Effect of chitosan conjugates with oxycinnamic acids and Bacillus subtilis bacteria on the activity of protective proteins and resistance of potato plants to Phytophthora infestans
- 作者: Yarullina L.G.1,2, Burkhanova G.F.1, Tsvetkov V.O.2, Cherepanova E.A.1, Sorokan A.V.1, Zaikina Е.A.1, Mardanshin I.S.3, Fatkullin I.Y.1, Maksimov I.V.1, Kalatskaja J.N.4, Yalouskaya N.A.4, Rybinskaya E.I.4
-
隶属关系:
- Institute of Biochemistry and Genetics — a separate structural unit of the Ufa Federal Research Center of the Russian Academy of Science
- Ufa University of Science and Technology
- Bashkir Research Institute of Agriculture — a separate structural unit of the Ufa Federal Research Center of the Russian Academy of Sciences
- Institute of Experimental Botany, V. F. Kuprevich National Academy of Sciences of Belarus
- 期: 卷 60, 编号 2 (2024)
- 页面: 183-192
- 栏目: Articles
- URL: https://vestnikugrasu.org/0555-1099/article/view/674567
- DOI: https://doi.org/10.31857/S0555109924020088
- EDN: https://elibrary.ru/FZZZBV
- ID: 674567
如何引用文章
详细
The effect of chitosan conjugates with caffeic (ChCA) and ferulic (ChFA) acids in combination with Bacillus subtilis bacteria on the transcriptional activity of PR protein genes and proteome changes in potato plants during infection with Phytophthora infestans (Mont.) de Bary was studied. Plants grown from mini tubers of the Luck variety were sprayed with solutions of ChCA and ChFA, suspension of B. subtilis bacteria strains 26D and 11 VM, composites of ChCA of ChFA together with bacteria. 3 days after treatment, some of the plants were infected with P. infestans. A decrease in the degree of development of the pathogen of late blight on potato leaves in all treatment options was revealed. The maximum protective effect was manifested when plants were treated with bacteria B. subtilis strain 26D in combination with conjugates of chitosan and oxycinnamic acids. The mechanisms of increasing the resistance of potato plants to P. infestans were associated with the activation of transcriptional activity of genes encoding the main protective protein (PR‑1), chitinase (PR‑3), thaumatin-like protein (PR‑5), protease inhibitor (PR‑6), peroxidase (PR‑9), ribonuclease (PR‑10). The revealed activation of the expression of marker genes of systemic acquired resistance and induced systemic resistance under the influence of joint treatment of plants with B. subtilis and chitin conjugates with oxycinnamic acids indicate the synergistic development of protective reactions in potato plants in this variant. By the method of two-dimensional electrophoresis of S. tuberosum leaf proteins followed by MALDI-TOF analysis, 12 proteins were identified, the presence of which in the leaves differed depending on the variant of the experiment. In all treatment variants, suppression of serine-threonine protein phosphatase activity was observed, reflecting the development of the hypersensitivity reaction. Different variants of the experiment formed weakly expressed clusters, which indicates multiple mechanisms of regulation of the synthesis of protective proteins involved in the reaction to treatment with bacteria, chitosan conjugates and infection with P. infestans.
全文:

作者简介
L. Yarullina
Institute of Biochemistry and Genetics — a separate structural unit of the Ufa Federal Research Center of the Russian Academy of Science; Ufa University of Science and Technology
Email: yarullina@bk.ru
俄罗斯联邦, 450054, Ufa; 450076, Ufa
G. Burkhanova
Institute of Biochemistry and Genetics — a separate structural unit of the Ufa Federal Research Center of the Russian Academy of Science
Email: yarullina@bk.ru
俄罗斯联邦, 450054, Ufa
V. Tsvetkov
Ufa University of Science and Technology
Email: yarullina@bk.ru
俄罗斯联邦, 450076, Ufa
E. Cherepanova
Institute of Biochemistry and Genetics — a separate structural unit of the Ufa Federal Research Center of the Russian Academy of Science
Email: yarullina@bk.ru
俄罗斯联邦, 450054, Ufa
A. Sorokan
Institute of Biochemistry and Genetics — a separate structural unit of the Ufa Federal Research Center of the Russian Academy of Science
Email: yarullina@bk.ru
俄罗斯联邦, 450054, Ufa
Е. Zaikina
Institute of Biochemistry and Genetics — a separate structural unit of the Ufa Federal Research Center of the Russian Academy of Science
Email: yarullina@bk.ru
俄罗斯联邦, 450054, Ufa
I. Mardanshin
Bashkir Research Institute of Agriculture — a separate structural unit of the Ufa Federal Research Center of the Russian Academy of Sciences
Email: yarullina@bk.ru
俄罗斯联邦, 450054, Ufa
I. Fatkullin
Institute of Biochemistry and Genetics — a separate structural unit of the Ufa Federal Research Center of the Russian Academy of Science
Email: yarullina@bk.ru
俄罗斯联邦, 450054, Ufa
I. Maksimov
Institute of Biochemistry and Genetics — a separate structural unit of the Ufa Federal Research Center of the Russian Academy of Science
Email: yarullina@bk.ru
俄罗斯联邦, 450054, Ufa
J. Kalatskaja
Institute of Experimental Botany, V. F. Kuprevich National Academy of Sciences of Belarus
Email: yarullina@bk.ru
白俄罗斯, 220072, Minsk
N. Yalouskaya
Institute of Experimental Botany, V. F. Kuprevich National Academy of Sciences of Belarus
Email: yarullina@bk.ru
白俄罗斯, 220072, Minsk
E. Rybinskaya
Institute of Experimental Botany, V. F. Kuprevich National Academy of Sciences of Belarus
编辑信件的主要联系方式.
