Probiotic Properties of Saccharomycetes (Review)
- Authors: Ryabtsevа S.A.1, Khramtsov A.G.1, Sazanova S.N.1, Budkevich R.O.1, Fedortsov N.M.1, Veziryan A.A.1
-
Affiliations:
- North-Caucasus Federal University
- Issue: Vol 59, No 2 (2023)
- Pages: 120-132
- Section: Articles
- URL: https://vestnikugrasu.org/0555-1099/article/view/674629
- DOI: https://doi.org/10.31857/S0555109923010087
- EDN: https://elibrary.ru/DRZXFP
- ID: 674629
Cite item
Abstract
The purpose of the review is to summarize and analyze information on the molecular genetic basis and methods for studying the probiotic activity of Saccharomycetes fungi, the mechanisms of their physiological action, and their application in biotechnology. The relevance of research in this area is confirmed by the dynamics of the growth of publications. The effectiveness of Saccharomyces boulardii in the treatment and prevention of diarrhea of various etiologies, relapses of C. difficile infection, side effects of H. pylori infection therapy has been established with a high level of evidence. Genetic, cytological, cultural and biochemical features of S. boulardii determine their probiotic activity. Other Saccharomyces strains with probiotic potential are most often isolated from national fermented plant and dairy products. A unified methodology for studying the probiotic properties of yeast has not yet been created; clinical trials involving people are needed to confirm their status. Promising probiotics are strains of the species S. cerevisiae and K. marxianus, which have an international safety status. Possible mechanisms of physiological action of Saccharomycetes include antimicrobial and antitoxic, trophic, antisecretory and anti-inflammatory effects. Some of the mechanisms of yeast probiotic action differ from those of bacteria, and not all of them are yet understood. Saccharomycetes probiotics can be used to improve the biological value, quality and safety of food products.
About the authors
S. A. Ryabtsevа
North-Caucasus Federal University
Author for correspondence.
Email: ryabtseva07@mail.ru
Russia, 355017, Stavropol
A. G. Khramtsov
North-Caucasus Federal University
Email: ryabtseva07@mail.ru
Russia, 355017, Stavropol
S. N. Sazanova
North-Caucasus Federal University
Email: ryabtseva07@mail.ru
Russia, 355017, Stavropol
R. O. Budkevich
North-Caucasus Federal University
Email: ryabtseva07@mail.ru
Russia, 355017, Stavropol
N. M. Fedortsov
North-Caucasus Federal University
Email: ryabtseva07@mail.ru
Russia, 355017, Stavropol
A. A. Veziryan
North-Caucasus Federal University
Email: ryabtseva07@mail.ru
Russia, 355017, Stavropol
References
- Nielsen J. // Biotechnol J. 2019. V. 14. № 3. https://doi.org/10.1002/biot.201800421
- Hatoum R., Labrie S., Fliss I. // Front Microbiol. 2012. V. 19. № 3. doi.org/ .2012.00421https://doi.org/10.3389/fmicb
- Staniszewski A., Kordowska-Wiater M. // Foods. 2021. V. 10. № 6. https://doi.org/10.3390/foods10061306
- Vemuri R., Shankar E.M., Chieppa M., Eri R., Kavanagh K. // Microorganisms. 2020. V. 8. № 4. https://doi.org/10.3390/microorganisms8040483
- Nash A.K., Auchtung T.A., Wong M.C., Smith D.P., Gesell J.R., Ross M.C., et al. // Microbiome. 2017. V. 5. № 1. https://doi.org/10.1186/s40168-017-0373-4
- Hill C., Guarner F., Reid G., Gibson G.R. et al. // Nature Reviews Gastroenterology & Hepatology. 2014. V. 11. P. 506–514.
- Рябцева С.А., Сазанова С.Н., Дубинина А.А. // Современная наука и инновации. 2019. № 2(26). С. 138–151.
