New Inhibitors of Pancreatic α-amylase from Rhaponticum uniflorum

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The basic strategy for the treatment of diabetes mellitus is the control of postprandial glucose levels, and therefore pancreatic α-amylase that hydrolyzes complex carbohydrates is an important enzymatic target for the scientific research. In the present study, an aqueous extract and its ethyl acetate fraction (EAF) from the seeds of Rhaponticum uniflorum had a pronounced inhibitory effect on the activity of human pancreatic α-amylase. Sixteen metabolites were isolated after the chromatographic separation of EAF and characterized as 4-O-, 5-O-, 3,4-di-O-, 3,5-di-O-, 4,5-di-O-caffeoylquinic acid, 6-hydroxyluteolin 7-O-glucoside, rhaunoside B, luteolin 7-O-(6"-O-caffeoyl)-glucoside, luteolin, carthamoside, carthamogenin, tracheloside, isoferuloyl-serotonin, 20-hydroxyecdysone, 2-deoxy-20-hydroxyecdysone and a new natural compound, which was carthamogenin 4-O-(6''-O-acetyl)-β-D-glucopyranoside (6''-O-acetyl-cartamoside). Quantitative HPLC data indicated a different distribution of the individual components between the endosperm and the seed coat. The study of the compounds effect on the activity of human pancreatic α-amylase showed that some flavonoids, caffeoylquinic acids, lignans and serotonin derivatives had a pronounced inhibitory effect. These results support the conclusion that Rhaponticum uniflorum seeds may be a useful natural source for the development of α-amylase inhibitory agents.

Sobre autores

D. Olennikov

Institute of General and Experimental Biology SD RAS

Autor responsável pela correspondência
Email: olennikovdn@mail.ru
Russia, 670047, Ulan-Ude

N. Kashchenko

Institute of General and Experimental Biology SD RAS

Email: olennikovdn@mail.ru
Russia, 670047, Ulan-Ude

Bibliografia

  1. Alam S., Sarker M.M.R., Sultana T.N., Chowdhury M.N.R., Rashid M.A., Chaity N.I. et al. // Front. Endocrinol. 2022. V. 13. № 800714. https://doi.org/10.3389/fendo.2022.800714
  2. Sales P.M., Souza P.M., Simeoni L.A., Magalhães P.O., Silveira D. // J. Pharm. Pharm. Sci. 2009. V. 15. P. 141–183. https://doi.org/10.18433/j35s3k
  3. Баторова С.М., Яковлев Г.П., Асеева Т.А. Справочник лекарственных растений традиционной тибетской медицины. Новосибирск: Наука, 2003. 291 с.
  4. Olennikov D.N., Kashchenko N.I. // Chem. Nat. Comp. 2019. V. 55. P. 256–264. https://doi.org/10.1007/s10600-019-02662-2
  5. Olennikov D.N. // Chem. Nat. Comp. 2018. V. 54. P. 751–754. https://doi.org/10.1007/s10600-018-2462-4
  6. Olennikov D.N. // Chem. Nat. Comp. 2019. V. 55. P. 157–159. https://doi.org/10.1007/s10600-019-02642-6
  7. Shantanova L.N., Olennikov D.N., Matkhanov I.E., Gulyaev S.M., Toropova A.A., Nikolaeva I.G., Nikolaev S.M. // Pharmaceuticals. 2021. V. 14. № 1186. https://doi.org/10.3390/ph14111186
  8. Olennikov D.N., Chemposov V.V., Chirikova N.K. // Plants. 2021. V. 10. № 2525. https://doi.org/10.3390/plants10112525
  9. Harmatha J., Buděšínský M., Vokáč K., Pavlik M., Grüner K., Laudová V. // Collect. Czech. Chem. Commun. 2007. V. 72. P. 334–346. https://doi.org/10.1135/cccc20070334
  10. Olennikov D.N., Chirikova N.K., Kashchenko N.I., Gornostai T.G., Selyutina I.Y., Zilfikarov I.N. // Int. J. Mol. Sci. 2017. V. 18. № 2579. https://doi.org/10.3390/ijms18122579
  11. Akabane M., Yamamoto A., Aizawa S., Taga A., Kodama S. // Analyt. Sci. 2014. V. 30. P. 739–743. https://doi.org/10.2116/analsci.30.739
  12. Olennikov D.N., Chirikova N.K. // Chem. Nat. Comp. 2019. V. 55. P. 1032–1038. https://doi.org/10.1007/s10600-019-02887-1
  13. Olennikov D.N., Chirikova N.K., Kashchenko N.I., Nikolaev V.M., Kim S.-W., Vennos C. // Front. Pharmacol. 2018. V. 9. № 756. https://doi.org/10.3389/fphar.2018.00756
  14. Sólyomváry A., Mervai Z., Molnár-Perl I., Boldizsár I. // Nat. Prod. Res. 2014. V. 28. P. 732–739. https://doi.org/10.1080/14786419.2013.879473
  15. Tadera K., Minami Y., Takamatsu K., Matsuoka T. // J. Nutr. Sci. Vitaminol. 2006. V. 52. P. 149–153. https://doi.org/10.3177/jnsv.52.149
  16. Dandekar P.D., Kotmale A.S., Chavan S.R., Kadlag P.P., Sawant S.V., Dhavale D.D., Kumar A.R. // ACS Omega. 2021. V. 6. P. 1780–1786. https://doi.org/10.1021/acsomega.0c00617
  17. Ponnusamy S., Zinjarde S., Bhargava S., Rajamohanan P.R., Ravikumar A. // Food Chem. 2012. V. 135. P. 2638–2642. https://doi.org/10.1016/j.foodchem.2012.06.110
  18. García A.L.L., Olaya M.Q.J.H., Sierra A.J.I. // Rev. Cubana Plant. Med. 2017. V. 22. P. 1–14.
  19. Cansian R.L., Vanin A.B., Orlando T., Piazza S.P., Puton B.M.S., Cardoso R.I. et al. // Braz. J. Biol. 2017. V. 77. P. 155–161. https://doi.org/10.1590/1519-6984.12215
  20. Yamasaki T., Sato M., Mori T., Mohamed A.S.A., Fujii K., Tsukioka J. // J. Nat. Toxins. 2002. V. 11. P. 165–171.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (169KB)
3.

Baixar (147KB)
4.

Baixar (175KB)

Declaração de direitos autorais © Д.Н. Оленников, Н.И. Кащенко, 2023