Caffeic Acid in Various Formulations as a Growth and Resistance Regulator of Potato Microclones in in vitro Culture

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The article discusses the influence of caffeic acid (CA), its mix with chitosan (CHT + CA) and chitosan-based conjugate (CHT-CA) on growth and proline content of microclone potato plants (Solanum tuberosum L.) in in vitro culture under optimal conditions and under prolonged osmotic stress caused by polyethylene glycol. Under optimal conditions CHT-CA and CA, acting as moderate strength stressors, accelerate the growth and development of potato microclones and increase the proline accumulation in the stems. Under osmotic stress CA and CHT-CA promote the resistance of potato microclones and maintain their active growth. And such effect persists during the reparation period. The mechanical mix CHT + CA causes inhibition of microclonal plants’ growth and development accompanied by a significant accumulation of proline which is aggravated under stress.

Sobre autores

N. Yalouskaya

Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus

Autor responsável pela correspondência
Email: yalouskaya92@mail.ru
Republic of Belarus, 220072, Minsk

J. Kalatskaja

Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus

Email: yalouskaya92@mail.ru
Republic of Belarus, 220072, Minsk

N. Laman

Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus

Email: yalouskaya92@mail.ru
Republic of Belarus, 220072, Minsk

V. Nikalaichuk

Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus

Email: yalouskaya92@mail.ru
Republic of Belarus, 220141, Minsk

A. Kraskouski

Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus

Email: yalouskaya92@mail.ru
Republic of Belarus, 220141, Minsk

K. Hileuskaya

Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus

Email: yalouskaya92@mail.ru
Republic of Belarus, 220141, Minsk

Bibliografia

  1. Batish D.R., Singh H.P., Kaur Sh., Kohli R.K., Yadav S.S. // J. Plant Physiol. 2008. V. 165. № 3. P. 297–305.
  2. Li H.H., Inoue M., Nishimura H., Mizutani J., Tsuzuki E. // J. Chem. Ecol. 1993. V. 19. № 8. P. 1775–1787.
  3. Agatemor Ch., Ibsen K.N., Tanner E.E.L., Mitragotry S. // Bioeng. Trans. Med. 2018. V. 3. № 1. P. 7–25.
  4. Asghari-Zakaria R., Maleki-Zanjani B., Sedghi E. // Plant Soil Environ. 2009. V. 55. № 6. P. 252–256.
  5. Khayrova A., Khayrova A., Lopatin S., Varlamov V. // Int. J. Sci. 2019. V. 8. P. 81‒86.
  6. Thamilarasan V., Sethuraman V., Gopinath K., Balalakshmi C., Govindarajan M., Mothana R.A. et al // J. Clust. Sci. 2018. V. 29. P. 375–384.
  7. Salachna P., Byczyńska A., Jeziorska I., Udycz E. // World Sci. News. 2017. V. 62. P. 111–123.
  8. Faqir Y., Ma J., Chai Y. // Plant Soil Environ. 2021. V. 12. P. 679–699.
  9. Chirkov S.N. // Appl. Biochem. Microbiol. 2002. V. 38. № 1. P. 1–8.
  10. El Hadrami A., Adam L.R., El Hadrami I., Daayf F. // Mar. Drugs. 2010. V. 4. № 4. P. 968–987.
  11. Zayed M., Elkafafi S., Zedan A., Dawoud S. // J. Plant Prod. 2017. V. 8. № 5. P. 577–585.
  12. Hassan F.A.S., Ali E., Gaber A., Fetouh M.I., Mazrou R. // Plant Physiol. Biochem. 2021. V. 162. P. 291–300.
  13. Варламов В.П., Ильина А.В., Шагдарова Б.Ц., Луньков А.П., Мысякина И.С. // Успехи биологической химии. 2020. Т. 60. С. 317–368.