- Pais P., Almeida V., Yılmaz M., Teixeira M.C. // J Fungi (Basel). 2020. V. 6. № 2. P. 78. https://doi.org/10.3390/jof6020078
- Lazo-Vélez M.A., Serna-Saldívar S.O., Rosales-Medina M.F., Tinoco-Alvear M., Briones-García M. // A review. J. Appl. Microbiol. 2018. V. 125. P. 943–951.
- Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 5: suitability of taxonomic units notified to EFSA until September 2016 // EFSA Journal. 2017. V. 15. P. 4366.https://doi.org/10.2903/j.efsa.2017.4663
- McFarland L.V. // World J Gastroenterol. 2010. V. 16. № 18. P. 2202–2222.https://doi.org/10.3748/wjg.v16.i18.2202
- McFarland L., Bernasconi P. // Microbial Ecology in Health and Disease. 1993. V. 6. P. 157–171.
- McCullough M.J., Clemons K.V., McCusker J.H., Stevens D.A. // J. Clin. Microbiol. 1998. V. 36. P. 2613–2617. https://doi.org/10.1128/JCM.36.9.2613-2617.1998
- Czerucka D., Piche T., Rampal P. // Aliment. Pharmacol. Ther. 2007. V. 26. P. 767–778.
- McFarland L.V. // A Meta-analysis and Systematic Review. Antibiotics (Basel). 2015. V. 13. P. 160–78.
- Szajewska H., Horvath A., Kołodziej M. // Aliment Pharmacol Ther. 2015. V. 41. № 12. P.1237–45.
- Szajewska H., Kołodziej M. // Aliment Pharmacol Ther. 2015. V. 42. № 7. P. 793–801.
- Moré M.I., Vandenplas Y. // Clin Med Insights Gastroenterol. 2018. V. 11.https://doi.org/10.1177/1179552217752679
- Kaźmierczak-Siedlecka K., Ruszkowski J., Fic M., Folwarski M., Makarewicz W. // Curr. Microbiol. 2020. V. 77. № 9. P. 1987–1996.https://doi.org/10.1007/s00284-020-02053-9
- Li Z., Zhu G., Li C., Lai H., Liu X., Zhang L. // Nutrients. 2021. V. 13. № 12. P. 4319.https://doi.org/10.3390/nu13124319
- Кайбышева В.О., Никонов Е.Л. Пробиотики с позиции доказательной медицины // Доказательная гастроэнтерология. 2019. № 8(3). С. 45–54. doi.org/https://doi.org/10.17116/dokgastro2019803145
- Mitterdorfer G., Mayer H.K., Kneifel W., Viernstein H. // J. Appl. Microbiol. 2002. V. 93. P. 521–530.
- Fietto J.L., Araújo R.S., Valadão F.N., Fietto L.G., Brandão R.L., Neves M.J. et al. // Can. J. Microbiol. 2004. V. 50. P. 615–621.
- Edwards-Ingram L., Gitsham P., Burton N., Warhurst G., Clarke I., Hoyle D. et al. // Appl. Environ. Microbiol. 2007. V. 73. P. 2458–2467.
- Liu Y., Wu Q., Wu X., Algharib S. A., Gong F., Hu J. et al. // Int. J. Biol. Macromol. 2021. V. 173. P. 445–456. https://doi.org/10.1016/j.ijbiomac.2021.01.125
- Fortin O., Aguilar-Uscanga B., Vu K.D., Salmieri S., Lacroix M. // Nutr. Cancer. 2018. V. 70. № 1. P. 83–96. https://doi.org/10.1080/01635581.2018.1380204
- Rajkowska K., Kunicka–Styczyńska A. // Biotechnology & Biotechnological Equipment. 2009. V. 23. P. 662–665.
