivostok, 690022
参考
- Chen L., Wang X.-Y., Liu R.-Z., Wang G.-Y. // Mar. Drugs. 2021. V. 19. № 8. Art. 461. https://doi.org/10.3390/md19080461
- Pivkin M.V. // Biol. Bull. 2000. V. 198. № 1. P. 101–109. https://doi.org/10.2307/1542808
- Starnovskaya S.S., Nesterenko L.E., Popov R.S., Kirichuk N.N., Chausova V.E., Chingizova E.A. et al. // Nat. Prod. Bioprospect. 2024. V. 14. № 1. Art. 38. https://doi.org/10.1007/s13659-024-00459-7
- Duduk N., Vasić M., Vico I. // Plant Dis. 2014. V. 98. № 10. P. 1440–1440. https://doi.org/10.1094/PDIS-05-14-0550-PDN
- Frisvad J.C., Smedsgaard J., Larsen T.O., Samson R.A. // Stud. Mycol. 2004. V. 49. № 201. P. 201–241.
- Núñez F., Díaz M.C., Rodríguez M., Aranda E., Martín A., Asensio M.A. // J. Food Protect. 2000. V. 63. № 2. P. 231–236. https://doi.org/10.4315/0362-028X-63.2.231
- Wen Y., Lv Y., Hao J., Chen H., Huang Y., Liu C. et al. // Nat. Prod. Res. 2020. V. 34. № 13. P. 1879–1883. https://doi.org/10.1080/14786419.2019.1569003
- Cai X.-Y., Wang J.-P., Shu Y., Hu J.-T., Sun C.-T., Cai L. et al. // Nat. Prod. Res. 2022. V. 36. № 9. P. 2270–2276. https://doi.org/10.1080/14786419.2020.1828406
- Bai J., Zhang P., Bao G., Gu J.-G., Han L., Zhang L.-W. et al. // Appl. Microbiol. Biotechnol. 2018. V. 102. № 19. P. 8493–8500. https://doi.org/10.1007/s00253-018-9218-8
- Park M.S., Fong J.J., Oh S.-Y., Kwon K.K., Sohn J.H., Lim Y.W. // Antonie Van Leeuwenhoek. 2014. V. 106. № 2. P. 331–345. https://doi.org/10.1007/s10482-014-0205-5
- Neethu S., Midhun S.J., Radhakrishnan E.K., Jyothis M. // Microb. Pathog. 2018. V. 116. P. 263–272. https://doi.org/10.1016/j.micpath.2018.01.033
- Kalkan S.O., Bozcal E., Hames Tuna E.E., Uzel A. // Biocatal. Biotransform. 2020. V. 38. № 6. P. 469–479. https://doi.org/10.1080/10242422.2020.1785434
- Visagie C., Houbraken J., Frisvad J.C., Hong S.-B., Klaassen C., Perrone G. et al. // Stud. Mycol. 2014. V. 78. № 1. P. 343–371. https://doi.org/10.1016/j.simyco.2014.09.001
- Scholin C.A., Herzog M., Sogin M., Anderson D.M. // J. Phycol. 1994. V. 30. № 6. P. 999–1011. https://doi.org/10.1111/j.0022-3646.1994.00999.x
- Elwood H., Olsen G., Sogin M. // Mol. Biol. Evol. 1985. V. 2. № 5. P. 399–410. https://doi.org/10.1093/oxfordjournals.molbev.a040362
- Glass N.L., Donaldson G.C. // Appl. Environ. Microbiol. 1995. V. 61. № 4. P. 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
- Yurchenko A.N., Zhuravleva O.I., Khmel O.O., Oleynikova G.K., Antonov A.S., Kirichuk N.N. et al. // Mar. Drugs. 2023. V. 21. № 11. Art. 584. https://doi.org/10.3390/md21110584
- Kumar S., Stecher G., Li M., Knyaz C., Tamura K. // Mol. Biol. Evol. 2018. V. 35. № 6. P. 1547. https://doi.org/10.1093/molbev/msy096
- Kimura M. // J. Mol. Evol. 1980. V. 16. P. 111–120. https://doi.org/10.1007/BF01731581
- Nesterenko L.E., Popov R.S., Zhuravleva O.I., Kirichuk N.N., Chausova V.E., Krasnov K.S. et al. // Fermentation. 2023. V. 9. № 4. Art. 337. https://doi.org/10.3390/fermentation9040337
- Grosdidier A., Zoete V., Michielin O. // Proteins: Structure, Function, and Bioinformatics. 2007. V. 67. № 4. P. 1010–1025. https://doi.org/10.1002/prot.21367
- Brooks B.R., Brooks Iii C.L., Mackerell Jr A.D., Nilsson L., Petrella R.J., Roux B. et al. // J. Comput. Chem. 2009. V. 30. № 10. P. 1545–1614. https://doi.org/10.1002/jcc.21287
- Haberthür U., Caflisch A. // J. Comput. Chem. 2008. V. 29. № 5. P. 701–715. https://doi.org/10.1002/jcc.20832
- Grosdidier A., Zoete V., Michielin O. // Nucleic Acids Res. 2011. V. 39. № S2. P. W270–W277. https://doi.org/10.1093/nar/gkr366
