What Can We Learn about Compton-thin AGN Tori from Their X-Ray Spectra?1

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We have developed a Monte Carlo code for simulation of X-ray spectra of active galactic nuclei (AGN) based on a model of a clumpy obscuring torus. Using this code, we investigate the diagnostic power of X-ray spectroscopy of obscured AGN with respect to the physical properties and orientation of the torus, namely: the average column density, \(\langle N_{\textrm{H}}\rangle\), the line-of-sight column density, \(N_{\textrm{H}}\), the abundance of iron, \(A_{\textrm{Fe}}\), the clumpiness (i.e. the average number of gas clouds along the line of sight), \(\langle N\rangle\), and the viewing angle, \(\alpha\). In this first paper of a series, we consider the Compton-thin case, where both \(\langle N_{\textrm{H}}\rangle\) and \(N_{\textrm{H}}\) do not exceed \(10^{24}\) cm\({}^{-2}\). To enable quantitative comparison of the simulated spectra, we introduce five measurable spectral characteristics: the low-energy hardness ratio (ratio of the continuum fluxes in the 7–11 keV and 2–7 keV energy bands), the high-energy hardness ratio (ratio of the continuum fluxes in the 10–100 keV and 2–10 keV energy bands), the depth of the iron K absorption edge, the equivalent width of the Fe K\(\alpha\) line, and the fraction of the Fe K\(\alpha\) flux contained in the Compton shoulder. We demonstrate that by means of X-ray spectroscopy it is possible to tightly constrain \(\langle N_{\textrm{H}}\rangle\), \(N_{\textrm{H}}\) and \(A_{\textrm{Fe}}\) in the Compton-thin regime, while there is degeneracy between clumpiness and viewing direction.

About the authors

F. Melazzini

Space Research Institute, Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: sazonov@cosmos.ru
Russia, Moscow; Russia, Dolgoprudny

S. Sazonov

Space Research Institute, Russian Academy of Sciences

Author for correspondence.
Email: sazonov@cosmos.ru
Russia, Moscow

References

  1. R. Antonucci, Ann. Rev. Astron. Astrophys. 31, 473 (1993).
  2. J. Buchner, M. Brightman, K. Nandra, R. Nikutta, F.E. Bauer, Astron. Astrophys. 629, A16 (2019).
  3. J. Buchner, M. Brightman, M. Balokovic, K. Wada, F.E. Bauer, K. Nandra, Astron. Astrophys. 651, A58 (2021).
  4. D. Burlon, M. Ajello, J. Greiner, A. Comastri, A. Merloni, N. Gehrels, Astrophys. J. 728, 58 (2011).
  5. C.P. Dullemond and I.M. van Bemmel, Astron. Astrophys. 436, 47 (2005).
  6. U. Feldman, Phys. Scr. 46, 202 (1992).
  7. A. Feltre, E. Hatziminaoglou, J. Fritz, A. Franceschini, MNRAS 426, 120 (2012).
  8. S. Furui, Y. Fukazawa, H. Odaka, T. Kawaguchi, M. Ohno, K. Hayashi, Astrophys. J. 818, 164 (2016).
  9. I.M. George and A.C. Fabian, MNRAS 249, 352 (1991).
  10. M. Guainazzi and S. Bianchi, MNRAS 374, 1290 (2007).
  11. R.C. Hickox and D.M. Alexander, Ann. Rev. Astron. Astrophys. 56, 625 (2018).
  12. J.S. Kaastra and R. Mewe, Astron. Astrophys. Suppl. Ser. 97, 443 (1993).
  13. Y. Liu and X. Li, Astrophys. J. 787, 52 (2014).
  14. Y. Liu and X. Li, IAU General Assembly, Meet. 29, 2249494 (2015).
  15. A. Malizia, S. Sazonov, L. Bassani, E. Pian, V. Beckmann, M. Molina, I. Mereminskiy, G. Belanger, New Astron. Rev. 90, 101545 (2020).
  16. A.G. Markowitz, M. Krumpe, R. Nikutta, MNRAS 439, 1403 (2014).
  17. A. Merloni, et al., MNRAS 437, 3550 (2014).
  18. M. Nenkova, Z. Ivezic, M. Elitzur, Astrophys. J. 570, L9 (2002).
  19. H. Netzer, Ann. Rev. Astron. Astrophys. Sov. Sci. Rev., Sect. E: Astrophys. Space Phys. Rev. 53, 365 (2015).
  20. L.A. Pozdnyakov, I.M. Sobol, R.A. Syunyaev, Sov. Sci. Rev., Sect. E: Astrophys. Space Phys. Rev. 2, 189 (1983).
  21. C. Ramos Almeida and C. Ricci, Nature Astron. 1, 679 (2017).
  22. C. Ramos Almeida, et al., Astrophys. J. 731, 92 (2011).
  23. C. Ricci, et al., Astrophys. J. 820, 5 (2016).
  24. G. Risaliti, M. Elvis, G. Fabbiano, A. Baldi, A. Zeza, Astrophys. J. 623, L93 (2005).
  25. G. Risaliti, M. Elvis, G. Fabbiano, A. Baldi, A. Zezas, M. Salvati, Astrophys. J. 659, L111 (2007).
  26. S.Y. Sazonov and M.G. Revnivtsev, Astron. Astrophys. 423, 469 (2004).
  27. S.Y. Sazonov and R.A. Sunyaev, Astrophys. J. 543, 28 (2000).
  28. S. Sazonov, M. Revnivtsev, R. Krivonos, E. Churazov, R. Sunyaev, Astron. Astrophys. 462, 57 (2007).
  29. S. Sazonov, E. Churazov, R. Krivonos, MNRAS 454, 1202 (2015).
  30. M. Stalevski, C. Ricci, Y. Ueda, P. Lira, J. Fritz, M. Baes, MNRAS 458, 2288 (2016).
  31. A.T. Steffen, A.J. Barger, L.L. Cowie, R.F. Mushotzky, Y. Yang, Astrophys. J. 596, L23 (2003).
  32. R.A. Sunyaev and E.M. Churazov, Astron. Lett. 22, 648 (1996).
  33. A. Tanimoto, Y. Ueda, H. Odaka, T. Kawaguchi, Y. Fukazawa, T. Kawamuro, Astrophys. J. 877, 95 (2019).
  34. Y. Ueda, M. Akiyama, K. Ohta, T. Miyaji, Astrophys. J. 598, 886 (2003).
  35. Y. Ueda, M. Akiyama, G. Hasinger, T. Miyaji, M.G. Watson, Astrophys. J. 786, 104 (2014).
  36. D.A. Verner and D.G. Yakovlev, Astron. Astrophys. Suppl. Ser. 109, 125 (1995).
  37. D.A. Verner, G.J. Ferland, K.T. Korista, D.G. Yakovlev, Astrophys. J. 465, 487 (1996).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Pleiades Publishing, Ltd.