Email: yarullina@bk.ru
白俄罗斯, 220072, Minsk
参考
- Chandler D., Bailey A. S., Tatchell G. M., Davidson G., Greaves J., Grant W. P. // Philos. Trans. R Soc. Lond. B Biol. Sci. 2011. V. 366. P. 1987–1998. https://doi.org/10.1098/rstb.2010.0390
- Kocięcka J., Liberacki D. // Plants. 2021. V. 10. P. 1160. https://doi.org/10.3390/plants10061160
- Gonçalves C., Ferreira N., Lourenço L. // Polymers. 2021. V. 13. P. 2466. https://doi.org/10.3390/polym13152466
- Aranaz I., Alcántara A. R., Civera M. C., Arias C., Elorza B., Heras Caballero A., Acosta N. // Polymers. 2021. V. 13. P. 3256. https://doi.org/10.3390/polym13193256
- Новикова И. И., Попова Э. В., Краснобаева И. Л., Коваленко Н. М. // Сельскохозяйственная биология. 2021. Т. 56. № 3. С. 511–522. https://doi.org/10.15389/agrobiology.2021.3.511rus
- Kolesnikov L. E., Popova E. V., Novikova I. I., Priyatkin N. S., Arkhipov M. V., Kolesnikova Yu.R. et al. // Agricultural Biology. 2019. V. 54. № 5. P. 1024–1040. https://doi.org/10.15389/agrobiology.2019.5.1024
- Краснобаева И. Л., Коваленко Н. М., Попова Э. В. // Вестник защиты растений. 2020. T. 103. № 4. C. 233–240. https://doi.org/10.31993/2308-6459-2020-103-4-13272
- Ortiz-Rodríguez T., De La Fuente-Salcido N., Bideshi D. K., Salcedo-Hernández R., Barboza-Corona J. E. // Lett. Appl. Micro-biol. 2010. V. 51. P. 184–190.
- Saharan V., Pal A. Chitosan Based Nanomaterials in Plant Growth and Protection. New Delhi, India: Springer, 2016. P. 33–41.
- Palazzini J., Reynoso A., Yerkovich N., Zachetti V., Ramírez M., Chulze S. // Toxins. 2022. V. 14. P. 499. https://doi.org/10.3390/toxins14070499
- Ahmed A. S., Ezziyyani M., Sánchez C. P., Candela M. E. // Eur. J. Plant Pathol. 2003. V. 109. P. 633–637. https://doi.org/10.1023/A:1024734216814
- Brzezinska M.S., Kalwasińska A., Świątczak J., Żero K., Jankiewicz U. // Microb. Pathog. 2020. V. 148. P. 104462. https://doi.org/10.1016/j.micpath.2020.104462
- Rajput V. D., Harish Singh R. K., Verma K. K., Sharma L., Quiroz-Figueroa F.R., Meena M., Gour V. S., Minkina T., Sushkova S., Mandzhieva S. // Biology. 2021. V. 10. P. 267. https://doi.org/10.3390/biology10040267
- Kruger N. J. In: The Protein Protocols Handbook. Springer Protocols Handbooks / Ed. J. M. Walker, Totowa, USA: Humana Press, 2009. P. 17–24.
- Yarullina L.G., Burkhanova G. F., Cherepanova E. A., Sorokan A. V., Zaikina E. A., Tsvetkov V. O. et al. // Appl. Biochem. Microbiol. 2021. V. 57. № 6. P. 760–769. https://doi.org/10.31857/S0555109921060131
- Fedina E.O., Karimova F. G., Tarchevsky I. A., Toropygin I. Y., Khripach V. A. // Russ. J. Plant Phys. 2008. V. 55. P. 193–200. https://doi.org/10.1007/s11183–008–2005–0
- Conrath U., Beckers G. J. M., Flors V., García-Agustín P., Jakab G., Mauch F. et al. // Mol. Plant Microbe Interact. 2006. V. 19. P. 1062–1071.