- Balasubramanian A., Ponnuraj K. // J. Mol. Biol. 2010. V. 400. № 3. P. 274–283. https://doi.org/10.1016/j.jmb.2010.05.009
- Kirichuk N., Pivkin M., Hudyakova Y. // Eurasian Union Scientists. 2020. V. 3. № 9(78). P. 12–18. https://doi.org/10.31618/ESU.2413-9335.2020.3.78.1011
- Kirichuk N.N., Chausova V.Y., Pivkin M.V. // Bot. Pac. 2022. V. 11. № 2. P. 175–181. https://doi.org/10.17581/bp.2022.11213
- Sobol M.S., Hoshino T., Delgado V., Futagami T., Kadooka C., Inagaki F. et al. // BMC Genomics. 2023. V. 24. № 1. P. 249. https://doi.org/10.1186/s12864-023-09320-6
- Jones E.B.G., Pang K.-L., Abdel-Wahab M.A., Scholz B., Hyde K.D., Boekhout T. et al. // Fungal Diversity. 2019. V. 96. № 1. P. 347–433. https://doi.org/10.1007/s13225-019-00426-5
- Houbraken J., Wang L., Lee H.B., Frisvad J.C. // Persoonia: Mol. Phylogeny Evol. Fungi. 2016. V. 36. № 1. P. 299–314. https://doi.org/10.3767/003158516x692040
- Bubnova E.N. // 2010. V. 53. № 6. P. 595–600. https://doi.org/10.1515/bot.2010.063
- Li Y.-H., Li X.-M., Li X., Yang S.-Q., Shi X.-S., Li H.-L. et al. // Mar. Drugs. 2020. V. 18. № 11. Art. 553. https://doi.org/10.3390/md18110553
- Зверева Л.В., Высоцкая М.А. // Биология моря. 2005. № 6. С. 595–600.
- Li Y.-H., Yang S.-Q., Li X.-M., Li X., Wang B.-G., Li H. // Fitoterapia. 2023. V. 165. P. 105387. https://doi.org/10.1016/j.fitote.2022.105387
- Heguy A., Cai P., Meyn P., Houck D., Russo S., Michitsch R. et al. // Antivir. Chem. Chemother. 1998. V. 9. № 2. P. 149–155. https://doi.org/10.1177/095632029800900206
- El Euch I.Z., Frese M., Sewald N., Smaoui S., Shaaban M., Mellouli L. // Med. Chem. Res. 2018. V. 27. № 4. P. 1085–1092. https://doi.org/10.1007/s00044-017-2130-4
- Saeed A., Rehman S.-U., Channar P.A., Larik F.A., Abbas Q., Hassan M. et al. // J. Taiwan. Inst. Chem. Eng. 2017. V. 77. P. 54–63. https://doi.org/10.1016/j.jtice.2017.04.044
- Rego Y.F., Queiroz M.P., Brito T.O., Carvalho P.G., de Queiroz V.T., de Fátima Â. et al. // J. Adv. Res. 2018. V. 13. P. 69–100. https://doi.org/10.1016/j.jare.2018.05.003
- Navarathna D.H.M.L.P., Harris S.D., Roberts D.D., Nickerson K.W. // FEMS Yeast. Res. 2010. V. 10. № 2. P. 209–213. https://doi.org/10.1111/j.1567-1364.2009.00602.x
- Osterholzer J.J., Surana R., Milam J.E., Montano G.T., Chen G.-H., Sonstein J. et al. // Am. J. Pathol. 2009. V. 174. № 3. P. 932–943. https://doi.org/10.2353/ajpath.2009.080673
- Xiong Z., Zhang N., Xu L., Deng Z., Limwachiranon J., Guo Y. et al. // Microbiol. Spectr. 2023. V. 11. № 2. P. e03508–03522. https://doi.org/10.1128/spectrum.03508-22
- Navarathna D.H.M.L.P., Das A., Morschhäuser J., Nickerson K.W., Roberts D.D. // Microbiology. 2011. V. 157. № 1. P. 270–279. https://doi.org/10.1099/mic.0.045005-0
- Ma Y.M., Qiao K., Kong Y., Li M.Y., Guo L.X., Miao Z. et al. // Nat. Prod. Res. 2017. V. 31. № 8. P. 951–958. https://doi.org/10.1080/14786419.2016.1258556
- Song W.Q., Liu M.L., Li S.Y., Xiao Z.P. // Curr. Top. Med. Chem. 2022. V. 22. № 2. P. 95–107. https://doi.org/10.2174/1568026621666211129095441
- Hameed A., Al-Rashida M., Uroos M., Qazi S.U., Naz S., Ishtiaq M., et al. // Expert Opin. Ther. Patents. 2019. V. 29. № 3. P. 181–189. https://doi.org/10.1080/13543776.2019.1584612
- Li P., Fan Y., Chen H., Chao Y., Du N., Chen J. // Chin. J. Oceanol. Limnol. 2016. V. 34. № 5. P. 1072–1075. https://doi.org/10.1007/s00343-016-5097-y
- Muñoz-Sánchez J., Chánez-Cárdenas M.E. // J. Appl. Toxicol. 2019. V. 39. № 4. P. 556–570. https://doi.org/10.1002/jat.3749
补充文件
