Properties of the Flare Energy Release in Force-Free Magnetic Flux Ropes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A straight cylindrical, electrically shielded magnetic flux rope is considered as the upper part of a weakly curved magnetic loop whose footpoints are fixed in the photosphere. All parameters of the flux rope depend on one variable—the distance r  from the axis of its symmetry. As the flux rope rises into the rarefied solar atmosphere, the external pressure keeping the flux rope from lateral expansion drops continuously. At some critical value of it the longitudinal magnetic field of the flux rope vanishes on the magnetic surface where the longitudinal electric current changes its sign in accordance with the requirement for the total current to be shielded. At the same time, the azimuthal current and the force-free parameter near this surface grow indefinitely. Because of this growth, the electron drift velocity near this surface exceeds the ion-sound speed, leading to the excitation of a plasma ion-sound instability as a trigger of flare energy release. The plasma conductivity in the region of plasma turbulence drops by seven orders of magnitude. Rapid magnetic energy dissipation at the anomalous resistivity generates an inductive electric field in the plasma that exceeds considerably the Dreicer limit. This explains the efficient acceleration of particles in the region where the magnetic field weakens rapidly.

About the authors

A. A. Solov’ev

Pulkovo Astronomical Observatory, Russian Academy of Sciences

Email: solov.a.a@mail.ru
196140, St. Petersburg, Russia

E. A. Kirichek

Pulkovo Astronomical Observatory, Russian Academy of Sciences

Author for correspondence.
Email: solov.a.a@mail.ru
196140, St. Petersburg, Russia

References

  1. Абрамов-Максимов, Бакунина (V.E. Abramov-Maximov and I.A. Bakunina), Geomagnetism and Aeronomy 62, 895 (2022).
  2. Абрамов-Максимов, Бакунина (V.E. Abramov-Maximov and I.A. Bakunina), Geomagnetism and Aeronomy 60, 846 (2022).
  3. Авретт, Лоезер (E.H. Avrett and R. Loeser), Astrophys. J. Suppl. Ser. 175, 229 (2008).
  4. Арцимович Л.А., Сагдеев Р.З., Физика плазмы для физиков (М.: Атомиздат, 1979).
  5. Бакунина и др. (I.A. Bakunina, V.F. Melnikov, A.V. Shain, and V.E. Abramov-Maximov), Geomagnetism and Aeronomy 62, 1066 (2022).
  6. Брэй и др. (R.J. Bray, L.E. Cram, C.J. Durrant, and R.E. Loughhead), Plasma loops in the solar corona (Cambridge Astrophys. Ser. Cambridge Univer. Press, 1991).
  7. Ванг и др. (H. Wang, W. Cao, C. Liu, Y. Xu, R. Liu, Z. Zeng, J. Chae, and H. Ji), Witnessing magnetic twist with high-resolution observation from the 1.6-m New Solar Telescope. 2015. NATURE COMMUNICATIONS |6:7008 https://doi.org/10.1038/ncomms8008
  8. Вёльтье (L. Wöltjer), Proc. Nat. Acad. Sci. USA 44, 489 (1958a).
  9. Вёльтье (L. Wöltjer), Astrophys. J. 128, 384 (1958b).
  10. Голд, Хойл (T. Gold and F. Hoyle), MNRAS 120, 89 (1960).
  11. Дрейсер (H. Dreicer), Phys. Rev. 115, 238 (1959).
  12. Каплан С.А., Пикельнер С.Б., Цытович В.Н., Физика плазмы солнечной атмосферы (М.: Наука, 1977).
  13. Ландау, Лифшиц (L.D. Landau and E.M. Liftchitz), Course of Theoretical Physics, V. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).
  14. Лоу (B.C. Low), Astrophys. J. 197, 251 (1975).
  15. Лундквист (S. Lundquist), Ark. f. Fysik 2, 361 (1951).
  16. Люст, Шлютер (Lüst and Schlüter), Astrophys. 34, 263 (1954).
  17. Паркер (E.N. Parker), Cosmical Magnetic Fields. Part 1 (Clarendon Press, Oxford, 1979).
  18. Прист (E.R. Priest), Solar Magnetohydrodynamics (Reidel, London, 1982).
  19. Прист, Форбс (E.R. Priest and T. Forbes), Magnetic reconnection (Cambridge Univer. Press, 2000); (русский перевод Прист Е., Форбс Т., Магнитное пересоединение. М.: Физматлит, 2005).
  20. Резникова и др. (V.E. Reznikova, V.F. Melnikov, K. Shibasaki, S.P. Gorbikov, N.P. Pyatakov, I.N. Myagkova, and H. Ji), Astrophys. J. 679, 735 (2009).
  21. Соловьев, Муравский (A.A. Solov’ev and K. Murawski), Astrophys. аnd Space Sci. 350, 11 (2014).
  22. Соловьев, Киричек (A.A. Solov’ev and E.A. Kirichek), MNRAS 482, 5290 (2019).
  23. Соловьев, Киричек (A.A. Solov’ev and E.A. Kirichek), MNRAS 505, 4406 (2021).
  24. Соловьев (A.A. Solov’ev), MNRAS 515, 4981 (2022).
  25. Флейшман и др. (G.D. Fleishman, E.G. Dale, B. Chen, et al.), Science 367, 278 (2020).
  26. Флейшман и др. (G.D. Fleishman, G.M. Nita, B. Chen, et al.), Nature 606, 674 (2022).
  27. Хуанг и др. (G. Huang, V. Melnikov, H. Ji, and Z. Ning), Solar Flare Loops: Observations and Interpretations (Springer, Science Press Beijing, 2016).
  28. Шафранов В.Д., Равновесие плазмы в магнитном поле. Вопросы теории плазмы (М.: Атомиздат, 1962), Вып. 2, С. 92–132.
  29. Шлютер, Темесвари (A. Schlüter and St. Temesvary), IAU Symp. 6, 269 (1958).
  30. Шацман (E. Schatzman), IAU Symp. 22, 337 (1965).
  31. Ян и др. (X. Yan, Z. Xue, X. Cheng, et al.), Astrophys. J. 889, 106 (2020).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Pleiades Publishing, Ltd.