New eGFP Mutant with Intact C- and N-Termini and Affinity for Ni2+

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The green fluorescent protein GFP has long been used in research practice as a molecular tool. It is often used as a fusion partner. To create fusion constructs, target molecules are attached to the N- or C-terminus of GFP. On the other hand, the N- or C-termini of GFP required to create fusion constructs are also used to attach affinity tags that is greatly facilitating purification. Simultaneous introduction of affinity tag and GFP to both or the same end of GFP can create steric hindrances both in the process of biosynthetic folding of the construct and in its affinity purification. This work is devoted to the production of GFP with a His-tag introduced into the polypeptide chain. This work resulted in eGFP157_7H protein with an embedded His-tag and free N- and C-termini to create fusion proteins. The added His-tag will allow purification of the construct with GFP by metal-chelated affinity chromatography under native conditions. The resulting eGFP157_7H variant retained the original fluorescent properties completely similar to those of wild-type eGFP.

Sobre autores

A. Tarabarova

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: tarabarovan@yandex.ru
Russia, 119071, Moscow

M. Yurkova

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: tarabarovan@yandex.ru
Russia, 119071, Moscow

A. Fedorov

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: tarabarovan@yandex.ru
Russia, 119071, Moscow

Bibliografia

  1. Heger T., Stock C., Laursen M. J., Habeck M., Dieudonné T., Nissen P. In: Methods in Molecular Biology. Advanced Methods in Structural Biology. / Ed. Â. Sousa, L. Passarinha. N.Y.: Springer US, 2023. P. 171–186.
  2. Le Bail A., Schulmeister S., Perroud P.-F., Ntefidou M., Rensing S.A., Kost B. // Front. Plant Sci. 2019. V. 10. P. 456.
  3. Xiang X., Li C., Chen X., Dou H., Li Y., Zhang X., Luo Y., Xiang X. // Methods in Mol. Biol. 2019. P. 255–269. https://doi.org/10.1007/978-1-4939-9170-9_16
  4. Nakamura S., Fu N., Kondo K., Wakabayashi K.-I., Hisabori T., Sugiura K. // J. Biol. Chem. 2021. V. 296. P. 100134. https://doi.org/10.1074/jbc.RA120.016847
  5. Barnard E., Timson D.J. In: Methods in Molecular Biology. Molecular and Cell Biology Methods for Fungi. / Ed. A. Sharon. Totowa. N.J.: Humana Press, 2010. V. 638. P. 303–317. https://doi.org/10.1007/978-1-60761-611-5_23
  6. Pedelacq J.-D., Waldo G.S., Cabantous S. // Methods Mol. Biol. 2019. V. 2025. P. 423–437.
  7. Alam S.R., Mahadevan M.S., Periasamy A. // Current Protocols. 2023. V. 3. P. e689. https://doi.org/10.1002/cpz1.689
  8. Nilsson J., Ståhl S., Lundeberg J., Uhlén M., Nygren P.-åke // Protein Exp. Purif. 1997. V. 11. P. 1–16.
  9. Booth W.T., Schlachter C.R., Pote S., Ussin N., Mank N.J., Klapper V. et al. // ACS Omega. 2018. V. 3. P. 760–768.
  10. Hochuli E. // J. Chromatogr. 1988. V. 444. P. 293–302.
  11. Knecht S., Ricklin D., Eberle A. N., Ernst B. // J. Mol. Recognit. 2009. V. 22. P. 270–279. https://doi.org/10.1002/jmr.941
  12. Chung Y.H., Volckaert B.A., Steinmetz N.F. // Bioconjugate Chem. 2023. V. 34. P. 269–278.
  13. Hu Y.-C., Tsai C.-T., Chung Y.-C., Lu J.-T., Hsu J.T.-A. // Enzyme and Microb. Technol. 2003. V. 33. P. 445–452.
  14. Jiang C., Wechuck J.B., Goins W.F., Krisky D.M., Wolfe D., Ataai M.M., Glorioso J.C. // J. Virology. 2004. V. 78. № 17. P. 8994–9006. https://doi.org/10.1128/JVI.78.17.8994-9006.2004
  15. Biswal J.K., Bisht P., Subramaniam S., Ranjan R., Sharma G.K., Pattnaik B. // Biologicals. 2015. V. 43. C. 390–398.
  16. Ye K., Jin S., Ataai M.M., Schultz J.S., Ibeh J. // J. Virology. 2004. V. 78. P. 9820–9827.
  17. Opitz L., Hohlweg J., Reichl U., Wolff M.W. // J. Virol. Methods. 2009. V. 161. P. 312–316.
  18. Cheeks M.C., Kamal N., Sorrell A., Darling D., Farzaneh F., Slater N.K.H. // J. Chromatogr. A. 2009. V. 1216. P. 2705–2711.
  19. Fan J. Xiao P., Kong D., Liu X., Meng L., An T. et al. // Vaccines. 2022. V. 10. P. 170. https://doi.org/10.3390/vaccines10020170
  20. Paul D.M., Beuron F., Sessions R.B., Brancaccio A., Bigotti M.G. // Sci Rep. V. 6. P. 20696. https://doi.org/10.1038/srep20696
  21. Edelheit O., Hanukoglu A., Hanukoglu I. // BMC Biotechnol. 2009. V. 9. P. 61. https://doi.org/10.1186/1472-6750-9-61
  22. Miles A.J., Ramalli S.G., Wallace B.A. // Protein Sci. 2022. V. 31. P. 37–46.
  23. Drew E.D., Janes R.W. // Nucleic Acids Res. 2020. V. 48. P. W17–W24. https://doi.org/10.1093/nar/gkaa296
  24. Mamontova A.V., Shakhov A.M., Lukyanov K.A., Bogdanov A.M // Biomolecules. 2020. V. 10. № 11. P. 1547. https://doi.org/10.3390/biom10111547
  25. Arpino J.A.J., Reddington S.C., Halliwell L.M., Rizkallah P.J., Jones D.D. // Structure. 2014. V. 22. P. 889–898.
  26. Chiang C.-F., Okou D.T., Griffin T.B., Verret C.R., Williams M.N.V. // Arch. Biochem. Biophys. 2001. V. 394. P. 229–235.
  27. Leibly D.J., Arbing A.M., Pashkov I., DeVore N., Waldo G.S., Terwilliger TC., Yeates T.O. // Structure. 2015. V. 23. P. 1754–1768.
  28. Williams D.E., Williams D.E., Dolgopolova E.A., Pellechia P.J., Palukoshka A., Wilson T.J. et al. // J. Am. Chem. Soc. 2015. V. 137. P. 2223–2226.
  29. Zimmer M. // Chem. Rev. 2002. V. 102. P. 759–782.
  30. Hovmöller S., Zhou T., Ohlson T. // Acta Cryst D. 2002. V. 58. P. 768–776.
  31. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. // J. Comput. Chem. 2004. V. 25. P. 1605–1612.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (492KB)
3.

Baixar (734KB)
4.

Baixar (261KB)
5.

Baixar (150KB)
6.

Baixar (75KB)
7.

Baixar (149KB)

Declaração de direitos autorais © А.Г. Тарабарова, М.С. Юркова, А.Н. Федоров, 2023