  14. Ullah N., Basit A., Ahmad I., Ullah I., Shah S.T., Mohamed H.I. et al // Bull Natl Res Cent. 2020. V. 44. № 1. https://doi.org/10.1186/s42269-020-00435-4
  15. Sun Y., Ji X., Cui J., Mi Y., Zhang J., Guo Zh. // Mar. Drugs. 2022. V. 20. № 8. P. 489.https://doi.org/10.3390/md20080489
  16. Nagy V., Sahariah P., Hjalmarsdottir M.A., Masson M. // Carbohydr. Polym. 2022. V. 277.https://doi.org/10.1016/j.carbpol.2021.118896
  17. Недведь Е.Л., Калацкая Ж.Н., Овчинников И.А., Рыбинская Е.И., Красковский А.Н., Николайчук В.В. и др. // Прикл. биохимия и микробиология. 2022. Т. 58. № 1. С. 74–82.
  18. Kraskouski A., Nikalaichuk V., Kulikouskaya V., Hileuskaya K., Kalatskaja J., Nedved H. et al // Soft Mater. 2021. V. 19. № 4. P. 495–502.
  19. Гилевская А.Е., Николайчук В.В., Красковский А.Н., Гилевская К.С., Куликовская В.И., Калацкая Ж.Н. и др. // Прикл. биохимия и микробиология. 2022. Т. 58. № 2. С. 195–205.
  20. Шихалеева Г.Н., Будняк А.К., Шихалеев И.И., Иващенко О.Л. // Вестник ХНУ. Сер. Биология. 2014. Т. 21. № 1112. С. 168–172.
  21. Колупаев Ю.Е., Вайнер А.А., Ястреб Т.О. // Вестник ХНУ. Серiя Бiологiя. 2014. Вып. 2. № 32. С. 6–22.
  22. Mishra S., Dubey R.S. // J. Plant Physiol. 2006. V. 163. P. 927–936.
  23. Ozdemir F., Bor M., Demiral T., Turkan I. // Plant Growth Regul. 2004. V. 42. P. 203–211.
  24. Muley A.B., Shingote P.R., Patil A.P., Dalvi S.G., Suprasanna P. // Carbohydr. Polym. 2019. V. 210. P. 289–301.
  25. Пузина Т.И., Макеева И.Ю. // Агрохимия. 2015. № 6. С. 53–58.
  26. Попова Э.В., Домнина Н.С., Коваленко Н.М., Борисова Е.А., Колесников Л.Е., Тютерев С.Л. // Вестник защиты растений. 2017. Т. 3. № 93. С. 28–33.
  27. Acosta-Motos J.R., Ortuno M.F., Bernal-Vicente A., Diaz-Vivancos P., Sanchez-Blanco M.J., Hernandez J.A. // Agronomy. 2017. V. 7. 18 p.
  28. Колупаев Ю.Е., Карпец Ю.В., Кабашникова Л.Ф. // Прикл. биохимия и микробиология. 2019. Т. 55. № 5. С. 419–440.
  29. Rivero R.M., Ruiz J.M., Garcia P.C., Lopez-Lcfebre L.R., Sanchez E., Romero L. // Plant Sci. 2001. V. 160. P. 315–321.
  30. Siquet C., Paiva-Martins F., Lima J.L., Reis S., Borges F. // Free Radic. Res. 2006. V. 40. P. 433–442.
  31. Булдаков С.А., Щегорец О.В. // Картофель и овощи. 2014. № 2. С. 25–27.
  32. Шульгина А.А., Калашникова Е.А. // Вопросы биологической медицинской и фармацевтической химии. 2017. Т. 20. № 6. С. 46–50.
  33. Budna G.A., Lima R.B., Zanardo D.Y., dos Santos W.D., Ferrarese M., Ferrarese-Filho O. // J. Plant Physiol. 2011. V. 168. № 14. P. 1627–1633.
  34. Riseh R.S., Hassanisaadi M., Vatankhah M., Babaki S.A., Barka E.A. // Int. J. Biol. Macromol. 2022. V. 220. P. 998–1009.
  35. Chakraborty M., Hasamezzaman M., Rahman M., Khan M.A.R., Bhowmik P., Mahmud N.U. et al. // Agriculture. 2020. V. 10. № 12. 624. https://doi.org/10.3390/agriculture10120624
  36. Тютерев С.Л. // Вестник защиты растений. 2015. № 1. Вып. 83. С. 3–13.
  37. Nikalaichuk V., Hileuskaya K., Kraskouski A., Kulikouskaya V., Nedved H., Kalatskaja J. et al .// J. Appl. Polym. 2021. V. 139. № 14.https://doi.org/10.1002/app.51884

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (345KB)
3.

Baixar (453KB)
4.

Baixar (280KB)
5.

Baixar (310KB)
6.

Baixar (419KB)

Declaração de direitos autorais © Н.А. Еловская, Ж.Н. Калацкая, Н.А. Ламан, В.В. Николайчук, А.Н. Красковский, К.С. Гилевская, 2023