- Fernández-Pacheco P., Pintado C., Briones Pérez A., Arévalo-Villena M. J. // Fungi (Basel). 2021. V. 7. № 3. P. 177. https://doi.org/10.3390/jof7030177
- Datta S., Timson D.J., Annapure U.S. // J Sci Food Agric. 2017. V. 97. № 9. P. 3039–3049.https://doi.org/10.1002/jsfa.8147
- Offei B., Vandecruys P., De Graeve S., Foulquié-Moreno M.R., Thevelein J.M. // Genome Res. 2019. V. 9. P. 1478–1494. https://doi.org/10.1101/gr.243147.118
- Khatri I., Tomar R., Ganesan K., Prasad G.S., Subramanian S. // Sci. Rep. 2017. V. 7. № 1. P. 371–385.
- Pais P., Oliveira J., Almeida V., Yilmaz M., Monteiro P.T., Teixeira M.C. // Genomics. 2021. V. 113. P. 530–539.
- Fernandez-Pacheco P., Arévalo-Villena M., Rosa I.Z., Briones Pérez A. // Food Res. Int. 2018. V. 112. P. 143–151. https://doi.org/10.1016/j.foodres.2018.06.008
- Fernández-Pacheco P., Arévalo-Villena M., Bevilacqua A., Corbo M.R., Briones A. // LWT Food Sci Technol. 2018. V. 97. P. 332–340.https://doi.org/10.1016/j.lwt.2018
- Fernández-Pacheco P., Ramos Monge I.M., Fernández-González M., Poveda Colado J.M., Arévalo-Villena M. // Front. Nutr. 2021. V. 8.https://doi.org/10.3389/fnut.2021.659328
- Fernández-Pacheco P., García-Béjar B., Jiménez-Del Castillo M., Carreño-Domínguez J., Briones Pérez A., Arévalo-Villena M.J. // Sci. Food Agric. 2021. V. 101. № 6. P. 2201–2209. https://doi.org/10.1002/jsfa.10839
- Fernández-Pacheco P., Rosa I.Z., Arévalo-Villena M., Gomes E., Pérez A.B. // Braz. J. Microbiol. 2021. V. 52. № 4. P. 2129–2144. https://doi.org/10.1007/s42770-021-00541-z
- Simões L.A., Cristina de Souza A., Ferreira I., Melo D.S., Lopes L.A.A., Magnani M. et al. // J. Appl. Microbiol. 2021. V. 131. № 4. P. 1983–1997. https://doi.org/10.1111/jam.15065
- Reyes-Becerril M., Alamillo E., Angulo C. // Probiotics Antimicrob Proteins. 2021. V. 13. № 5. P. 1292–1305. https://doi.org/10.1007/s12602-021-09769-5
- Palla M., Blandino M., Grassi A., Giordano D., Sgherri C., Quartacci M.F. et al. // Sci. Rep. 2020. V. 10. P. 12856.
- Palla M., Conte G., Grassi A., Esin S., Serra A., Mele M. et al. // Foods. 2021. V. 10. № 9. P. 2087.