- Максимов И.В., Сингх Б. П., Черепанова Е. А., Бурханова Г. Ф., Хайруллин Р. М. // Прикладная биохимия и микробиология. 2020. Т. 56. № 1. С. 19–34. https://doi.org/10.31857/S0555109920010134
- Gonzalez-Gallegos E., Laredo-Alcala E., Ascacio-Valdes J., de Rodriguez D., Hernandez-Castillo F. // American Journal of Plant Sciences. 2015. V. 6. № 11. P. 1785–1791. https://doi.org/10.4236/ajps.2015.611179
- Yu Y., Gui Y., Li Z., Jiang C., Guo J., Niu D. // Plants (Basel). 2022. V. 11. № 3. P. 386. https://doi.org/10.3390/plants11030386
- Тарчевский И. А., Егорова А. М. // Прикладная биохимия и микробиология. 2022. Т. 58. № 4. C. 315–329.
- Riseh R. S., Hassanisaadi M., Vatankhah M., Babaki S. A., Barka E. A. // Int. J. Biol. Macromol. 2022. V. 220. P. 998–1009.
- Suarez-Fernandeza M., Marhuenda-Egeac F. C., Lopez-Moyab F., Arnaod M. B., Cabrera-Escribanoe F., Nuedaf M. J. et al. // Front. Plant Sci. 2020. V. 11. P. 572087. https://doi.org/10.3389/fpls.2020.572087
- Chakraborty M., Hasamezzaman M., Rahman M., Khan M. A.R., Bhowmik P., Mahmud N. U. et al. // Agriculture. 2020. V. 10. № 12. P. 624. https://doi.org/10.3390/agriculture10120624
- Fabro G., Kovács I., Pavet V., Szabodos L., Alvarez M. E. // Mol. Plant Microb. Intrract. 2004. V. 17. № 4. P. 343–350.
- Bordiec S., Paquis S., Lacroix H., Dhondt S., Barka E., Kauffmann A. et al. // J. Exp. Botany. 2011. V. 62. P. 595–603. https://doi.org/10.1093/jxb/erq291
- Pfannschmidt T., Brautigam K., Wagner R., Dietzel L., Schroter Y., Steiner S., Nykytenko A. // Ann. Bot. 2009. V. 103. P. 599–607. https://doi.org/10.1093/aob/mcn081
- Gagné-Bourque F., Mayer B. F. // PLoS ONE. 2015. V. 10. № 6. Р. e0130456. https://doi.org/10.1371/journal.pone.0130456
- Veselova S. V., Nuzhnaya T. V., Maksimov I. V. In: Jasmonic Acid: Biosynthesis, Functions and Role in Plant Development, Series Plant Science Research and Practices / Ed. L. Morrison. USA: Nova Sci. Publishers, 2015. P. 33–66.
- Glazebrook J. // Annu. Rev. Phytopathol. 2005. V. 43. P. 205. https://doi.org/10.1146/annurev.phyto.43.040204.135923
- Gimenez-Ibanez S., Solano R. // Front. Plant Sci. 2013. V. 4. P. 72. https://doi.org/10.3389/fpls.2013.00072
- Chen F., Wang M., Zhang Y., Luo J., Yang X., Wang X. // World J. Microbiol. Biotechnol. 2010. V. 26. P. 675–684.
- Vasyukova N. I., Ozeretskovskaya O. L. // Russian Journal of Plant Physiology. 2009. V. 56. № 5. P. 581–590. https://doi.org/10.1134/S102144370905001X
- He M., Xu Y., Cao J. // Protoplasma. 2013. V. 250. № 1. P. 1229–1240.
- Choi D. S., Hwang I. S., Hwang B. K. // Plant Cell. 2012. V. 24. № 4. P. 1675–1690.
- Martinez-Medina A., Flors V., Heil M., Mauch-Mani B., Corné M. J., Pieterse C. M. J. // Trends Plant Sci. 2016. V. 21. P. 818–822. https://doi.org/10.1016/j.tplants.2016.07.009
- Krompholz N., Krischkowski C., Reichmann D., Garbe-Schönberg D., Mendel R., Bittner F. et al. // Chem. Res. Toxicol. 2012. V. 25. № 11. P. 2443. https://doi.org/10.1021/tx300298m
- Rixen S., Havemeyer A., Tyl-Bielicka A., Pysniak K., Gajewska M., Kulecka M. et al. // J. Biol. Chem. 2019. V. 294. RA119.007606. https://doi.org/10.1074/jbc.RA119.007606
- Plitzko B., Havemeyer A., Kunze T., Clement B. // Cell Biology. 2015. V. 290. № 16. P. 10126. https://doi.org/10.1074/jbc.M115.640052
- Máthé C., Garda T., Freytag C., M-Hamvas M. // Int. J. Mol. Sci. 2019. V. 20. P. 3028. https://doi.org/10.3390/ijms20123028
- Moreno J. I., Martın R., Castresana C. // The Plant Journal. 2005. V. 41. P. 451. https://doi.org/10.1111/j.1365–313X.2004.02311.x
补充文件