- Okada Y., Tsuzuki Y., Sugihara N., Nishii S., Shibuya N., Mizoguchi A. et al. // J. Gastroenterol. 2021. V. 56. № 9. P. 829–842. https://doi.org/10.1007/s00535-021-01804-0
- Chelliah R., Kim E.J., Daliri E.B., Antony U., Oh D.H. // Foods. 2021. V. 10. № 6. P. 1428. https://doi.org/10.3390/foods10061428
- Pereira R.P., Jadhav R, Baghela A., Barretto D.A. // Probiotics Antimicrob Proteins. 2021. V. 13. № 3. P. 796–808. https://doi.org/10.1007/s12602-020-09734-8
- Zahoor F., Sooklim C., Songdech P., Duangpakdee O., Soontorngun N.S // Metabolites. 2021. V. 11. № 5. P. 312. https://doi.org/10.3390/metabo11050312
- Li S., Zhang Y., Yin P., Zhang K., Liu Y., Gao Y. et al. // J Dairy Sci. 2021. V. 104. № 6. P. 6559–6576. https://doi.org/10.3168/jds.2020-19845
- Hsiung R.T., Fang W.T., LePage B.A., Hsu S.A., Hsu C.H., Chou J.Y. // Probiotics Antimicrob Proteins. 2021. V. 13. № 1. P. 113–124. https://doi.org/10.1007/s12602-020-09661-8
- Nag D., Goel A., Padwad Y., Singh D. // Probiotics Antimicrob. Proteins. 2022. V. 18. https://doi.org/10.1007/s12602-021-09874-5
- Youn H.Y., Kim D.H., Kim H.J., Jang Y.S., Song K.Y., Bae D. et al // Probiotics Antimicrob. Proteins. 2022. https://doi.org/10.1007/s12602-021-09872-7
- Parafati L., Palmeri R., Pitino I., Restuccia C. // Food Microbiol. 2022. V. 103. P. 103950. https://doi.org/10.1016/j.fm.2021.103950
- Czerucka D., Rampal P. // World J. Gastroenterol. 2019. V. 25. № 18. P. 2188–2203. https://doi.org/10.3748/wjg.v25.i18.2188
- Наумова Е.С., Садыкова А.Ж., Михайлова Ю.В., Наумов Г.И. Полиморфизм лактозных генов молочных дрожжей Kluyveromyces marxianus, потенциальных пробиотических микроорганизмов. // Микробиология. 2017. Т. 86. № 3. С. 335–343.
- Голубев В.И. Микоцинотипирование // Микология и фитопатология. 2012. Т. 46. № 1. С. 3–13.
- Nascimento B.L., Delabeneta M.F., Rosseto L.R.B., Junges D.S.B., Paris A.P., Persel C. et al. // FEMS Yeast Research. 2020. V. 20. № 3.https://doi.org/10.1093/femsyr/foaa016
- Roussel C., De Paepe K., Galia W., de Bodt J., Chalancon S., Denis S. et al. // Gut Microbes. 2021. V. 13. № 1. P. 1953246. https://doi.org/10.1080/19490976.2021.1953246
- Gut A.M., Vasiljevic T., Yeager T., Donkor O.N. // Saudi J. Biol. Sci. 2022. V. 29. № 1. P. 550–563. https://doi.org/10.1016/j.sjbs.2021.09.025
- Ansari F., Alian Samakkhah S., Bahadori A., Jafari S.M., Ziaee M., Khodayari M.T. et al. // Crit. Rev. Food Sci. Nutr. 2021. V. 13. P. 1–29. https://doi.org/10.1080/10408398.2021.1949577
- Swieca M., Kordowska-Wiater M., Pytka M., Gawlik-Dziki U., Seczyk L., Złotek U. et al. // LWT. 2019. V. 100. P. 220–226.
- Chan M.Z.A., Toh M., Liu S.Q. // Int. J. Food Microbiol. 2021. V. 4. P. 350–109229. https://doi.org/10.1016/j.ijfoodmicro.2021.109229
- Polanowska K., Varghese R., Kuligowski M., Majcher M. // J. Sci. Food Agric. 2021. V. 101. № 13. P. 5487–5497. https://doi.org/10.1002/jsfa.11197
- Senkarcinova B., Graça Dias I.A., Nespor J., Branyik T. // LWT. 2019. V. 100. P. 362–367.
- Sarwar A., Tariq A., Al-Dalali S., Zhao X., Zhang J., Jalal ud Din et al. // Foods. 2019. V. 8. P. 468.
- Andrade R.P.,Oliveira D.R., Alencar Lopes A.C., Abreu L.R., Duarte W.F. // Food Research International. 2019. V. 125. № 2019 https://doi.org/10.1016/j.foodres.2019.108620
- Poloni V.L., Bainotti M.B., Vergara L.D., Escobar F., Montenegro M., Cavaglieri L. // Curr. Res. Food Sci. 2021. V. 4. P. 132–140. https://doi.org/10.1016/j.crfs.2021.02.006
